首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Based on measured broad line region sizes in the reverberation-mapping AGN sample, two new empirical relations are introduced to estimate the central black hole masses of radio-loud high-redshift (z > 0.5) AGNs. First, using the archival IUE/HST spectroscopy data at UV band for the reverberation-mapping objects, we obtained two new empirical relations between the BLR size and Mg II/C IV emission line luminosity. Secondly, using the newly determined black hole masses of the reverberation-mapping sample as calibration, we found two new relationships for determining the black hole mass with the full width at half maximum and the luminosity of Mg II/C IV line. We then apply the relations to estimate the black hole masses of the AGNs in the Large Bright Quasar Survey and a sample of radio-loud quasars. For the objects with small radio-loudness, the black hole mass estimated using the RBLR-LMgII/C IV relation is consistent with that from the RBLR-L3000 (?)/1350(?) relation. For radio-loud AGNs, however, the mass estimated from the RBLR-LMgII/CIV relation is sys- tematically lower than that from the continuum luminosity L3000(?)/1350(?). Because jets could have significant contributions to the UV/optical continuum luminosity of radio-loud AGNs, we emphasize once again that for radio-loud AGNs, the emission line luminosity may be a better tracer of the ionizing luminosity than the continuum luminosity, so that the relations between the BLR size and UV emission line luminosities should be used to estimate the black hole masses of high redshift radio-loud AGNs.  相似文献   

2.
Measuring the black hole masses of high-redshift quasars   总被引:1,自引:0,他引:1  
A new technique is presented for determining the black hole masses of high-redshift quasars from optical spectroscopy. The new method utilizes the full-width at half-maximum (FWHM) of the low-ionization Mg  ii emission line and the correlation between the broad-line region (BLR) radius and the continuum luminosity at 3000 Å. Using archival ultraviolet (UV) spectra it is found that the correlation between BLR radius and 3000-Å luminosity is tighter than the established correlation with 5100-Å luminosity. Furthermore, it is found that the correlation between BLR radius and 3000-Å continuum luminosity is consistent with a relation of the form   R BLR∝λ L 1/2λ  , as expected for a constant ionization parameter. Using a sample of objects with broad-line radii determined from reverberation mapping it is shown that the FWHM of Mg  ii and Hβ are consistent with following an exact one-to-one relation, as expected if both Hβ and Mg  ii are emitted at the same radius from the central ionizing source. The resulting virial black hole mass estimator based on rest-frame UV observables is shown to reproduce black hole mass measurements based on reverberation mapping to within a factor of 2.5 (1σ). Finally, the new UV black hole mass estimator is shown to produce identical results to the established optical (Hβ) estimator when applied to 128 intermediate-redshift  (0.3 < z < 0.9)  quasars drawn from the Large Bright Quasar Survey and the radio-selected Molonglo quasar sample. We therefore conclude that the new UV virial black hole mass estimator can be reliably used to estimate the black hole masses of quasars from   z ∼ 0.25  through to the peak epoch of quasar activity at   z ∼ 2.5  via optical spectroscopy alone.  相似文献   

3.
The relationship between the black hole mass and velocity dispersion indicated with [O  iii ] linewidth is investigated for a sample of 87 flat-spectrum radio quasars selected from the Sloan Digital Sky Survey Data Release 3 quasar catalogue. We found that the   M BH−σ[O III]  relation is different from the Tremaine et al. relation for nearby inactive galaxies, with a larger black hole mass at given velocity dispersion. There is no strong evidence of cosmology evolution in the   M BH−σ[O III]  relation up to   z ∼ 0.8  . A significant correlation between the [O  iii ] luminosity and broad-line region (BLR) luminosity is found. When transferring the [O  iii ] luminosity to narrow-line region (NLR) luminosity, the BLR luminosity is, on average, larger than the NLR one by about one order of magnitude. We found a strong correlation between the synchrotron peak luminosity and NLR luminosity, which implies a tight relation between the jet physics and accretion process.  相似文献   

4.
The sizes of the Broad Line Region (BLR) of some Seyfert 1 galax-ies and nearby quasars can be determined by the reverberation mapping method.Combining with the observed FWHM of Hβ emission line and assuming that themotion of BLR clouds is virialized, the black hole masses of these objects have beenestimated. However, this method strongly depends on the poorly-understood geom-etry and inclination of the BLR. On the other hand, a tight correlation between theblack hole mass and the bulge velocity dispersion was recently found for both activeand nearby inactive galaxies. This may provide another method, independent of theBLR geometry, for estimating the black hole mass. Using this method for estimatingthe black hole mass and combining with the measured BLR size and FWHM of Hβemission line, we derived the BLR inclination angles for 20 Seyfert I galaxies underthe assumption that the BLR is disk-like. The derived inclination angles agree wellwith those derived previously by fitting the UV continuum and Hβ emission lineprofiles. Adopting a relation between the FWHMs of [OⅢ]λ5007 forbidden line andthe stellar velocity dispersion, we also estimated the BLR inclinations for 50 nar-row line Seyfert 1 galaxies (NLSls). We found that the inclinations of broad LineSeyfert 1 galaxies (BLS1s) are systematically greater than those of NLS1s, whichseldom exceed 30. This may be an important factor that leads to the differencesbetween NLS1s and BLS1s if the BLR of NLS1s is really disk-like.  相似文献   

5.
We assembled a sample of Seyfert 1 galaxies, quasi-stellar objects (QSOs) and low-luminosity active galactic nuclei (LLAGNs) observed by ASCA , the central black hole masses of which have been measured. We found that the X-ray variability (which is quantified by the 'excess variance' σ rms2) is significantly anti-correlated with the central black hole mass, and it is likely that a linear relationship of σ rms2∝ M bh−1 exists. It can be interpreted that the short time-scale X-ray variability is caused by some global coherent variations in the X-ray emission region, which is scaled by the size of the central black hole. Hence the central black hole mass is the driving parameter of the previously established relation between X-ray variability and luminosity. Our findings favour the hypothesis that the narrow-line Seyfert 1 galaxies and QSOs harbour smaller black holes than the broad-line objects, and can also easily explain the observational fact that high-redshift QSOs have greater variability than local AGNs at a given luminosity. Further investigations are needed to confirm our findings, and a large sample X-ray variability investigation can give constraints on the physical mechanisms and evolution of AGNs.  相似文献   

6.
Estimating black hole masses of blazars is still a big challenge. Because of the contamination of jets, using the previously suggested size–continuum luminosity relation can overestimate the broad line region (BLR) size and black hole mass for radio-loud AGNs, including blazars. We propose a new relation between the BLR size and H β emission line luminosity and present evidences for using it to get more accurate black hole masses of radio-loud AGNs. For extremely radio-loud AGNs such as blazars with weak/absent emission lines, we suggest the use of fundamental plane relation of their elliptical host galaxies to estimate the central velocity dispersions and black hole masses, if their velocity dispersions are not known but the host galaxies can be mapped. The black hole masses of some well-known blazars, such as OJ 287, AO 0235+164 and 3C 66B are obtained using these two methods and the Mσ relation. The implications of their black hole masses on other related studies are also discussed.  相似文献   

7.
We present a study of the X-ray emission from the nuclei of galaxies observed in the core of the Perseus cluster in a deep exposure with Chandra . Point sources are found coincident with the nuclei of 13 early-type galaxies, as well as the central galaxy NGC 1275. This corresponds to all galaxies brighter than M B > −18 in the Chandra field. All of these sources have a steep power-law spectral component and four have an additional thermal component. The unabsorbed power-law luminosities in the 0.5–7.0 keV band range from 8 × 1038 to 5 × 1040 erg s−1. We find no simple correlations between the K -band luminosity, or the FUV and NUV AB magnitudes of these galaxies and their X-ray properties. We have estimated the black hole masses of the nuclei using the K -band   M BH– L K bol  relation and again find no correlation between black hole mass and the X-ray luminosity. Bondi accretion on to the black holes in the galaxies with minihaloes should make them much more luminous than observed.  相似文献   

8.
We incorporate a model for black hole growth during galaxy mergers into the semi-analytical galaxy formation model based on ΛCDM proposed by Baugh et al. Our black hole model has one free parameter, which we set by matching the observed zero-point of the local correlation between black hole mass and bulge luminosity. We present predictions for the evolution with redshift of the relationships between black hole mass and bulge properties. Our simulations reproduce the evolution of the optical luminosity function of quasars. We study the demographics of the black hole population and address the issue of how black holes acquire their mass. We find that the direct accretion of cold gas during starbursts is an important growth mechanism for lower mass black holes and at high redshift. On the other hand, the re-assembly of pre-existing black hole mass into larger units via merging dominates the growth of more massive black holes at low redshift. This prediction could be tested by future gravitational wave experiments. As redshift decreases, progressively less massive black holes have the highest fractional growth rates, in line with recent claims of 'downsizing' in quasar activity.  相似文献   

9.
The growth of supermassive black holes by merging and accretion in hierarchical models of galaxy formation is studied by means of Monte Carlo simulations. A tight linear relation between masses of black holes and masses of bulges arises if the mass accreted by supermassive black holes scales linearly with the mass-forming stars and if the redshift evolution of mass accretion tracks closely that of star formation. Differences in redshift evolution between black hole accretion and star formation introduce a considerable scatter in this relation. A non-linear relation between black hole accretion and star formation results in a non-linear relation between masses of remnant black holes and masses of bulges. The relation of black hole mass to bulge luminosity observed in nearby galaxies and its scatter are reproduced reasonably well by models in which black hole accretion and star formation are linearly related but do not track each other in redshift. This suggests that a common mechanism determines the efficiency for black hole accretion and the efficiency for star formation, especially for bright bulges.  相似文献   

10.
We analyse the scaling of the X-ray power density spectra with the mass of the black hole in the examples of Cyg X-1 and the Seyfert 1 galaxy NGC 5548. We show that the high-frequency tail of the power density spectrum can be successfully used for the determination of the black hole mass. We determine the masses of the black holes in six broad-line Seyfert 1 galaxies, five narrow-line Seyfert 1 galaxies and two quasi-stellar objects (QSOs) using the available power density spectra. The proposed scaling is clearly appropriate for other Seyfert galaxies and QSOs. In all but one of the normal Seyferts, the resulting luminosity to Eddington luminosity ratio is smaller than 0.15, with the source MCG -6-15-30 being an exception. The applicability of the same scaling to a narrow-line Seyfert 1 is less clear and there may be a systematic shift between the power spectra of NLS1 and S1 galaxies of the same mass, leading to underestimation of the black hole mass. However, both the method based on variability and the method based on spectral fitting show that those galaxies have relatively low masses and a high luminosity to Eddington luminosity ratio, supporting the view of those objects as analogues of galactic sources in their high, soft or very high state, based on the overall spectral shape. The bulge masses of their host galaxies are similar to that of normal Seyfert galaxies, so they do not follow the black hole mass–bulge mass relation for Seyfert galaxies, being evolutionarily less advanced, as suggested by Mathur. The bulge mass–black hole mass relation in our sample is consistent with being linear, with the black hole to bulge ratio ∼0.03 per cent, similar to Wandel and Laor for low-mass objects, but significantly shifted from the relation of Magorrian et al. and McLure & Dunlop.  相似文献   

11.
An empirically motivated model is presented for accretion-dominated growth of supermassive black holes (SMBH) in galaxies, and the implications are studied for the evolution of the quasar population in the Universe. We investigate the core aspects of the quasar population, including space density evolution, evolution of the characteristic luminosity, plausible minimum masses of quasars, the mass function of SMBH and their formation epoch distribution. Our model suggests that the characteristic luminosity in the quasar luminosity function arises primarily as a consequence of a characteristic mass scale above which there is a systematic separation between the black hole and the halo merging rates. At lower mass scales, black hole merging closely tracks the merging of dark haloes. When combined with a declining efficiency of black hole formation with redshift, the model can reproduce the quasar luminosity function over a wide range of redshifts. The observed space density evolution of quasars is well described by formation rates of SMBH above  ∼108  M  . The inferred mass density of SMBH agrees with that found independently from estimates of the SMBH mass function derived empirically from the quasar luminosity function.  相似文献   

12.
We demonstrate that the luminosity function of the recently detected population of actively star-forming galaxies at redshift z  = 3 and the B -band luminosity function of quasi-stellar objects (QSOs) at the same redshift can both be matched with the mass function of dark matter haloes predicted by standard variants of hierarchical cosmogonies for lifetimes of optically bright QSOs anywhere in the range 106 to 108 yr. There is a strong correlation between the lifetime and the required degree of non-linearity in the relation between black hole and halo mass. We suggest that the mass of supermassive black holes may be limited by the back-reaction of the emitted energy on the accretion flow in a self-gravitating disc. This would imply a relation of black hole to halo mass of the form M bh ∝  v 5halo ∝  M 5/3halo and a typical duration of the optically bright QSO phase of a few times 107 yr. The high integrated mass density of black holes inferred from recent black hole mass estimates in nearby galaxies may indicate that the overall efficiency of supermassive black holes for producing blue light is smaller than previously assumed. We discuss three possible accretion modes with low optical emission efficiency: (i) accretion at far above the Eddington rate, (ii) accretion obscured by dust, and (iii) accretion below the critical rate leading to an advection-dominated accretion flow lasting for a Hubble time. We further argue that accretion with low optical efficiency might be closely related to the origin of the hard X-ray background and that the ionizing background might be progressively dominated by stars rather than QSOs at higher redshift.  相似文献   

13.
14.
We make a case for the existence for ultra-massive black holes (UMBHs) in the Universe, but argue that there exists a likely upper limit to black hole (BH) masses of the order of   M ∼ 1010 M  . We show that there are three strong lines of argument that predicate the existence of UMBHs: (i) expected as a natural extension of the observed BH mass bulge luminosity relation, when extrapolated to the bulge luminosities of bright central galaxies in clusters; (ii) new predictions for the mass function of seed BHs at high redshifts predict that growth via accretion or merger-induced accretion inevitably leads to the existence of rare UMBHs at late times; (iii) the local mass function of BHs computed from the observed X-ray luminosity functions of active galactic nuclei predict the existence of a high-mass tail in the BH mass function at   z = 0  . Consistency between the optical and X-ray census of the local BH mass function requires an upper limit to BH masses. This consistent picture also predicts that the slope of the   M bh–σ  relation will evolve with redshift at the high-mass end. Models of self-regulation that explain the co-evolution of the stellar component and nuclear BHs naturally provide such an upper limit. The combination of multiwavelength constraints predicts the existence of UMBHs and simultaneously provides an upper limit to their masses. The typical hosts for these local UMBHs are likely the bright, central cluster galaxies in the nearby Universe.  相似文献   

15.
We present evidence that there is a significant correlation between the fraction of the mass of a galaxy that lies in its central black hole and the age of the galactic stellar population. Since the absorption-line indices that are used to estimate the age are luminosity-weighted, they essentially measure the time since the last significant episode of star formation in the galaxy. The existence of this correlation is consistent with several theories of galaxy formation, including the currently favoured hierarchical picture of galaxy evolution, which predicts just such a relation between the black hole mass and the time since the last burst of merger-induced star formation. It is not consistent with models in which the massive black hole is primordial, and hence uncoupled from the stellar properties of the galaxy.  相似文献   

16.
We incorporate a simple scheme for the growth of supermassive black holes into semi-analytic models that follow the formation and evolution of galaxies in a cold dark matter-dominated Universe. We assume that supermassive black holes are formed and fuelled during major mergers. If two galaxies of comparable mass merge, their central black holes coalesce and a few per cent of the gas in the merger remnant is accreted by the new black hole over a time-scale of a few times 107 yr. With these simple assumptions, our model not only fits many aspects of the observed evolution of galaxies, but also reproduces quantitatively the observed relation between bulge luminosity and black hole mass in nearby galaxies, the strong evolution of the quasar population with redshift, and the relation between the luminosities of nearby quasars and those of their host galaxies. The strong decline in the number density of quasars from z ∼2 to z =0 is a result of the combination of three effects: (i) a decrease in the merging rate; (ii) a decrease in the amount of cold gas available to fuel black holes, and (iii) an increase in the time-scale for gas accretion. The predicted decline in the total content of cold gas in galaxies is consistent with that inferred from observations of damped Ly α systems. Our results strongly suggest that the evolution of supermassive black holes, quasars and starburst galaxies is inextricably linked to the hierarchical build-up of galaxies.  相似文献   

17.
We present the first results from a major HST WFPC2 imaging study aimed at providing the first statistically meaningful comparison of the morphologies, luminosities, scalelengths and colours of the host galaxies of radio-quiet quasars, radio-loud quasars and radio galaxies. We describe the design of this study and present the images that have been obtained for the first half of our 33-source sample. We find that the hosts of all three classes of luminous AGN are massive elliptical galaxies, with scalelengths ≃10 kpc, and R − K colours consistent with mature stellar populations. Most importantly, this is first unambiguous evidence that, just like radio-loud quasars, essentially all radio-quiet quasars brighter than M R =−24 reside in massive ellipticals. This result removes the possibility that radio 'loudness' is directly linked to host galaxy morphology, but is however in excellent accord with the black hole/spheroid mass correlation recently highlighted by Magorrian et al. We apply the relations given by Magorrian et al. to infer the expected Eddington luminosity of the putative black hole at the centre of each of the spheroidal host galaxies we have uncovered. Comparison with the actual nuclear R -band luminosities suggests that the black holes in most of these galaxies are radiating at a few per cent of the Eddington luminosity; the brightest host galaxies in our low- z sample are capable of hosting quasars with M R ≃− 28, comparable to the most luminous quasars at z ≃3. Finally, we discuss our host-derived black hole masses in the context of the radio luminosity:black hole mass correlation recently uncovered for nearby galaxies by Franceschini et al., and consider the resulting implications for the physical origin of radio loudness.  相似文献   

18.
Recent observations indicate that many if not all galaxies host massive central black holes. In this paper we explore the influence of black holes on the lensing properties. We model the lens as an isothermal ellipsoid with a finite core radius plus a central black hole. We show that the presence of the black hole substantially changes the critical curves and caustics. If the black hole mass is above a critical value, then it will completely suppress the central images for all source positions. Realistic central black holes are likely to have masses below this critical value. Even in such subcritical cases, the black hole can suppress the central image when the source is inside a zone of influence, which depends on the core radius and black hole mass. In the subcritical cases, an additional image may be created by the black hole in some regions, which for some radio lenses may be detectable with high-resolution and large dynamic range VLBI maps. The presence of central black holes should also be taken into account when one constrains the core radius from the lack of central images in gravitational lenses.  相似文献   

19.
Using simple stellar population synthesis, we model the bulge stellar contribution in the optical spectrum of a narrow-line Seyfert 1 galaxy, RE J1034+396. We find that its bulge stellar velocity dispersion is  67.7 ± 8 km s−1  . The supermassive black hole (SMBH) mass is about  (1–4) × 106 M  if it follows the well-known   M BH–σ*  relation found in quiescent galaxies. We also derive the SMBH mass from the Hβ second moment, which is consistent with that from its bulge stellar velocity dispersion. The SMBH mass of (1–4)  × 106 M  implies that the X-ray quasi-periodic oscillation (QPO) of RE J1034+396 can be scaled to a high-frequency QPO at 27–108 Hz found in Galactic black hole binaries with a  10-M  black hole. With the mass distribution in different age stellar populations, we find that the mean specific star formation rate (SSFR) over the past 0.1 Gyr is  0.0163 ± 0.0011  Gyr−1, the stellar mass in the logarithm is  10.155 ± 0.06  in units of solar mass and the current star formation rate is  0.23 ± 0.016 M yr−1  . For RE J1034+396, there is no relation between the Eddington ratio and the SSFR as suggested by Chen et al., despite a larger scatter in their relation. We also suggest that about 7.0 per cent of the total Hα luminosity and 50 per cent of the total [O  ii ] luminosity come from the star formation process.  相似文献   

20.
The scale invariance model (Heinz, S. and Sunyaev, R.A.: 2003, MNRAS 343, L59) can be used to derive robust scaling relations between the radio luminosity from accreting black holes and the black hole mass and accretion rate. These relations agree well with the recently found “fundamental plane” of black hole activity (Merloni, A., Heinz, S. and Di Matteo, T.: 2003, MNRAS 345, 1057). This relation provides a new, powerful tool for the comparison of jets from black holes of different masses and accretion rates. The regression coefficients of this relation contain information about the nature of the X-ray emission mechanism driving the correlation. We argue that X-ray synchrotron emission from the base of the jets is unlikely to be the dominant contribution to the X-ray spectrum in most of the sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号