首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the analysis and calculation of the hazard intensity of typhoon rainstorms and floods as well as the vulnerability of flood receptors and the possibility of great losses, risk scenarios are proposed and presented in Wenzhou City, Zhejiang Province, China, using the Pearson-III model and ArcGIS spatial analyst tools. Results indicate that the elements of risk scenarios include time–space scenarios, disaster scenarios, and man-made scenarios. Ten-year and 100-year typhoon rainstorms and flood hazard areas are mainly concentrated in the coastal areas of Wenzhou City. The average rainfall across a 100-year frequency is 450 mm. The extreme water depth of a 100-year flood is 600 mm. High-vulnerability areas are located in Yueqing, Pingyang, Cangnan, and Wencheng counties. The average loss rate of a 100-year flood is more than 50%. The greatest possible loss of floods shows an obvious concentration-diffusion situation. There is an area of about 20–25% flood loss of 6–24 million Yuan RMB/km2 in the Lucheng, Longwan and Ouhai districts. The average loss of a 100-year flood is 12 million Yuan RMB/km2, and extreme loss reaches 49.33 million Yuan RMB/km2. The classification of risk scenario may be used for the choice of risk response priorities. For the next 50 years, the 10-year typhoon rainstorm-flood disaster is the biggest risk scenario faced by most regions of Wenzhou City. For the Yueqing, Ruian, and Ouhai districts, it is best to cope with a 100-year disaster risk scenario and the accompanying losses.  相似文献   

2.
The traditional studies on drought disaster risk were based on the ground point data, which were unable to realize the continuity of space and the timeliness. It is shown that the monitoring and evaluation precision on drought were reduced significantly. However, remote sensing data in adequate spatial and temporal resolution can overcome these limitations. It can better monitor the crop in large area dynamically. This study presents a methodology for dynamic risk analysis and assessment of drought disaster to maize production in the northwest of Liaoning Province based on remote sensing data and GIS from the viewpoints of climatology, geography and disaster science. The model of dynamic risk assessment of drought disaster was established based on risk formation theory of natural disaster, and the expression of risk by integrating data came from sky, ground and space. The risk indexes were divided into four classes by data mining method, and the grade maps of drought disaster risk were drawn by GIS. It is shown that the spatial and temporal risk distributions of maize at each growth stage changed over time. The model has been verified against reduction in maize yield caused by drought. It demonstrated the reasonability, feasibility and reliability of the model and the methodology. The dynamic risk assessment of regional drought disaster for maize can be used as a tool, which can timely monitor the status (the possibility and extent of drought) and trends of regional drought disaster. The results obtained in this study can provide the latest information of regional drought disaster and the decision-making basis of disaster prevention and mitigation for government management and farmers.  相似文献   

3.
This study presents a methodology of risk early warning of maize drought disaster in Northwestern Liaoning Province from the viewpoints of climatology, geography, disaster science, environmental science, and so on. The study area was disaggregated into small grid cells, which has higher resolution than counties. Based on the daily meteorological data and maize yield data from 1997 to 2005, the risk early warning model was built up for drought disaster. The early warning crisis signs were considered from exogenous warning signs and endogenous warning signs. The probability of drought was taken as endogenous warnings sign, which was calculated by logistic regression model. Beside precipitation, wind speed and temperature were taken into consideration when assessing the drought. The optimal partition method was used to define the threshold of each warning grade. Take the year of 2009 as an example, this risk early warning model performed well in warning drought disasters of each maize-growing stage. Results obtained from the early warning model can guide the government to take emergency action to reduce the losses.  相似文献   

4.
5.
地质灾害风险区划是地质灾害风险管理与防治的有效手段之一,对于科学防治地质灾害具有重要意义。基于自然灾害风险理论,从致灾因子危险性,承灾体暴露性和脆弱性以及防灾减灾能力(恢复力)等入手,选取评价指标,构建省级地质灾害风险评价模型,对全省地质灾害进行风险区划。该模型在吉林省地质灾害风险区划中应用表明,评价结果合理,与野外调查情况吻合,可以为规划和地质灾害防治等工作提供依据。  相似文献   

6.
Acid water from the Banyuputih river (pH  3.5) is used for the irrigation of agricultural land in the Asembagus coastal area (East Java, Indonesia), with harmful consequences for rice yields. The river water has an unusual composition which is caused by seepage from the acidic Kawah Ijen crater lake into the river. This unique irrigation setting allows the study of soil acidification in situ. This paper assesses the effects of volcanogenically contaminated irrigation water on the chemical properties of the agricultural soils.The changes in soil properties were evaluated by comparing samples taken from the topsoil and sub-soil (1–3 m depth) from areas irrigated with acid water and areas irrigated with neutral water. The field survey thus resulted in four soil categories. Bulk soil composition, organic matter content, moisture content and particle size distribution were determined. Reactive phases were quantified with the selective extractions 1 M KCl, 0.1 M Na-pyrophosphate and 0.2 M acid ammonium oxalate (AAO).By comparing the four soil categories it is shown that the use of the naturally polluted irrigation water has had a large influence on the chemical composition of the topsoil. The composition of the soil solution has changed over the entire investigated soil profile. Furthermore the acid irrigation water has strongly modified the composition of the reactive phases, extracted as KCl, pyrophosphate, and AAO extractable elements, and also the bulk soil composition has been significantly modified. Overall this has resulted in the net dissolution of some elements and the net precipitation of others. The changes in the reactive phases and bulk soil composition are only apparent in the topsoil (0–20 cm) but not in the deeper soil.  相似文献   

7.
A series of empirical studies involving typhoon rainstorm and flood risk scenario analysis were carried out on a medium spatial scale, covering Pingyang County. Considering a rainstorm/water-logging conversion process, active flooding submergence and per unit area values (million yuan/km2), two typical risk scenarios (50- and 100-year frequency) were simulated and analyzed. The study revealed that high-risk areas distributed across the towns of Aojiang, Qiancang and Xiaojiang, with a maximum submerged depth of 4.61 m for a 100-year flood hazard. In the case of a disaster loss rate >65 %, the potential maximum loss could be more than 10 million yuan/km2. For medium-scale disaster risk, more attention must be paid to catastrophic events, which have a low probability of occurrence but would induce great losses. An amended risk formula could determine the degree of priority for responses to hazards of equal risk value better. In Pingyang County, the 50-year flood risk for Kunyang, Aojiang, Qiancang and Xiaojiang is greater than that of 100-year events for the next 50 years. However, these areas should give priority to their responses to 100-year disaster events during the next 100 years. In addition, the attention of disaster risk should vary in different spatial regions.  相似文献   

8.
In Sidi Bouzid plain, rainfall alone is insufficient to satisfy crop water requirements. Within this framework, and in order to improve water resources in the region, the Tunisian State adopted non-conventional water mobilization techniques, among which artificial spate irrigation. The objective of the study is to evaluate the impact of spate irrigation of flood water on the mitigation of agricultural drought and the enhancement of groundwater recharge. Annual and monthly rainfall data as well as flood water volumes were monitored. The study focused on the groundwater drawdown monitoring. Results showed a high flood water contribution to crop water requirements that exceeded rainfall. This water prevented drought in the spate perimeters. The groundwater drawdown was found to fluctuate over time, with an average decreasing rate of 0.4 to 0.5 m/year. Groundwater recharge was found to be highly correlated with flood water contribution through spate irrigation (R 2 = 84 %). Out of the spate zone, a high decrease in the groundwater level was noted. The lowest rate of 1 m/year was that of the farthest piezometer from the spate perimeters. This is influenced by the excessive pumping out of the spate zone. In 1980, groundwater flew from the west to the east. In 2015, the flow movement from the east to the center of the plain did not change due to the presence of the spate perimeters. Nevertheless, excessive pumping around sabkhas changed the flow directions at the outlet zone. A variation in groundwater salinity was observed in both space and time. In 1975, salinity was very low. The outlet zone was the most affected where the drawdown reached several meters, causing saltwater intrusion from the surrounding sabkhas.  相似文献   

9.
Natural Hazards - This research had been conducted in Sampean Baru Watershed, Bondowoso-Situbondo Regency, Indonesia. The National Disaster Management Agency (BNPB) categorizes this watershed as an...  相似文献   

10.
11.
12.
Deng  Zhifei  Liu  Jifu  Guo  Lanlan  Li  Jiaoyang  Li  Junming  Jia  Yiru 《Natural Hazards》2021,106(1):235-253
Natural Hazards - Debris flow risk is growing with the current increases in landscape exploitation and extreme precipitation events associated with global warming. Insurance is an efficient...  相似文献   

13.
14.
This study presents a methodology for risk analysis, assessment, combination, and regionalization of integrated drought and waterlogging disasters in Anhui Province, which is supported by geographical information systems (GIS) and technique of natural disaster risk assessment from the viewpoints of climatology, geography, disaster science, environmental science, and so on. Along with the global warming, the occurrences of water-related disasters become more frequent and serious. It is necessary to determine the mode of spatial distribution of water-related disaster risk. Based on the principle of natural disaster risk, natural conditions, and socioeconomic situation, drought and waterlogging disaster risk index, which combined hazard, exposure, vulnerability, and restorability, was developed by using combined weights, entropy, and fuzzy comprehensive evaluation method. Drought and waterlogging disaster risk zoning map was made out by using GIS spatial analysis technique and gridding GIS technique. It was used for comparing the relative risk of economic and life losses in different grids of Anhui Province. It can also be used to compare the situation of different levels of drought and waterlogging disaster combination risk in a similar place. The result shows that the northwestern and central parts of Anhui Province possess higher risk, while the southwestern and northeastern parts possess lower risk. The information obtained from statistical offices and remote sensing data in relation to results compiled were statistically evaluated. The results obtained from this study are specifically intended to support local and national governmental agencies on water-related disaster management.  相似文献   

15.
In the Apalachicola-Chattahoochee-Flint (ACF) river basin in Alabama, Georgia, and Florida (USA), population growth in the city of Atlanta and increased groundwater withdrawal for irrigation in southwest Georgia are greatly affecting the supply of freshwater to downstream regions. This study was conducted to understand and quantify the effect of irrigation pumpage on the karst Upper Floridan Aquifer and river–aquifer interactions in the lower ACF river basin in southwest Georgia. The groundwater MODular Finite-Element model (MODFE) was used for this study. The effect of two drought years, a moderate and a severe drought year, were simulated. Comparison of the results of the irrigated and non-irrigated scenarios showed that groundwater discharge to streams is a major outflow from the aquifer, and irrigation can cause as much as 10 % change in river–aquifer flux. The results also show that during months with high irrigation (e.g., June 2011), storage loss (34 %), the recharge and discharge from the upper semi-confining unit (30 %), and the river–aquifer flux (31 %) are the major water components contributing towards the impact of irrigation pumpage in the study area. A similar scenario plays out in many river basins throughout the world, especially in basins in which underlying karst aquifers are directly connected to a nearby stream. The study suggests that improved groundwater withdrawal strategies using climate forecasts needs to be developed in such a way that excessive withdrawals during droughts can be reduced to protect streams and river flows.  相似文献   

16.
Upstream inflow decline and excessive water withdrawal are the major reasons for failure in maintaining ecological functions of wetlands and could lead to wetland drought and degradation. Quantitative evaluation of wetlands drought constitutes the basis for managing and scheduling water resources and guaranteeing biological safety. In the study, we proposed a Palmer wetland drought index (PWDI) based on the water balance model that describes wetland hydrological characteristics linked to its located basin to describe drought-reflected ecological characteristics in lacustrine Baiyangdian Wetland and compared it with Palmer drought severity index (PDSI). The results presented that PWDI is able to reflect the worst drought in history, and the drought is mainly affected by water stored in the wetland, but PDSI is inadequate for evaluating the wetland drought. The PWDI methodology provides a clear, objective approach for describing the intensity of drought and can be readily adapted to characterize drought on an operational basis.  相似文献   

17.
18.
19.
To ensure safe mining of the Taigemiao no. 3 mine field in Inner Mongolia, China, it is very important to make clear the roof aquifer water abundance distribution feature. On the basis of collecting the main controlling factors of aquifer water abundance from the geological and hydrogeological prospecting data of the study area, the no. 2 coal seam roof aquifer water abundance of Taigemiao no. 3 mine field was analyzed and evaluated using three methods. The first method is analytic hierarchy process (AHP)-type water-richness index method (AHP-type WIM) which is commonly used. But AHP is relatively subjective, so we trying to use a more objective method which is weighed gray relational degree method (WGRDM); this method mainly used pure data analyzing, it is better than AHP-type WIM but still not perfect, so the comprehensive weighted method (CWM) is put forward by adopting the advantage of the former two methods. In order to assess the accuracy rate of the three methods quantificationally, the evaluation results of the three methods are compared respectively with the measured unit water inflow which can directly reflect the aquifer water abundance, which shows that the WGRDM is more accurate than AHP-type WIM, and the CWM is more scientific and accurate in both weight calculation and water abundance grading. The superiority of CWM is more obvious when there are too many evaluation factors.  相似文献   

20.
Xue  Mei-Mei  Wu  Gang  Wang  Qian  Yao  Yun-Fei  Liang  Qiao-Mei 《Natural Hazards》2019,99(3):1415-1430
Natural Hazards - Oil is an essential and important energy source and is related to energy security and national strategy. Based on a recursive dynamic computable general equilibrium model, this...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号