首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Clast fabric and morphological data have been used to determine the origin of fluted subglacial tills exposed by recent retreat of the Slettmarkbreen glacier, Norway. A new method for the interpretation of clast fabric data allows aspects of the strain and depositional history of the till to be reconstructed. The till formed by a combination of lodgement and subsole deformation by slip along discrete shear planes. Lodgement was dominant for the larger size fractions (>125 mm), while the smaller material was more susceptible to deformation. The fluted till surface reflects the tendency for the till matrix to deform into regions of low confining pressure in the lee of lodged boulders. Downglacier components of till flow are thought to have resulted in significant sediment transfer towards the margin.  相似文献   

2.
Terminal-moraine ridges up to 6 m high have been forming at the snout of Styggedalsbreen for two decades. Based on intermittent observations during this period, combined with a detailed study of ridge morphology, sedimentary structures and composition during the 1993 field season, a model of terminal-moraine formation that involves the interaction of glacial and glacio-fluvial processes at a seasonally oscillating ice margin is presented. In winter, subglacial debris is frozen-on to the glacier sole; in summer, ice-marginal and supraglacial streams deposit sediments on the wasting ice tongue. The ice tongue overrides an embryonic moraine ridge during a late-winter advance and a double layer of sediment (diamicton overlain by sorted sands and gravels) is added to the moraine ridge during the subsequent ablation season. Particular ridges grow incrementally over many years and exert positive feedback by enhancing snout up-arching during the winter advance and constraining the course of summer meltwater streams close to the ice margin. The double-layer annual-meltout model is related to moraine formation by the stacking of subglacial frozen-on sediment slabs (Krüger 1993). Moraine ridges of this type have a complex origin. are not push moraines, and may be characteristic of dynamic high-latitude and high-altitude temperate glaciers.  相似文献   

3.
Glacier thermal regime is shown to have a significant influence on the formation of ice‐marginal moraines. Annual moraines at the margin of Midtdalsbreen are asymmetrical and contain sorted fine sediment and diamicton layers dipping gently up‐glacier. The sorted fine sediments include sands and gravels that were initially deposited fluvially directly in front of the glacier. Clast‐form data indicate that the diamictons have a mixed subglacial and fluvial origin. Winter cold is able to penetrate through the thin (<10 m) ice margin and freeze these sediments to the glacier sole. During winter, sediment becomes elevated along the wedge‐shaped advancing glacier snout before melting out and being deposited as asymmetrical ridges. These annual moraines have a limited preservation potential of ~40 years, and this is reflected in the evolution of landforms across the glacier foreland. Despite changing climatic conditions since the Little Ice Age and particularly within the last 10 years when frontal retreat has significantly speeded up, glacier dynamics have remained relatively constant with moraines deposited via basal freeze‐on, which requires stable glacier geometry. While the annual moraines on the eastern side of Midtdalsbreen indicate a slow steady retreat, the western foreland contains contrasting ice‐stagnation topography, highlighting the importance of local forcing factors such as shielding, aspect and debris cover in addition to changing climate. This study indicates that, even in temperate glacial environments, restricted or localised areas of cold‐based ice can have a significant impact on the geomorphic imprint of the glacier system and may actually be more widespread within both modern and ancient glacial environments than previously thought.  相似文献   

4.
Ice‐cored lateral and frontal moraine complexes, formed at the margin of the small, land‐based Rieperbreen glacier, central Svalbard, have been investigated through field observations and interpretations of aerial photographs (1936, 1961 and 1990). The main focus has been on the stratigraphical and dynamic development of these moraines as well as the disintegration processes. The glacier has been wasting down since the ‘Little Ice Age’ (LIA) maximum, and between 1936 and 1990 the glacier surface was lowered by 50–60 m and the front retreated by approximately 900 m. As the glacier wasted, three moraine ridges developed at the front, mainly as melting out of sediments from debris‐rich foliation and debris‐bands formed when the glacier was polythermal, probably during the LIA maximum. The disintegration of the moraines is dominated by wastage of buried ice, sediment gravity‐flows, meltwater activity and some frost weathering. A transverse glacier profile with a northward sloping surface has developed owing to the higher insolation along the south‐facing ice margin. This asymmetric geometry also strongly affects the supraglacial drainage pattern. Lateral moraines have formed along both sides of the glacier, although the insolation aspect of the glacier has resulted in the development of a moraine 60 m high along its northern margin. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
Alpine glacier fluctuations provide important paleoclimate proxies where other records such as ice cores, tree rings, and speleothems are not available. About 20 years have passed since a special issue of Quaternary Science Reviews was published to review the worldwide evidence for Holocene glacier fluctuations. Since that time, numerous sites have been discovered, new dating techniques have been developed, and refined climatic hypotheses have been proposed that contribute to a better understanding of Earth's climate system. This special volume includes 12 papers on Holocene and latest Pleistocene alpine glacier fluctuations that update the seven review papers from 1988.Major findings of these 12 papers include the following: many, but certainly not all, alpine areas record glacier advances during the Younger Dryas cold interval. Most areas in the Northern Hemisphere witnessed maximum glacier recession during the early Holocene, with some glaciers disappearing, although a few sites yield possible evidence for advances during the 8.2 ka cooling event. In contrast, some alpine areas in the Southern Hemisphere saw glaciers reach their maximum post-glacial extents during the early to middle Holocene. In many parts of the globe, glaciers reformed and/or advanced during Neoglaciation, beginning as early as 6.5 ka. Neoglacial advances commonly occurred with millennial-scale oscillations, with many alpine glaciers reaching their maximum Holocene extents during the Little Ice Age of the last few centuries. Although the pattern and rhythm of these glacier fluctuations remain uncertain, improved spatial coverage coupled with tighter age control for many events will provide a means to assess forcing mechanisms for Holocene and latest Pleistocene glacial activity and perhaps predict glacier response to future impacts from human-induced climate change.  相似文献   

6.
This paper focuses on the structural glaciology, dynamics, debris transport paths and sedimentology of the forefield of Soler Glacier, a temperate outlet glacier of the North Patagonian Icefield in southern Chile. The glacier is fed by an icefall from the icefield and by snow and ice avalanches from surrounding mountain slopes. The dominant structures in the glacier are ogives, crevasses and crevasse traces. Thrusts and recumbent folds are developed where the glacier encounters a reverse slope, elevating basal and englacial material to the ice surface. Other debris sources for the glacier include avalanche and rockfall material, some of which is ingested in marginal crevasses. Debris incorporated in the ice and on its surface controls both the distribution of sedimentary facies on the forefield and moraine ridge morphology. Lithofacies in moraine ridges on the glacier forefield include large isolated boulders, diamictons, gravel, sand and fine-grained facies. In relative abundance terms, the dominant lithofacies and their interpretation are sandy boulder gravel (ice-marginal), sandy gravel (glaciofluvial), angular gravel (supraglacial) and diamicton (basal glacial). Proglacial water bodies are currently developing between the receding glacier and its frontal and lateral moraines. The presence of folded sand and laminites in moraine ridges in front of the glacier suggests that, during a previous advance, Soler Glacier over-rode a former proglacial lake, reworking lacustrine deposits. Post-depositional modification of the landform/sediment assemblage includes melting of the ice-core beneath the sediment cover, redistribution of finer material across the proglacial area by aeolian processes and fluvial reworking. Overall, the preservation potential of this landform/sediment assemblage is high on the centennial to millennial timescale.  相似文献   

7.
The focus of this study is to understand a dramatic avulsion event on the Tisza River. During the Late Pleistocene the river course switched by about 80 km from the east to west of the Great Hungarian Plain (GHP) through the Záhony bend to its present meander belt. The aim of this study is to date this Záhony avulsion: based upon radiocarbon and pollen samples from six cores in the Polgár study area, situated in the west of the GHP at the middle course of the Tisza River. In addition, a grain size composition and heavy mineral analysis has been performed. The results of these analyses reveal a sequence of paleochannels and have been plotted on a high-resolution digital elevation model, illustrating the paleochannel form and age relationships.

The study suggests that the age of this major avulsion event is significantly older than it was previously supposed. Instead of 10 to 11 ka it is, according to our new data, 16–18 ka, and definitely predates the Last Glacial Maximum (LGM). The river cut into the previous, contiguous surface and formed at least one climatic terrace, then drifted gradually westward as a response to a tilt or the differential subsidence of tectonic origin.  相似文献   


8.
There are 19 sub-tropical temperate glaciers on Mount Yulong, the southernmost currently glacier-covered area in Eurasia, controlled by the south-western monsoon climate. In the summer of 1999, a firn core, 10.10 m long, extending down to glacier ice, was recovered in the accumulation area of the largest glacier, Baishui No.1. Periodic variations of climatic signals above 7.8 m depth were apparent, and net accumulation of four years was identified by the annual oscillations of isotopic and ionic composition. The boundaries of annual accumulation were confirmed by higher values of electrical conductivity and pH, and by dirty refreezing ice layers at the levels of summer surfaces. Calculated mean annual net accumulation from 1994/95 to 1997/98 was about 900 mm water equivalent. The amplitude of isotopic variations in the profile decreased with increasing depth, and isotopic homogenization occurred below 7.8 m as a result of meltwater percolation. Variations of δ18O above 7.8 m showed an approximate correlation with the winter climatic trend at Lijiang station, 25 km away. Concentrations of Ca2+ and Mg2+ were much higher than those of Na+ and K+, indicating that the air masses for precipitation were mainly from a continental source, and that the core material accumulated during the winter period. The close correspondence of Cl and Na+ indicated their common origin. The decreasing trend of Na+/Cl ratios with increasing depth further reflects a progressive homogenization process caused by meltwater percolation. Concentrations of SO42− and NO3 in the core are quite low. The mean annual net accumulation in the core and the estimated ablation indicate that the average annual precipitation above the glacier's equilibrium line is 2400–3100 mm, but this needs to be confirmed by long-term observation of mass balance.  相似文献   

9.
A push moraine deposited by the surging tidewater glacier Paulabreen (Svalbard) was investigated using 2D resistivity profiling. Six longitudinal and transverse profiles were obtained on the moraine and the resistivities were compared with data from three boreholes. Four profiles indicate that the inner part of the moraine is ice-cored and that the buried glacier ice is more than 30 m thick. A transverse profile shows evidence of basal crevasses near the former glacier margin. Three profiles cross the former glacier margin and onto a proglacial plain which dips slightly away from the former glacier margin. Low resistivities were encountered where borehole and field observations indicate that the plain consists of marine muds with a high salt content. This landform has previously been interpreted as a slab of seabed pushed up in front of the surging glacier, possibly facilitated by permafrost in the seabed. We suggest, alternatively, that the landform originated from sediments extruded from below (or pushed in front of) the glacier at the surge terminus and deposited as a debrisflow. Ground penetrating radar can reveal small-scale structures, but larger structures and overall composition are better imaged by resistivity measurements.  相似文献   

10.
Multi-biomarkers were characterized in surface soils with different vegetation during an annual cycle in Oregon, U.S.A., to study the composition and dynamics of soil organic matter (SOM). The major compound classes identified include saccharides, steroids, terpenoids, and homologous series of aliphatic lipids (n-alkanoic acids, n-alkanols, and n-alkanes). Saccharides, n-alkanoic acids, and sterols were the most dominant compound groups identified in Ryegrass field soils, whereas n-alkanoic acids, n-alkanols, and sterols were dominant in soils under conifer and deciduous vegetation. Plant species, instead of microbial organisms, was found to be the primary source influencing the concentration and distribution of the major biomarker tracers in the studied surface soils. Over an annual cycle, concentrations of higher plant lipids such as monoacyl glycerides, sterols, n-alkanoic acids and total wax were higher during summer (especially June–August). During fall into winter, the concentrations of all compounds decreased to steady state levels due to cessation of de novo synthesis and concomitant biodegradation and remineralization of detritus. Sucrose and glucose reached maximum concentrations during spring (especially March–May), which could be related with plant growth, especially rootlets in the soils. Mycose, the microbial/fungal metabolite, maximized during late summer, suggesting the concomitant increase of microbial/fungal activity with the increasing primary production. The composition and variation of biomarkers observed over an annual cycle improved our understanding of SOM dynamics in temperate soils, which could also be linked to regional and global carbon cycles.  相似文献   

11.
Sedimentary biomarker distributions can record ocean productivity and community structure, but their interpretation must consider alteration during organic matter (OM) export and burial. Large changes in the water column redox state are known to impact on the preservation of biomarkers, but more subtle variation in sediment redox conditions, characteristic of major modern ocean basins, have been less thoroughly investigated. Here we evaluate changes in biomarker distributions during sinking and burial across a nearshore to offshore transect in the southwestern Cape Basin (South East Atlantic), which includes a range of sedimentary environments. Biomarker concentrations and distributions in suspended particulate matter from the upper water column were determined and compared with underlying sedimentary biomarker accumulation rates and distributions. Biomarker distributions were similar in surface and subsurface waters, indicating that the OM signature is exported from the ocean mixed layer with minimal alteration. We show that, while export production (100 m) is similar along this transect, 230Thxs-corrected biomarker accumulation rate varies by over an order of magnitude in sediments and is directly associated with sedimentary redox conditions, ranging from oxic to nitrogenous–ferruginous. Biomarker distributions were dominated by sterols in surface water, and by alkenones in underlying sediments, which we propose to be primarily the result of selective preservation. Notably, the difference in sediment O2 penetration depth was associated with relative biomarker preservation. Subtle variation in sedimentary redox conditions has a dramatic impact on the distribution of preserved biomarkers. We discuss mechanisms for preferential degradation of specific biomarkers within this setting.  相似文献   

12.
In deciduous forests, soil moisture is an important driver of numerous physical, microbial, and biogeochemical processes. Therefore, characterizing the interactions between vegetation and soil moisture is critical to forecast long-term water resources and ecosystem health. However, these interactions are difficult to measure, both in time and space. Recent studies have shown the ability of electrical resistivity imaging (ERI) to characterize the spatial and temporal dynamics of soil moisture at a range of scales. However, no study has yet attempted to use ERI to describe spatiotemporal variability of soil water in relation to vegetation structure and throughfall. In this study, at a mature forest site in Michigan, USA, we captured spatial and temporal dynamics of soil moisture using weekly ERI measurements augmented with throughfall and soil temperature measurements, and a detailed vegetation survey for five adjacent quadrats. Our results show that throughout the growing season, the soil moisture gradually declined despite strong variations in cumulative monthly rainfall. This decline was occasionally halted, but not reversed, during weeks with high precipitation. Spatial variability of electrical resistivity and soil moisture was not related to soil temperature differences but showed a strong correlation with canopy variables.  相似文献   

13.
Pleistocene lateral meltwater channels are commonly used as evidence of cold-based or polythermal ice. However, lateral meltwater channel formation has been observed for >40 years along the margins of a rapidly thinning temperate glacier in Glacier Bay, Alaska. Flights of nested linear lateral meltwater channels and in-and-out channels have formed on the sides of emerging nunataks. Nested channels at Burroughs Glacier are up to 200 m long; they are good proxies for the slope of the ice margin along the land surface and are terminated by subglacial chutes. A perched water table associated with precipitation and high ablation rates in the temperate ice causes surface meltwater to flow toward the margin above less permeable ice. The water flows along the margin and erodes lateral meltwater channels until a subglacial chute carries the water into the subglacial water system. Rates of channel formation range from 0 to 8 channels/year. Spacing and rates of channel formation are controlled by the land-surface slope, ablation rate, erodibility of the substrate and stream discharge. Because lateral meltwater channels have been observed forming along a temperate glacier margin, care must be exercised when using the presence of lateral meltwater channels as definitive evidence of cold-based or polythermal ice.  相似文献   

14.
Using sand tank experiments and numerical models, local-scale solute-transport processes associated with free convection in both the region surrounding as well as within discrete low-permeability strata are explored. Different permeability geometries and contrasts between high- and low-permeability regions are tested. Results show that two free convective processes occur at different spatial and temporal scales. In the high-permeability region, salinisation was rapid and occurred predominantly by free convective flow around the low-permeability blocks (interlayer convection). A free convection flow field also became concurrently established within the low-permeability lenses (intralayer convection). It was found that upward vertical flow created by the large-scale interlayer free-convective flow field in the high-permeability region retards salinisation of the lenses as buoyant freshwater displacements oppose the downward penetration of dissolved salts. Salinisation of the low-permeability structures eventually takes place from below as saltwater is dragged upwards. This bottom up convective salinisation process of low permeability strata has not been reported in previous literature. These results demonstrate that variable-density sequestration of solutes driven by a source resident above the low-permeability layer is a complicated function of the geometry of the permeability distribution and the permeability contrast between low- and high-permeability regions.  相似文献   

15.
在全球变暖的大背景下,我国藏南地区冰川持续退缩,冰湖不断扩张,从而引发了一系列的地质灾害问题。文章利用Landsat系列影像,在面向对象分类方法的基础上采用波段比值法和NDWI指数提取了藏南希夏邦玛峰地区1994—2018年共9期冰川和冰湖的面积。研究表明,希夏邦玛峰地区净冰川持续退缩,总体速率为(1.28±0.32)%/a,冰湖的扩张速率约为(1.88±1.07)%/a。同时,面积小于1 km2的冰川退缩极为严重,高达33.25%。其次气象再分析数据表明夏季气温和降水的增加可能是该地区净冰川退缩加快的重要原因,并且共同促进了冰湖的加速扩张,大大提高了该地区冰湖溃决的风险。  相似文献   

16.
The formation of late‐stage veins can yield valuable information about the movement and composition of fluids during uplift and exhumation of high‐pressure terranes. Albite veins are especially suited to this purpose because they are ubiquitously associated with the greenschist facies overprint in high‐pressure rocks. Albite veins in retrogressed metabasic rocks from high‐pressure ophiolitic units of Alpine Corsica (France) are nearly monomineralic, and have distinct alteration haloes composed of actinolite + epidote + chlorite + albite. Estimated PT conditions of albite vein formation are 478 ± 31 °C and 0.37 ± 0.14 GPa. The PT estimates and petrographic constraints indicate that the albite veins formed after the regional greenschist facies retrogression, in response to continued decompression and exhumation of the terrane. Stable isotope geochemistry of the albite veins, their associated alteration haloes and unaltered hostrocks indicates that the vein‐forming fluid was derived from the ophiolite units and probably from the metabasalts within each ophiolite slice. That the vein‐forming fluid was locally derived means that a viable source of fluid to form the veins was retained in the rocks during high‐pressure metamorphism, indicating that the rocks did not completely dehydrate. This conclusion is supported by the observation of abundant lawsonite at the highest metamorphic grades. Fluids were liberated during retrogression via decompression dehydration reactions such as those that break down hydrous high‐pressure minerals like lawsonite. Albite precipitation into veins is sensitive to the solubility and speciation of Al, which is more pressure sensitive than other factors which might influence albite vein formation such as silica saturation or Na:K fluid ratios. Hydraulic fracturing in response to fluid generation during decompression was probably the main mechanism of vein formation. The associated pressure decrease with fracturing and fluid decompression may also have been sufficient to change the solubility of Al and drive albite precipitation in fracture systems.  相似文献   

17.
Sediment-water exchanges of ammonium (NH4 +), nitrate + nitrite (NOx ?), filterable reactive phosphorus (FRP, primarily ortho-phosphate), and oxygen (O2) under aphotic (heterotrophic) conditions were determined at 2–5 stations in the Neuse River Estuary, from 1987 to 1989. Shallow (1 m), sandy stations were sampled along the salinity gradient. Fluxes from deep (>2 m) sites were compared to the shallow sites in two salinity zones. Grain size became finer and organic content increased with depth in the oligohaline zone but not in the mesohaline zone. Net release of NH4 + and FRP occurred at all sites. Fluxes varied from slight uptake to releases of 200–500 μmol m?2 h?1 (NH4 +) and 150–900 μmol m?2 h?1 (FRP). Net NOx ? exchange was near zero, but were ±100 μmol m?2 h?1 over the year. Release of NH4 + and FRP from the shallow sandy stations decreased with distance down the estuary, but O2 uptake did not change. The deeper oligohaline site had twofold higher rates of NH4 + and FRP release and O2 uptake than the shallow site, but no differences occurred between depths in the mesohaline zone. Temperature and organic content were important controls for all fluxes, but water column NOx ? concentration was also important in regulating NOx ? exchanges. Ratios of oxygen consumption to NH4 + release were near the predicted ratio (Redfield model) at oligohaline sites but increased down estuary at mesohaline sites. This may be due to greater nitrification rates promoted by autotrophy in the sediments.  相似文献   

18.
天山高山区与郊区降水中颗粒物特征的比较   总被引:1,自引:0,他引:1       下载免费PDF全文
以天山乌鲁木齐河流域为例,运用参数比较法、相关分析法,对降水中粉尘颗粒物特征在高山区和郊区随时间变化特征及其差异进行研究.结果表明,降水中颗粒物的浓度、粒径分布及化学要素组成在两个取样点都具有明显的季节变化.颗粒浓度表现为冬-春季节升高而夏-秋季节降低,与降水量成反向变化,反映了降水受中亚沙尘活动的影响明显.颗粒在冬-...  相似文献   

19.
20.
Tian  Shufeng  Chen  Ningsheng  Rahman  Mahfuzur  Hu  Guisheng  Peng  Taixin  Zhang  Yong  Liu  Mei 《Landslides》2022,19(3):647-657
Landslides - In 2019, the catastrophic Zhaiban slope debris flow (ZSDF) crushed an open road tunnel in Ganluo County, Sichuan Province, China, causing seven deaths and interrupting traffic flow for...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号