首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The distribution of chlorophylla and photosynthetic characterestics of phytoplankters were investigated along 155°W between 50°N and 15°S during the KH-69-4 cruise of the R. V. Hakuh Maru (Aug. 12–Nov. 13, 1969). High concentrations of chlorophylla (more than 0.2 mg Chla/m3) were observed above the depths of 150 m at all stations except in 17°N, 5°S and 15°S. North of 20°N, the depths of chlorophyll accumulation shifted from near the surface to 50–100 m with southwards. In the equatorial region, chlorophyll accumulation centered at a depth of about 70 m and ranged vertically between 10 and 150 m. In all cases in the present study area, chlorophyll accumulation occurred within the euphotic zone (above the depth corresponding to 1% of the surface illumination), and except in the subarctic and some equatorial waters, this was usually prevalent in the lower half of the euphotic zone.The photosynthetic activities (initial slope of P vs I curve) of samples from the depths of chlorophyll accumulation were similar to, or lower than, those of shallow samples from the depths of upper half of the euphotic zone. At the depths of chlorophyll accumulation, calculatedin situ photosynthesis was high in the central Pacific and equatorial waters but low in the subarctic waters.  相似文献   

2.
Chlorophylla concentrations (Chla) of size-fractionated phytoplankton samples were measured in the western North Pacific Ocean, the Bering Sea, and the Gulf of Alaska during the summer of 1986. Among samples collected in the upper 100 m (total of 210 samples), 207 samples were dominated by micro- (>10 m) or picoplankton (<2 m) and only three samples were represented by nanoplankton (2–10 m). These 207 samples were classified based on the total Chla content into three types: Type H (>1.0 g l–1), Type M (0.5–1.0 g l–1), and Type L (<0.5 g l–1). These types further divided into two subtypes (-p and-m), depending upon dominancy of pico (-p) and microplankton (-m). The phytoplankton community was represented by Type L-p in the Gulf of Alaska, where 80% of the samples fell into this type. It was represented by Type M-p in the western North Pacific and the Oceanic Domain in the Bering Sea, where 53 and 41% of samples were identified as this type, respectively. In the Middle Domain of the Bering Sea, 68% of samples collected below the nitracline was Type H-m, which indicates blooms of microplanton. This type was also observed in the neritic waters near the Aleutian Islands. These types described above are consistent with a general trend that an increase in phytoplankton abundance is attributed to the growth of microplankton. An unusual type occurred above the nitracline of the Middle Domain, where microplankton prevailed, although the total Chla was less (Type L-m). This type represents a feature of late phase of an ice edge bloom. Another unusual type was found mainly in the Outer Domain of the Bering Sea, where the total Chla was high and picoplankton prevailed (Type H-p). The predominance of picoplankton seems to result from the heavy grazing intensity of large calanoid copepods upon microplankton but not upon picoplankton  相似文献   

3.
Phytoplankton chlorophyll stocks in the Antarctic Ocean   总被引:5,自引:0,他引:5  
Phytoplankton chlorophyll stocks in the Indian sector of the Antarctic Ocean were estimated on the basis of published data collected from nine cruises of the Icebreaker,Fuji in 1965–1976, during routine observations of the Japanese Antarctic Research Expedition (JARE). Surface chlorophylla concentration, measured at 631 stations in waters south of 35°S, ranged from 0.01 to 3.01 mg m–3, At about half of the stations the values were less than 0.24 mg and at only 29 stations were high values more than 1.00 mg m–3 recorded. The levels of surface chlorophylla stocks were estimated in three groups; (1) data obtained on the southward leg through the eastern Indian sector (middle-late December), (2) those on the northward leg through the western Indian sector (late February–early March) and (3) those on the northward leg through the eastern Atlantic sector (late February–early March). Furthermore, mean values and standard deviations were calculated for each of six different water masses from north to south,i. e., subtropical water between 35°S and the Subtropical Convergence (STC) zone, water within the STC zone, Subantarctic Upper Water, water within the Antarctic Convergence (AC) zone, Antarctic Surface Water between the AC zone and 63°S, and Antarctic Surface Water south of 63°S. Mean values of surface chlorophylla concentrations for each of the six water masses on the three legs ranged from 0.15 to 0.58 mg m–3 and were comparable to those reported by other workers previously. Seasonal periodicity of phytoplankton chlorophyll stock is discussed. The surface chlorophyll stock in the oceanic water of the Antarctic Ocean does not seem to be so high as previously believed.  相似文献   

4.
In situ measurements of the primary productivity of ice algae and phytoplankton were carried out in the fast ice area near Syowa Station (69°00S, 39°35E) during the austral spring and summer of 1983/84. Standing stock of ice algae reached a maximum of 45.1 mg chla m–2 in late October. Phytoplankton standing stock attained a value of 3.57 mg chla m–2 in mid-January. Primary production of ice algae in late October (7.64 mgC m–2 hr–1) was 14 times greater than that in mid-January (0.54 mgC m–2 hr–1). Production in the water column in mid-January (3.46 mgC m–2 hr–1) was 50 times greater than that in late October (0.07 mgC m–2 hr–1). These results indicate a substantial production by ice algae in the spring and by phytoplankton in the summer period.  相似文献   

5.
We have determined chlorophyll a (Chla) concentration, primary productivity, cell density and species composition of diatoms, and the number of microzooplankton at the surface in the subarctic North Pacific in January 1996. The wet weight of copepods obtained by vertical tows from 150 m to the surface was also measured during the cruise. Chla concentration and primary productivity tended to be higher in the region west of 180°, the western subarctic North Pacific (WSNP), than east of 180°, the eastern subarctic North Pacific (ESNP). The same results were observed for the total diatom cell densities and for the genera Thalassiosira and Denticulopsis. Significant linear relationships were observed between the Thalassiosira cell density and Chla concentration and primary productivity, indicating that Thalassiosira contributes to the high-WSNP and low-ESNP distribution patterns of Chla concentration and primary productivity. Moreover, naked ciliate abundance tended to be lower in the WSNP than in the ESNP, whereas copepod biomass showed an inverse trend. Significantly negative Spearman rank correlations were found between the Thalassiosira cell density and the number of naked ciliates and between the number of naked ciliates and the wet weight of copepods. These results indicate that copepod grazing indirectly controls Thalassiosira cell density via predation on the naked ciliates. We conclude that the high copepod biomass in the WSNP is a factor controlling the high-WSNP and low-ESNP Thalassiosira abundance and hence Chla concentration and primary productivity patterns.  相似文献   

6.
Brood sizes of 1259 adult female Euphausia pacifica and Thysanoessa spinifera were measured during 48 h incubations (10 °C, ±0.5 °C) on 27 oceanographic cruises between July 1999 and September 2004. The data set includes measurements from several stations off Newport, Oregon (Newport Hydrographic line, 44°39′N) made over a 5-year period and measurements from 14 more extensive cruises at stations representative of continental shelf, slope, and oceanic waters off Oregon and California, USA. E. pacifica had similar brood sizes at inshore (<200 m) and offshore (>200 m) stations with an average of 151 and 139 eggs brood−1 fem−1, respectively. T. spinifera brood sizes were considerably higher at inshore stations—particularly at Heceta Bank (44°N) and south of Cape Blanco (42°50′N)—than at offshore stations, 155 and 107 eggs brood−1 fem−1, respectively. Average brood sizes of E. pacifica increased during the study period, from 125 (in 2000) to 171 eggs brood−1 fem−1 (in 2003). Average percentage of carbon weight invested in spawning (reproductive effort) was higher in E. pacifica (14%) than in T. spinifera (6%), because both species have similar brood size but T. spinifera females are larger than E. pacifica females and produce smaller eggs. Reproductive effort for both species was higher during summer 2002, probably associated with anomalous cool subarctic waters and high chl-a concentration observed during that summer. Brood sizes and chl-a values remained relatively high in 2003–2004 compared to the 1999–2001 period. Geographical and temporal variability in brood sizes for both species were significantly correlated with in situ measurements of chl-a concentration but not with sea surface temperature. No gravid females were collected during late autumn and winter cruises, thus the spawning season along the Oregon coast appears to extend from March through September for both species. However, T. spinifera usually starts reproductive activity earlier in the spring (March) than E. pacifica. Both species had their highest brood sizes in summer during the period of most intense upwelling, which is associated with an increase in regional phytoplankton standing stock.  相似文献   

7.
Joseph  E. John  Toh  H.  Fujimoto  H.  Iyengar  R.V.  Singh  B.P.  Utada  H.  Segawa  J. 《Marine Geophysical Researches》2000,21(1-2):1-21
Seafloor magnetometer array experiments were conducted in the Bay of Bengal to delineate the subsurface conductivity structure in the close vicinity of the 85°E Ridge and Ninety East Ridge (NER), and also to study the upper mantle conductivity structure of the Bay of Bengal. The seafloor experiments were conducted in three phases. Array 1991 consisted of five seafloor stations across the 85°E Ridge along 14°N latitude with a land reference station at Selam (SLM). Array 1992 also consisted of five seafloor stations across 85°E Ridge along 12°N latitude. Here we used the data from Annamalainagar Magnetic Obervatory (ANN) as land reference data. Array 1995 consisted of four seafloor stations across the NER along 9°N latitude with land reference station at Tirunelveli (TIR). OBM-S4 magnetometers were used for seafloor measurements. The geomagnetic Depth Sounding (GDS) method was used to investigate the subsurface lateral conductivity contrasts. The vertical gradient sounding (VGS) method was used to deliniate the depth-resistivity structure of the oceanic crust and upper mantle. 1-D inversion of the VGS responses were conducted and obtained a 3-layer depth-resistivity model. The top layer has a resistivity of 150–500 m and a thickness of about 15–50 km. The second layer is highly resistive (2000–9000 m) followed by a very low resistive (0.1–50 m) layer at a depth of about 250–450 km. The 3-component magnetic field variations and the observed induction arrows indicated that the electromagnetic induction process in the Bay of Bengal is complex. We made an attempt to solve this problem numerically and followed two approaches, namely (1) thin-sheet modelling and (2) 3-D forward modelling. These model calculations jointly show that the observed induction arrows could be explained in terms of shallow subsurface features such as deep-sea fans of Bay of Bengal, the resistive 85°E Ridge and the sea water column above the seafloor stations. VGS and 3-D forward model responses agree fairly well and provided depth-resistivity profile as a resistive oceanic crust and upper mantle underlained by a very low resistive zone at a depth of about 250–400 km. This depth-range to the low resistive zone coincide with the seismic low velocity zone of the northeastern Indian Ocean derived from the seismic tomography. Thus we propose an electrical conductivity structure for the oceanic crust and upper mantle of the Bay of Bengal.  相似文献   

8.
Dimethylsulfide (DMS), chlorophyll a (Chl-a), accessory pigments (fucoxanthin, peridinin and 19-hexanoyloxyfucoxanthin), and bacterial production (BP) were measured in the surface layer (0–100 m) of the subarctic North Pacific, including the Bering Sea, during summer (14 July–5 September, 1997). In surface sewater, the concentrations of DMS and Chl-a varied widely from 1.3 to 13.2 nM (5.1 ± 3.0 nM, mean ± S.D., n = 48) and from 0.1 to 2.4 µg L–1 (0.6 ± 0.6 µg L–1, n = 24), respectively. In the subarctic North Pacific, DMS to Chl-a ratios (DMS/Chl-a) were higher on the eastern side than the western side (p < 0.0001). Below the euphotic zone, DMS/Chl-a ratios were law and the correlation between DMS and Chl-a was relatively strong (r 2 = 0.700, n = 27, p < 0.0001). In the euphotic zone, DMS/Chl-a ratios were higher and the correlation between DMS and Chl-a was weak (r 2 = 0.128, n = 50, p = 0.01). The wide variation in DMS/Chl-a ratios would be at least partially explained by the geographic variation in the taxonomic composition of phytoplankton, because of the negative correlation between DMS/Chl-a and fucoxanthin-to-Chl-a ratios (Fuc/Chl-a) (r 2 = 0.476, n = 26, p = 0.0001). Furthermore, there was a positive correlation between DMS and BP (r 2 = 0.380, n = 19, p = 0.005). This suggests that BP did not represent DMS and dimethylsulfoniopropionate (DMSP) removal by bacterial consumption but rather DMSP degradation to DMS by bacterial enzyme.  相似文献   

9.
Distribution of cyanobacteria cannot be evaluated using chlorophyll a (Chla) in vivo fluorescence, as most of their Chla is located in non-fluorescing photosystem I. Phycobilin fluorescence, in turn, is noted as a useful tool in the detection of cyanobacterial blooms. We applied phycocyanin (PC) fluorometer in the monitoring of the filamentous cyanobacterial bloom in the Baltic Sea. For the bloom forming filamentous cyanobacteria Aphanizomenon flos-aquae and Nodularia spumigena, PC fluorescence maximum was identified using the excitation–emission fluorescence matrix. Consequently, the optical setup of our instrument was noted to be appropriate for the detection of PC, and with minor or no interference from Chla and phycoerythrin fluorescence, respectively.During summer 2005, the instrument was installed on a ferryboat commuting between Helsinki (Finland) and Travemünde (Germany), and data were collected during 32 transects providing altogether 200 000 fluorescence records. PC in vivo fluorescence was compared with Chla in vivo fluorescence and turbidity measured simultaneously, and with Chla concentration and biomass of the bloom forming filamentous cyanobacteria determined from discrete water samples.PC fluorescence showed a linear relation to the biomass of the bloom forming filamentous cyanobacteria, and the other sources of PC fluorescence are considered minor in the open Baltic Sea. Estimated by PC fluorescence, cyanobacterial bloom initiated late June at the Northern Baltic Proper, rapidly extended to the central Baltic Proper and the Gulf of Finland, and peaked in the mid-July with values up to 10 mg l−1 (fresh weight). In late July, bloom vanished in most areas.During single transects, or for the whole summer, the variability in Chla concentrations was explained more by PC fluorescence than by Chla fluorescence. Thus, filamentous cyanobacteria dominated the overall variability in phytoplankton biomass. Consequently, we show that during the cyanobacterial blooms, the estimation of Chla concentration using only Chla in vivo fluorescence is not applicable, but PC in vivo fluorescence is required as a predictor as well.  相似文献   

10.
Primary productivity was measured byin situ method using13C in the offshore Oyashio region in the spring (May) and summer (September) of 1990. Most of the values were within the range of 0.1 to 4 gC 1–1 h–1 although a very large value, 7.96 gC l–1 h–1, was observed in summer. Most daily primary production fell within the range of 372 to 633 mgC m–2 d–1 although a very large value, 2,109 mgC m–2 d–1, was observed around the frontal area in summer. Chlorophylla (Chl.a) exceeded 1 g l–1 in many cases, and the maximum was 4.61 g l–1 in spring and 7.53 g l–1 in summer. Most primary productivity per unit Chl.a (photosynthetic assimilation ratio) was within the range of 0.1 to 3 gC gChl.a –1 h–1 although higher values, 3–6 gC gChl.a –1 h–1, were observed where small-size phytoplanktons (<2 m) were dominant. These results were compared with results obtained until now in the Oyashio region. The values beyond the range obtained so far in the offshore region were also observed in this study. Furthermore, it was pointed out that the size composition of phytoplankton community has significant influence on the results of Chl.a and photosynthetic assimilation ratio in the Oyashio region.  相似文献   

11.
The 1994 Tasmante swath-mapping and reflection seismic cruise covered 200 000 km2 of sea floor south and west of Tasmania. The survey provided a wealth of morphological, structural and sedimentological information, in an area of critical importance in reconstructing the break-up of East Gondwana.The west Tasmanian margin consists of a non-depositional continental shelf less than 50 km wide and a sedimented continental slope about 100 km wide. The adjacent 20 km of abyssal plain to the west is heavily sedimented, and beyond that is lightly sedimented Eocene oceanic crust formed as Australia and Antarctica separated. The swath data revealed systems of 100 m-deep downslope canyons and large lower-slope fault-blocks, striking 320° and dipping landward. These continental blocks lie adjacent to the continent ocean boundary (COB) and are up to 2500 m high and have 15°–20° scarps.The South Tasman Rise (STR) is bounded to the west by the Tasman Fracture Zone extending south to Antarctica. Adjacent to the STR, the fracture zone is represented by a scarp up to 2000 m high with slopes of 15–20°. The scarp consists of continental faultblocks dipping landward. Beyond the scarp to the west is a string of sheared parallel highs, and beyond that is lightly sedimented Oligocene oceanic crust 4200–4600 m deep with distinct E-W spreading fabric. The eastern margin of the bathymetric STR trends about 320° and is structurally controlled. The depression between it and the continental East Tasman Plateau (ETP) is heavily sedimented; its western part is underlain by thinned continental crust and its central part by oceanic crust of Late Cretaceous to Early Tertiary age. The southern margin of the STR is formed by N-S transform faults and south-dipping normal faults.The STR is cut into two major terrains by a N-S fracture zone at 146°15E. The western terrain is characterised by rotated basement blocks and intervening basins mostly trending 270°–290°. The eastern terrain is characterised by basement blocks and intervening strike-slip basins trending 300°–340°. Recent dredging of basement rocks suggests that the western terrain has Antarctic affinities, whereas the eastern terrain has Tasmanian affinities.Stretching and slow spreading between Australia and Antarctica was in a NW direction from 130–45 Ma, and fast spreading was in a N-S direction thereafter. The western STR terrain was attached to Antarctica during the early movement, and moved down the west coast of Tasmania along a 320° shear zone, forming the landward-dipping continental blocks along the present COB. The eastern terrain either moved with the western terrain, or was welded to it along the 146°15 E fracture zone in the Early Tertiary. At 45 Ma, fast spreading started in a N-S direction, and after some probable movement along the 146°15E fracture zone, the west and east STR terrains were welded together and became part of Australia.  相似文献   

12.
Momentum and heat flux were measured with a sonic anemometer at the Marine Observation Tower in the port of ItÔ. Under unstable conditions (T w -T a =3C4C), using the eddy correlation method, results show thatCd=(1.2±0.3)×10–3 andCh=(1.5±0.3)×10–3 at 5.5 m above mean sea level except for the case of weak winds.An unexpected relationship betweenCd and (–z/L) was observed, that is,Cd decreases as (–z/L) increases. If roughness variation over the sea is taken into account, we can explain the decrease in the range of (–z/L) less than 1, but not in the range greater than 1. This is due to a strong instability effect and the change of roughness class, from moderately rough to smooth.  相似文献   

13.
The distribution and transport of chlorophyll a (Chla), particulate (POC) and dissolved (DOC) organic carbon, and the respiratory ETS activity of the microplankton community were studied along a filament-eddy system located in the transition zone between the NW Africa upwelling and Canary Islands waters. Two independent filaments (F1 and F2) stemming from the coastal jet, between Cape Juby and Cape Bojador, merged about 100 km offshore, turning southward and onshore forced by the circulation of a recurrent oceanic cyclonic eddy. In general, the coastal upwelling waters presented higher Chla, but lower POC, DOC and ETS activity than filament waters. However, differences in organic carbon distribution and respiratory activity were observed among stations from the two filaments. The bio-chemical fields were strongly influenced by a complex sub-mesoscale hydrography resulting from the interaction of cyclonic and anticyclonic island eddies with the filaments. The combined F1 + F2 filament system transported 97.1 kg s−1 of excess (non-refractory) total organic carbon (e-TOC), a value comparable to other published estimates from upwelling filaments in the NE Atlantic. About 90% of e-TOC was exported as DOC, since eddy re-circulation precluded the offshore transport of POC. Assuming that the calculated transport of e-TOC is representative of the annual average, the yearly offshore transport (3.1 x 109 kg C) would represent about 25% of the upwelling primary production of the region of study.  相似文献   

14.
Several flatfish species, including southern flounder (Paralichthys lethostigma) recruit to estuaries during early life. Therefore, evaluation of estuarine sites and habitats that serve as nurseries is critical to conservation and management. The present study used density data in conjunction with biochemical condition and growth measurements to evaluate settlement sites used by southern flounder in the Galveston Bay Estuary (GBE). In 2005, beam-trawl collections were made in three major sections of the GBE (East Bay, Galveston Bay, West Bay). Three sites were sampled in each bay. Within each sampling site, replicate collections were taken from three habitats: 1) marsh edge (< 1 m depth), 2) intermediate zone (10–20 m from marsh interface;  1 m depth), and 3) bay zone (typically > 100 m from marsh interface; depth > 1 m). Average size of southern flounder collected was 12–19 mm standard length, and peak densities occurred in January and February. Catch data indicated that densities of southern flounder were significantly greater in East Bay (2.75 per 100 m2) than in Galveston Bay (0.91 per 100 m2) or in West Bay (0.45 per 100 m2). Densities were statistically similar among habitats. Otolith-based estimates of age indicated that the majority of southern flounder collected were 35–45 days old and derived from early December to early January hatch-dates. Growth rates were similar among bays and among habitats, with the average growth rate being 0.40 mm day− 1 (range: 0.21–0.76 mm day− 1). RNA:DNA was above the established baseline value for nutritional stress, indicating that newly settled southern flounder in the GBE were in relatively high condition. Habitat-specific differences in RNA:DNA ratios were not observed; however, ratios were significantly lower in West Bay (average 8.0) than in East Bay (average 9.5) or in Galveston Bay (average 9.8), suggesting the condition of new recruits may vary spatially within the GBE. Findings from the current study suggest density and condition of newly settled southern flounder vary at the bay scale, suggesting that parts of GBE do not function equally as nurseries.  相似文献   

15.
Themisto japonica was reared at 1, 5, 8, and 12°C in the laboratory to estimate its intermoult period (IP) and increase in body length (BL) at each moulting (BL).IP was found to be a function of temperature andBL of the specimens, longerIPs being associated with lower temperature and larger specimens.BL was not affected by temperature but increased with growth of the specimens. Observations on consecutive moults indicated that one new segment was added to pleopod rami at each moulting.BLs obtained from the measurement of the segment number of pleopod rami andBL of wild specimens were slightly larger than values obtained from laboratory-raised specimens.IP data obtained from laboratory-reared specimens are combined withBL data from wild specimens to establish a growth model forT. japonica from its release from the marsupium (1.31 mmBL) to the maximum size (17 mmBL) as a function of temperature. This growth model predicts that a total of of 18 moultings is needed forT. japonica to reach the maximum size regardless of temperature, although the time needed to reach the maximum size is highly dependent on temperature. The life cycle, from the newly released larvae (1.31 mmBL) to the spent females (10–17 mmBL), was estimated as 333–593 days at 1°C, 195–347 days at 5°C, 118–210 days at 10°C and 82–146 days at 15°C; the last may be the upper temperature limit forT. japonica. Growth rates ofT. japonica expressed on the basis of body mass are comparable to the rates of euphausiids of equivalent size when the effect of temperature is accounted for. Feeding conditions ofT. japonica in the field are also discussed.  相似文献   

16.
Surface temperature, salinity, concentrations of silicate (Si) and nitrate + nitrite (N), and in vivo fluorescence (Fluor) were investigated in the marginal ice zone (MIZ) and the seasonally open oceanic zone (SOOZ) (32–40°E, 64–69°S) from February 23 to 28 1992. In the MIZ the mean Si and N were 67.8 ± 2.2 M and 32.5 ± 1.7 M, respectively. There was a trend that low N values coincided with high Fluor values. Observation conducted at one point (64°S, 38°E) revealed a diel variation pattern in Fluor. Applying this pattern of deviation from noon value, all Fluor data were normalized to value at local noon. In the MIZ a significant negative correlation was observed between the normalized Fluor and N but not Si. On the other hand, Si decreased continuously from south to north in the SOOZ and was negatively correlated with the normalized Fluor. Difference in Si concentration was about 30 M between the sea around 64°S and the MIZ, while the difference in N concentration was estimated as less than 10 M. If diatoms take up silicate and nitrogen at an approximate ratio of 1:1, additional nitrogenous nutrients other than nitrate and nitrite (e.g. ammonia, urea etc.) would be required. In this case, an f-ratio of lower than 33% is obtained. It is suggested that in the MIZ abundance of phytoplankton community dominated by non-diatom increases utilizing nitrate while in the SOOZ abundance of phytoplankton community dominated by diatoms increases consuming Si and regenerated nitrogen.  相似文献   

17.
This paper discusses the conclusion derived during a joint U.S—Turkey expedition on the R/VKrorr on the dramatic variations of the O2–H2S zone in the Black Sea observed over the last 20 years. This conclusion is shown to be invalid since it was based on a comparison of data obtained at two stations only (in 1969 and 1988) that was made in various regions and in different seasons. Examples are provided for the inter-seasonal and mesoscale variations of hydrophysical and hydrochemical characteristics in the O2–H2S zone which, as to their scales, are comparable to or even exceed the variations registered during the expedition ofKrorr.Translated by Mikhail M. Trufanov.  相似文献   

18.
A method of obtaining the operative sea surface temperature (SST)t using satellite scanner observations in the spectral ranges 3.53–3.94 m and 10.3–11.3 m is realized. The method represents a combination of McClainet al.'s formula (1983) and expressions suggested by the authors which describe the universal angular structures of the radiation temperature fields. The RMS error of reconstructingt at scanning angles of 0–55o is equal to 0.2–0.3°C for atmospheric states corresponding to the SST variation within the limit 6–28°C. An atlas of temperature maps on the grid 0.5×0.5o with temporal averaging from 5 days to 1 month is compiled using the data obtained on board the RVAkademik Vernadsky in the Atlantic Ocean in 1987–1989.Translated by Mikhail M. Trufanov.  相似文献   

19.
The variability in dissolved and particulate organic matter, plankton biomass, community structure and metabolism, and vertical carbon fluxes were studied at four stations (D1–D4), placed along a coastal-offshore gradient of an upwelling filament developed near Cape Juby (NW Africa). The filament was revealed as a complex and variable system in terms of its hydrological structure and distribution of biological properties. An offshore shift from large to small phytoplankton cells, as well as from higher to lower autotrophic biomass, was not paralleled by a similar gradient in particulate (POC) or dissolved (DOC) organic carbon. Rather, stations in the central part of the filament (D2 and D3) presented the highest organic matter concentrations. Autotrophic carbon (POCChl) accounted for 53% (onshore station, D1) to 27% (offshore station, D4) of total POC (assuming a carbon to chlorophyll ratio of 50), from which nano- and pico-phytoplankton biomasses (POCA < 10 μm) represented 14% (D1) to 79% (D4) of POCChl. The biomass of small hetrotrophs (POCH < 10 μm) was equivalent to POCA < 10 μm, except at D1, where small autotrophs were less abundant. Dark community respiration (Rd) in the euphotic zone was in general high, almost equivalent to gross production (Pg), but decreasing offshore (D1–D4, from 108 to 41 mmol C m−2 d−1). POC sedimentation rates (POCsed) below the euphotic zone ranged from 17 to 6 mmol C m−2 d−1. Only at D4 was a positive carbon balance observed: Pg−(Rd + POCsed) = 42 mmol C m−2 d−1. Compared to other filament studies from the NE Atlantic coast, the Cape Juby filament presented lower sedimentation rates and higher respiration rates with respect to gross production. We suggest that this is caused by the recirculation of the filament water, induced by the presence of an associated cyclonic eddy, acting as a trapping mechanism for organic matter. The export capacity of the Cape Juby filament therefore would be constrained to the frequency of the interactions of the filament with island-induced eddies.  相似文献   

20.
Hydrographic measurements by CTD were made in the western-central Equatorial Pacific (160°W–147°E) during the Japanese Pacific Climate Study cruise in January–February 1991. InT-S diagram, three water masses are seen in the layer of kg/m3: salinity water corresponding to the Tropical Water of eastern South Pacific origin, less saline water in the North Pacific, and water with salinity between the above two, found on the equator. In three meridional sections (160°W–160°E), the Tropical Water of eastern South Pacific origin extends further equatorward than the climatological data of Levitus (1982).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号