首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary South Asian summer monsoon precipitation and its variability are examined from the outputs of the coupled climate models assessed as part of the Intergovernmental Panel on Climate Change Fourth Assessment. Out of the 22 models examined, 19 are able to capture the maximum rainfall during the summer monsoon period (June through September) with varying amplitude. While two models are unable to reproduce the annual cycle well, one model is unable to simulate the summer monsoon season. The simulated inter-annual variability from the 19 models is examined with respect to the mean precipitation, coefficient of variation, long-term trends and the biennial tendency. The model simulated mean precipitation varies from 500 mm to 900 mm and coefficient of variation from 3 to 13%. While seven models exhibit long-term trends, eight are able to simulate the biennial nature of the monsoon rainfall. Six models, which generate the most realistic 20th century monsoon climate over south Asia, are selected to examine future projections under the doubling CO2 scenario. Projections reveal a significant increase in mean monsoon precipitation of 8% and a possible extension of the monsoon period based on the multi-model ensemble technique. Extreme excess and deficient monsoons are projected to intensify. The projected increase in precipitation could be attributed to the projected intensification of the heat low over northwest India, the trough of low pressure over the Indo-Gangetic plains, and the land–ocean pressure gradient during the establishment phase of the monsoon. The intensification of these pressure systems could be attributed to the decline in winter/spring snowfall. Furthermore, a decrease of winter snowfall over western Eurasia is also projected along with an increase of winter snowfall over Siberia/eastern Eurasia. This projected dipole snow configuration during winter could imply changes in mid-latitude circulation conducive to subsequent summer monsoon precipitation activity. An increase in precipitable water of 12–16% is projected over major parts of India. A maximum increase of about 20–24% is found over the Arabian Peninsula, adjoining regions of Pakistan, northwest India and Nepal. Although the projected summer monsoon circulation appears to weaken, the projected anomalous flow over the Bay of Bengal (Arabian Sea) will support oceanic moisture convergence towards the southern parts of India and Sri Lanka (northwest India and adjoining regions). The ENSO-Monsoon relationship is also projected to weaken.  相似文献   

2.
W. May 《Climate Dynamics》2004,22(2-3):183-204
In this study the simulation of the variability and extremes of daily rainfall during the Indian summer monsoon for the present-day and the future climate is investigated. This is done on the basis of a global time-slice experiment (TSL) with the ECHAM4 atmospheric general circulation model (GCM) at a high horizontal resolution of T106. The first time-slice (period: 1970–1999) represents the present-day climate and the second (2060–2089) the future climate. Moreover, observational rainfall data from the Global Precipitation Climatology Project (GPCP, 1997–2002) and rainfall data from the ECMWF re-analysis (ERA, 1958–2001) are considered. ERA reveals serious deficiencies in its representation of the variability and extremes of daily rainfall during the Indian summer monsoon. These are mainly a severe overestimation of the frequency of wet days over the oceans and in the Himalayas, where also the rainfall intensity is overestimated. Further, ERA shows unrealistically heavy rainfall events over the tropical Indian Ocean. The ECHAM4 atmospheric GCM at a horizontal resolution of T106, on the other hand, simulates the variability and extremes of daily rainfall in good agreement with the observations. The only marked deficiencies are an underestimation of the rainfall intensity on the west coast of the Indian peninsula and in Bangladesh, an overestimation over the tropical Indian Ocean, due to an erroneous northwestward extension of the tropical convergence zone, and an overestimation of the frequency of wet days in Tibet. Further, heavy rainfall events are relatively strong in the centre of the Indian peninsula. For the future, TSL predicts large increases in the rainfall intensity over the tropical Indian Ocean as well as in northern Pakistan and northwest India, but decreases in southern Pakistan, in the centre of the Indian peninsula, and over the western part of the Bay of Bengal. The frequency of wet days is markedly increased over the tropical Indian Ocean and decreased over the northern part of the Arabian Sea and in Tibet. The intensity of heavy rainfall events is generally increased in the future, with large increases over the Arabian Sea and the tropical Indian Ocean, in northern Pakistan and northwest India as well as in northeast India, Bangladesh, and Myanmar.  相似文献   

3.
经皓童  孙建奇  于水  华维 《大气科学》2021,45(5):1087-1098
本文利用1960~2017年中国西南地区115个台站观测降水资料和日本气象厅发布的55年再分析资料集,研究了中国西南地区5月降水变异的主导模态及其与阿拉伯海季风的关系。结果显示,中国西南地区5月降水的第一主导模态主要表现为全区一致的变异特征;该模态与同期5月阿拉伯海季风强度异常关系密切,但两者的关系在20世纪70年代后期发生了显著的年代际变化。在1960~1976年,阿拉伯海季风异常所引起的低层大气环流和水汽输送异常主要集中在阿拉伯海到孟加拉湾一带;阿拉伯海季风异常所引起的大气环流不能到达中国西南地区,因此它对中国西南地区5月降水的影响偏弱。但在1981~2017年,阿拉伯海季风异常可以导致整个北印度洋到南海地区的大气环流异常,进而引起中国西南地区水汽和垂直运动的变化,最终对该地区5月降水产生显著的影响。进一步的研究显示,阿拉伯海季风与中国西南地区5月降水关系的变化可能与季风自身的年代际变率有关。阿拉伯海季风在20世纪70年代末之前变率偏弱,其引起的环流异常也偏弱;相反在20世纪70年代末之后,其变率增强,它引起的大气环流异常也偏强,可以延伸到中国西南地区,进而影响到西南地区的5月降水。因此,季风变率的强弱可能在季风对西南地区5月降水的影响中起着非常重要的作用。  相似文献   

4.
A deep low in sea-level pressure is present from May to September over Pakistan and northwestern India (hereafter, the Pak?CIndia low). It is often referred as the ??heat?? low to convey the significance of surface thermal effects reckoned to be important for its origin. The present analysis, rooted in observations and diagnostic modeling, suggests that the Pak?CIndia low is influenced both by regional and remote forcing. Regionally, the influence of Hindu Kush mountains is found to be stronger than the impact of land-surface heating and attendant sensible heating of the planetary boundary layer, questioning the suitability of the ??heat?? label in canonical references to this circulation feature. Observational analysis indicates that the notable May-to-June deepening of the Pak?CIndia low and its further deepening in July, however, arises from remote forcing??the development of monsoon deep-convection over the Bay of Bengal and eastern India in June and July. It is hypothesized that the associated upstream descent over Iran?CTurkmenistan?CAfghanistan (i.e. east of the Caspian Sea) and related low-level northerlies over the Elburz?CZagros?CHindu Kush mountains contribute to the strengthening of the Pak?CIndia low in June (and July) from interaction with regional orography.  相似文献   

5.
The Arabian Sea is an important moisture source for Indian monsoon rainfall. The skill of climate models in simulating the monsoon and its variability varies widely, while Arabian Sea cold sea surface temperature (SST) biases are common in coupled models and may therefore influence the monsoon and its sensitivity to climate change. We examine the relationship between monsoon rainfall, moisture fluxes and Arabian Sea SST in observations and climate model simulations. Observational analysis shows strong monsoons depend on moisture fluxes across the Arabian Sea, however detecting consistent signals with contemporaneous summer SST anomalies is complicated in the observed system by air/sea coupling and large-scale induced variability such as the El Ni?o-Southern Oscillation feeding back onto the monsoon through development of the Somali Jet. Comparison of HadGEM3 coupled and atmosphere-only configurations suggests coupled model cold SST biases significantly reduce monsoon rainfall. Idealised atmosphere-only experiments show that the weakened monsoon can be mainly attributed to systematic Arabian Sea cold SST biases during summer and their impact on the monsoon-moisture relationship. The impact of large cold SST biases on atmospheric moisture content over the Arabian Sea, and also the subsequent reduced latent heat release over India, dominates over any enhancement in the land-sea temperature gradient and results in changes to the mean state. We hypothesize that a cold base state will result in underestimation of the impact of larger projected Arabian Sea SST changes in future climate, suggesting that Arabian Sea biases should be a clear target for model development.  相似文献   

6.
张东凌  卢姁  张铭 《大气科学》2017,41(5):975-987
本文对印度洋冬季风异常海气环流耦合主要模态做了分析和讨论,得到以下结果:第一模态海面和低空大气环流的异常主要发生在东印度洋海域上空,而上层大洋环流的异常则主要反映了印度洋冬季风环流的异常,并主要体现在西向赤道暖流和东向赤道逆流上。第二模态的大气环流相应异常主要发生在孟加拉湾、阿拉伯海和赤道印度洋上空,而上层大洋环流异常除与第一模态类似外,还包括索马里暖流的明显异常。第一、二模态分别是印度洋冬季风的偏东、偏西模态,也是其主、次模态;均有约4年的年际变化,还分别有约18、22年的年代际变化;该主、次模态分别在1976年及1976、1986年有突变发生;这样印度洋冬季风有约4年的年际变化,并在1976年出现明显突变。该主、次模态的年代际变化周期也是冬季北太平洋海气联合复EOF分解第二、第一模态的年代际变化周期,这反映两大洋之间有密切联系,这是因冬季蒙古西伯利亚高压是南亚、东亚冬季风的共同源头,对两大洋的大气环流异常都有明显影响。南亚冬季风偏强时印度洋的Hadley环流和赤道辐合带上的对流均偏强,反之亦然;且该冬季风的主、次模态都如此;这也反映了南亚冬季风大气环流异常与冬季热带大气环流异常之间的耦合关系。当该主、次模态发生正、负异常变化时,近表层热带印度洋海温异常分别呈现横贯大洋的南北向跷跷板变化以及大洋东、西向的跷跷板变化;但前者是主要的。印度洋冬季风对印度洋偶极子起着抑制作用,这是该偶极子在冬季最弱的原因。在热带印度洋,大气低空垂直运动下沉、上升区域都分别大致位于该大洋近表层的下沉、上升运动区域之上,这构成了海气相互作用的负反馈机制,并有助于南亚冬季风、Hadley环流、赤道辐合带以及印度洋中冬季风环流的维持和稳定。  相似文献   

7.
The SST-precipitation relationship in the intraseasonal variability (ISV) over the Asian monsoon region is examined using recent high quality satellite data and simulations from a state of the art coupled model, the climate forecast system version 2 (CFSv2). CFSv2 demonstrates high skill in reproducing the spatial distribution of the observed climatological mean summer monsoon precipitation along with its interannual variability, a task which has been a conundrum for many recent climate coupled models. The model also exhibits reasonable skill in simulating coherent northward propagating monsoon intraseasonal anomalies including SST and precipitation, which are generally consistent with observed ISV characteristics. Results from the observations and the model establish the existence of spatial variability in the atmospheric convective response to SST anomalies, over the Asian monsoon domain on intraseasonal timescales. The response is fast over the Arabian Sea, where precipitation lags SST by ~5 days; whereas it is slow over the Bay of Bengal and South China Sea, with a lag of ~12 days. The intraseasonal SST anomalies result in a similar atmospheric response across the basins, which consists of a destabilization of the bottom of the atmospheric column, as observed from the equivalent potential temperature anomalies near the surface. However, the presence of a relatively strong surface convergence over the Arabian Sea, due to the presence of a strong zonal gradient in SST, which accelerates the upward motion of the moist air, results in a relatively faster response in terms of the local precipitation anomalies over the Arabian Sea than over the Bay of Bengal and South China Sea. With respect to the observations, the ocean–atmosphere coupling is well simulated in the model, though with an overestimation of the intraseasonal SST anomalies, leading to an exaggerated SST-precipitation relationship. A detailed examination points to a systematic bias in the thickness of the mixed layer of the ocean model, which needs to be rectified. A too shallow (deep) mixed layer enhances (suppress) the amplitude of the intraseasonal SST anomalies, thereby amplifying (lessening) the ISV and the active-break phases of the monsoon in the model.  相似文献   

8.
Surface pressure and summer monsoon rainfall over India   总被引:1,自引:0,他引:1  
The relationship between the all-India summer monsoon rainfall and surface pressure over the Indian region has been examined to obtain a useful predictor for the monsoon rainfall. The data series of all-India monsoon rainfall and the mean pressures of three seasons before and after the monsoon season as well as the winter-to-spring pressure tendency (MAM-DJF) at 100 stations for the period 1951-1980 have been used in the analysis. The all-India monsoon rainfall is negatively correlated with the pressure of the spring (MAM) season preceding the monsoon and winter-to-spring seasonal difference as pressure tendency (MAM-DJF), at almost all the stations in India, and significantly with the pressures over central and northwestern regions. The average mean sea level pressure of six stations (Jodhpur, Ahmedabed, Bombay, Indore, Sagar and Akola) in the Western Central Indian (WCI) region showed highly significant (at 1% level) and consistent CCs of -0.63 for MAM and -0.56 for MAM-DJF for the period 1951–1980. Thus, the pre-monsoon seasonal pressure anomalies over WCI could provide a useful parameter for the long-range forecasting scheme of the Indian monsoon rainfall.  相似文献   

9.
利用西北太平洋编号台风资料、NCEP/NCAR再分析资料和NOAA向外长波辐射(outgoing longwave radiation,OLR)资料等,选取西北太平洋热带气旋频数异常偏少的2010年和1998年,诊断分析ENSO事件及其东亚夏季风环流异常与热带气旋频数异常的关系,给出东亚夏季风系统部分成员影响热带气旋频数的天气学图像:由春入夏,赤道东太平洋海温异常偏暖,赤道哈得来环流偏强,沃克环流偏弱;西太平洋副热带高压异常强大,位置偏西;季风槽位置偏南,东西向不发展;南海、西太平洋越赤道气流偏弱;异常热源和水汽汇偏南,南海和菲律宾以东地区对流活动受到抑制,热带对流活跃区位于赤道以南;热带气旋生成个数明显偏少,位置偏西。  相似文献   

10.
In this study,we aimed to elucidate the critical role of moisture transport affecting monsoon activity in two contrasting summers over the Arabian Sea during the years 1994,a relatively wet year,and 2002,a relatively dry year.A comprehensive diagnostic evaluation and comparisons of the moisture fields were conducted;we focused on the precipitation and evaporation as well as the moisture transport and its divergence or convergence in the atmosphere.Monthly mean reanalysis data were obtained from the National Centers for Environmental Prediction(NCEP-I and-II).A detailed evaluation of the moisture budgets over Pakistan during these two years was made by calculating the latent energy flux at the surface(E P) from the divergence of the total moisture transport.Our results confirm the moisture supply over the Arabian Sea to be the major source of rainfall in Pakistan and neighboring regions.In 1994,Pakistan received more rainfall compared to 2002 during the summer monsoon.Moisture flow deepens and strengthens over Arabian Sea during the peak summer monsoon months of July and August.Our analysis shows that vertically integrated moisture transport flux have a significant role in supplying moisture to the convective centers over Pakistan and neighboring regions from the divergent regions of the Arabian Sea and the Bay of Bengal.Moreover,in 1994,a deeper vertically integrated moisture convergence progression occurred over Pakistan compared to that in 2002.Perhaps that deeper convergence resulted in a more intense moisture depression over Pakistan and also caused more rainfall in 1994 during the summer monsoon.Finally,from the water budget analysis,it has been surmised that the water budget was larger in 1994 than in 2002 during the summer monsoon.  相似文献   

11.
The Weather Research and Forecasting model with Chemistry (WRF-Chem) is utilized to examine the radiative effects of black carbon (BC) aerosols on the Indian monsoon, for the year 2010. Five ensemble simulations with different initial conditions (1st to 5th December, 2009) were performed and simulation results between 1st January, 2010 to 31st December, 2010 were used for analysis. Most of the BC which stays near the surface during the pre-monsoon season gets transported to higher altitudes with the northward migration of the Inter Tropical Convergence Zone (ITCZ) during the monsoon season. In both the seasons, strong negative SW anomalies are present at the surface along with positive anomalies in the atmosphere, which results in the surface cooling and lower tropospheric heating, respectively. During the pre-monsoon season, lower troposphere heating causes increased convection and enhanced meridional wind circulation, bringing moist air from Indian Ocean and Bay of Bengal to the North-East India, leading to increased rainfall there. However, during the monsoon season, along with cooling over the land regions, a warming over the Bay of Bengal is simulated. This differential heating results in an increased westerly moisture flux anomaly over central India, leading to increased rainfall over northern parts of India but decreased rainfall over southern parts. Decreased rainfall over southern India is also substantiated by the presence of increased evaporation over Bay of Bengal and decrease over land regions.  相似文献   

12.
黄昕  周天军  吴波  陈晓龙 《大气科学》2019,43(2):437-455
本文通过与观测和再分析资料的对比,评估了LASG/IAP发展的气候系统模式FGOALS的两个版本FGOALS-g2和FGOALS-s2对南亚夏季风的气候态和年际变率的模拟能力,并使用水汽收支方程诊断,研究了造成降水模拟偏差的原因。结果表明,两个模式夏季气候态降水均在陆地季风槽内偏少,印度半岛附近海域偏多,在降水年循环中表现为夏季北侧辐合带北推范围不足。FGOALS-g2中赤道印度洋"东西型"海温偏差导致模拟的东赤道印度洋海上辐合带偏弱,而FGOALS-s2中印度洋"南北型"海温偏差导致模拟的海上辐合带偏向西南。水汽收支分析表明,两个模式中气候态夏季风降水的模拟偏差主要来自于整层积分的水汽通量,尤其是垂直动力平流项的模拟偏差。一方面,夏季阿拉伯海和孟加拉湾的海温偏冷而赤道西印度洋海温偏暖,造成向印度半岛的水汽输送偏少;另一方面,对流层温度偏冷,冷中心位于印度半岛北部对流层上层,同时季风槽内总云量偏少,云长波辐射效应偏弱,对流层经向温度梯度偏弱以及大气湿静力稳定度偏强引起的下沉异常造成陆地季风槽内降水偏少。在年际变率上,观测中南亚夏季风环流和降水指数与Ni?o3.4指数存在负相关关系,但FGOALS两个版本模式均存在较大偏差。两个模式中与ENSO暖事件相关的沃克环流异常下沉支和对应的负降水异常西移至赤道以南的热带中西印度洋,沿赤道非对称的加热异常令两个模式中越赤道环流季风增强,导致印度半岛南部产生正降水异常。ENSO相关的沃克环流异常下沉支及其对应的负降水异常偏西与两个模式对热带南印度洋气候态降水的模拟偏差有关。研究结果表明,若要提高FGOALS两个版本模式对南亚夏季风气候态模拟技巧,需减小耦合模式对印度洋海温、对流层温度及云的模拟偏差;若要提高南亚夏季风和ENSO相关性模拟技巧需要提高模式对热带印度洋气候态降水以及与ENSO相关的环流异常的模拟能力。  相似文献   

13.
Summary Monthly mean surface fields of different meteorological parameters and evaporation are studied for the 1979 (poor monsoon) and 1983 (good monsoon) monsoon seasons over the Arabian Sea, in order to understand the role of evaporation on the Indian monsoon rainfall. It is noticed that in general, the sea surface temperatures are higher in 1983 throughout the monsoon season than in 1979 in the Arabian Sea excepting western region. The mean rates of evaporation on a seasonal scale are found to be equal in both years (3.66×1010 and 3.59×1010 tons/day in 1979 and 1983, respectively). No coherence is observed between the evaporation and the west coast rainfall within a season. It is also noted that the pressure distribution over the Arabian Sea is even important to advect the moisture towards the west coast of India, through winds.With 10 Figures  相似文献   

14.
The influence of outgoing longwave radiation anomalies on precipitation rates is studied based on the NCEP/NCAR reanalysis during the period of the summer monsoon circulation in the Indian region. The outgoing longwave radiation data are analyzed for 1987 (dry monsoon) and 1988 (wet monsoon) separately for the Arabian Sea, India, and the Bay of Bengal. It is shown that negative outgoing longwave radiation anomalies correspond to a wet Indian monsoon, and positive anomalies are associated with a dry monsoon. Calculations using the reanalysis enable the construction of a numerical algorithm of the interaction of outgoing longwave radiation, convection, and precipitation rates in the monsoon regions. The results obtained in this work are important in the verification of corresponding parameterizations of numerical atmospheric models.  相似文献   

15.
中亚和南亚热力差异对塔里木盆地夏季降水的影响   总被引:1,自引:0,他引:1  
利用美国国家环境预测中心/美国国家大气研究中心(NCEP/NCAR)再分析月平均资料和新疆83站降水资料,分析了1961~2010年南亚和中亚对流层中低层热力差异对塔里木盆地夏季降水的可能影响机制。研究结果表明,塔里木盆地夏季降水与中亚和南亚对流层中低层温度密切相关。当南亚对流层中低层偏暖,中亚偏冷时,500 h Pa中亚上空和蒙古上空分别为异常气旋和反气旋环流,在二者共同作用下,塔里木盆地上空盛行异常的偏南气流,有利于低纬海洋的暖湿气流北上,形成有利于降水的环流条件。同时阿拉伯海上空为异常反气旋环流,中亚上空为异常气旋环流,形成塔里木盆地夏季降水水汽的两步型输送,阿拉伯海水汽被输送至中亚和新疆地区。中亚对流层中低层温度变化主要影响500 h Pa环流,南亚对流层中低层温度变化在低纬水汽向北输送过程中扮演主要角色。青藏高原夏季风偏强时,600 h Pa高原北侧对应异常反气旋环流,异常偏北风引导高纬度冷空气南下,导致中亚区域对流层中低层偏冷,而南亚对流层中低层偏暖则与热带印度洋显著增暖密切相关。  相似文献   

16.
基于观测资料分析,本文讨论了与东亚冬季风(EAWM)异常活动相联系的海-陆-气系统的特征,指出它往往是随后亚洲夏季风异常的一个信号。我们分析并确定了一类重要的海气耦合模态,即EAWM。它所包含的海-气双向相互作用,使该模态的SSTA分布得以发展和持续。特别是在西太平洋和南海等关键地区,SSTA异常将从冬季维持到夏季。在强冬季风年,青藏高原积雪冬季在其东部出现负距平区,春季则延伸到高原西北部。SSTA及高原积雪分布,共同构成调制亚洲季风环流的重要因子,它将有助于1)随后南海季风和季风降水的增强;2)梅雨期西太平洋副高偏北,长江流域少雨;3)夏季我国东北和日本多雨;4)阿拉伯海和印度东北多雨,而印度西南部及孟加拉湾少雨。总之,强EAWM及相联的海气相互作用,一定程度上,预示着亚洲夏季风的活动特征。  相似文献   

17.
Precise specification of the vertical distribution of cloud optical properties is important to reduce the uncertainty in quantifying the radiative impacts of clouds. The new global observations of vertical profiles of clouds from the CloudSat mission provide opportunities to describe cloud structures and to improve parameterization of clouds in the weather and climate prediction models. In this study, four years (2007–2010) of observations of vertical structure of clouds from the CloudSat cloud profiling radar have been used to document the mean vertical structure of clouds associated with the Indian summer monsoon (ISM) and its intra-seasonal variability. Active and break monsoon spells associated with the intra-seasonal variability of ISM have been identified by an objective criterion. For the present analysis, we considered CloudSat derived column integrated cloud liquid and ice water, and vertically profiles of cloud liquid and ice water content. Over the South Asian monsoon region, deep convective clouds with large vertical extent (up to 14 km) and large values of cloud water and ice content are observed over the north Bay of Bengal. Deep clouds with large ice water content are also observed over north Arabian Sea and adjoining northwest India, along the west coast of India and the south equatorial Indian Ocean. The active monsoon spells are characterized by enhanced deep convection over the Bay of Bengal, west coast of India and northeast Arabian Sea and suppressed convection over the equatorial Indian Ocean. Over the Bay of Bengal, cloud liquid water content and ice water content is enhanced by ~90 and ~200 % respectively during the active spells. An interesting feature associated with the active spell is the vertical tilting structure of positive CLWC and CIWC anomalies over the Arabian Sea and the Bay of Bengal, which suggests a pre-conditioning process for the northward propagation of the boreal summer intra-seasonal variability. It is also observed that during the break spells, clouds are not completely suppressed over central India. Instead, clouds with smaller vertical extent (3–5 km) are observed due to the presence of a heat low type of circulation. The present results will be useful for validating the vertical structure of clouds in weather and climate prediction models.  相似文献   

18.
19.
The meso-scale eddies and currents in the Arabian Sea are analyzed using different satellite observations, Simple Oceanic Data Assimilation (SODA) reanalysis, and Ocean Reanalysis System 4 (ORAS4) from 1993 to 2016 to investigate the impacts of Southwest (SW) Monsoon strength on Somali Current (SC) mesoscale circulations such as the Great Whirl (GW), the Socotra Eddy (SE), the Southern Gyre (SG), and smaller eddies. Increased Ekman pumping during stronger SW monsoons strengthens coastal upwelling along the Somali coast. The Arabian Sea basin-wide anticyclonic circulation and presence of the GW form mesoscale circulation patterns favourable to advection of upwelled waters eastward into the central Arabian Sea. In September, after the SW monsoon winds reach peak strength in July and August, a higher number of discrete anticyclonic eddies with higher ( > 20 cm) sea surface height anomalies develop in strong and normal intensity SW monsoon seasons than weaker SW monsoon seasons.  相似文献   

20.
We investigate European summer (July–August) precipitation variability and its global teleconnections using the NCEP/NCAR reanalysis data (1950–2010) and a historical Coupled Model Intercomparison Project climate simulation (1901–2005) carried out using the ECHAM6/MPIOM climate model. A wavelike pattern is found in the upper tropospheric levels (200 hPa) similar to the summer circumglobal wave train (CGT) extending from the North Pacific to the Eurasian region. The positive phase of the CGT is associated with upper level anomalous low (high) pressure over western (eastern) Europe. It is further associated with a dipole-like precipitation pattern over Europe entailing significantly enhanced (reduced) precipitation over the western (eastern) region. The anomalous circulation features and associated summer precipitation pattern over Europe inverts for the negative CGT phase. Accordingly, the global teleconnection pattern of a precipitation index summarizing summer precipitation over Western Europe entails an upper level signature which consists of a CGT-like wave pattern extending from the North Pacific to Eurasia. The imprint of the CGT on European summer precipitation is distinct from that of the summer North Atlantic Oscillation, despite the two modes of variability bear strong similarities in their upper level atmospheric pattern over Western Europe. The analysis of simulated CGT features and of its climatic implications for the European region substantiates the existence of the CGT-European summer precipitation connection. The summer CGT in the mid-latitude therefore adds to the list of the modes of large-scale atmospheric variability significantly influencing European summer precipitation variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号