首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a self-consistent numerical algorithm aimed at predicting the outcomes of high-velocity impacts between asteroids (or other small bodies of the solar system), based on a set of model input parameters which can be estimated from the available experimental evidence, and including the possible gravitational reaccumulation of ejected fragments whose velocity is less than a suitably defined escape velocity. All the fragment mass distributions are modelled by truncated power laws, and a possible correlation between fragment ejection velocity and mass is taken into account in different ways, including a probabilistic one. We analyze in particular the effectiveness of the gravitational reaccumulation process in terms of different choices of the collisional parameters and the assumed relationship between fragment speed and mass. Both the transition size beyond which solid targets are likely to reaccumulate a large fraction of the fragment mass and the collision energy needed to disperse most of the fragments are sensitive functions of the assumed fragment velocity versus mass relationship. We also give some examples of how our algorithm can be applied to study the origin and collisional history of small solar system bodies, including the asteroid 951 Gaspra (recently imaged by the Galileo probe) and the asteroid families.  相似文献   

2.
The origin of asteroid families in terms of collisional breakup is analyzed using the data by Williams (1979, in Asteroids (T. Gehrels, Ed.), pp. 1040–1063, Univ. of Arizona Press, Tucson). The distributions of mass and relative velocity of the minor family members with respect to the largest body are derived. These ditributions are then compared with the outcomes of catastrophic impacts, predicted from theoretical arguments and observed from laboratory experiments. The general features of the mass distributions can be interpreted in terms of collisional disruption of a parent body followed by self-gravitational reaccumulation on the largest remnant; no decisive evidence for multiple reaccumulations is found. The typical ejection velocities of the family members are of the same order as those of laboratory fragments; since the definition of families is based on purely dynamical arguments, this results gives direct observational support to the collisional formation hypothesis. The transition between collisional outcomes dominated by solid-state forces and by self-gravitatation, expected to occur at diameters D ~ 100 km on the basis of rotational studies and of theoretical estimates, is clearly confirmed by the present analysis. A “morphological” classification into three broad classes (asymmetric, dispersed, and intermediate) is introduced; it is based on the distribution of mass vs relative velocity, taking also into account the parent body's (and the largest remnant's) escape velocity. Finally some results are outlined which apparently do not fit the theoretical predictions: (1) the degree of fragmentation in real families is generally lower than that observed for experimental targets and (2) when the relative velocities are computed, including also proper eccentricity and inclination differences, values higher by about a factor 4 than those derived from semiaxes differences only are found. Further studies are proposed, including more observations, better proper elements computation and classification methods, and new investigations on the physics of hypervelocity impacts.  相似文献   

3.
《Planetary and Space Science》1999,47(8-9):975-986
After the catastrophic disruption of a planetary body the fragments move according to their mutual gravitational attraction, finally resulting into a more or less massive reaccumulation, as well as into the formation of binary or multiple systems. In this paper we analyze this process by means of the outcomes of the semi-empirical model of catastrophic impacts described by Paolicchi et al., 1996and applied to impacts at planetary sizes by Paolicchi et al., 1993and Doressoundiram et al., 1997. It is possible to identify the location in the parent body of fragments which are going to be reaccumulated or ejected, or to form binaries.Moreover, we compare the results of numerical integrations with three analytical predicting criteria existing in the literature, as well as with a new one, based on the definition of iso-velocity surfaces. We show that: (a) two of the criteria presented and used in the literature may lead to severe over- or underestimates of the amount of reaccumulated mass; (b) the new criterion introduced here and the previous one described by Petit and Farinella, 1993are capable of giving an accurate estimate in many cases, but are less effective when the reaccumulation is limited and not strongly concentrated onto a single big attractor; (c) the region in the target where the analytic criteria fail is generally the transition region between escaping and reaccumulating. This is the same region where other interesting phenomena, such as the formation of binaries, take place.  相似文献   

4.
Quasi-equilibrium solutions for the pre-planetary disk are studied in terms of Hämeen-Anttila's theory (1984) of collisional, self-gravitating systems. The distribution of particle sizes is assumed to follow simple power-law distributions, with a power index in the range of 1.5–5.0. The treatment includes mutual impacts with a velocity dependent coefficient of restitution, as well as gravitational encounters with dynamical friction. The mean gravitational field of the disk is also taken into account. The results indicate that the energy(equi)-partition depends mainly on the index of size distribution, but is also affected by the optical thickness of the system, as well as on the vertical thickness as compared to the particle size. The vertical component of the gravitational field is found to be important, especially when the mass of the system is concentrated on the large particles.  相似文献   

5.
The role of catastrophic collisions in the evolution of the asteroids is discussed in detail, employing extrapolations of experimental results on the outcomrs of high-velocity impacts. We determine the range of the probable largest collision for target asteroids of different sizes during the solar system's lifetime, and we conclude that all the asteroids have undergone collisional events capable of overcoming the material's solid-state cohesion. Such events do not lead inescapably to complete disruption of the targets, because (i) for a previously unfractured target, experiments show that fragments of significant size can survive breakup, depending on the energy and geometry of the collision; (ii) self-gravitation can easily cause a reaccumulation of fragments for targets exceeding a critical size, which seems to be of the order of 100 km. In the intermediate diameter range 100?D ?300 km, where formation of gravitationally bound “rubble piles” is frequent, the transfer of angular momentum can be large enough to produce objects with triaxial equilibrium shapes (Jacobi ellipsoids) or to cause fission into binary systems. In the same size range, low-velocity escape of collisional fragments can also occur, leading to the formation of dynamical families. Asteroids smaller than ~100 km are mostly multigeneration fragments, while for D?300 km the collisional process produces nearly spheroidal objects covered by megaregoliths; whether their rotation is “primordial” or collisionally generated depends critically on the past flux of colliders. The complex and size-dependent phenomenology predicted by the theory compares satisfactorily with the observational evidence, as derived both by a classification of asteroids in terms of their size, spin rate, and lightcurve amplitude, and by a comparison between the rotational properties of family and nonfamily asteroids. The fundamental result of this investigation is that almost all asteroids are outcomes of catastrophic collisions, and that these events cause either complete fragmentation of the target bodies or, at least, drastic readjustments of their internal structure, shape, and spin rate.  相似文献   

6.
The outcomes of asteroid collisional evolution are presently unclear: are most asteroids larger than 1 km size gravitational aggregates reaccreted from fragments of a parent body that was collisionally disrupted, while much smaller asteroids are collisional shards that were never completely disrupted? The 16 km mean diameter S-type asteroid 433 Eros, visited by the NEAR mission, has surface geology consistent with being a fractured shard. A ubiquitous fabric of linear structural features is found on the surface of Eros and probably indicates a globally consolidated structure beneath its regolith cover. Despite the differences in absolute scale and in lighting conditions for NEAR and Hayabusa, similar features should have been found on 25143 Itokawa if present. This much smaller, 320 m diameter S-asteroid was visited by the Hayabusa spacecraft. Comparative analyses of Itokawa and Eros geology reveal fundamental differences, and interpretation of Eros geology is illuminated by comparison with Itokawa. Itokawa lacks a global lineament fabric, and its blocks, craters, and regolith may be inconsistent with formation and evolution as a fractured shard, unlike Eros. An object as small as Itokawa can form as a rubble pile, while much larger Eros formed as a fractured shard. Itokawa is not a scaled-down Eros, but formed by catastrophic disruption and reaccumulation.  相似文献   

7.
8.
Numerical simulations have been used to study high velocity two-body impacts. In this paper a two-dimensional Lagrangian finite difference hydrocode and a three-dimensional smooth particle hydrocode (SPH) are described and initial results reported.

The 2D hydrocode has successfully reproduced both the fragment size distribution and the mean fragment velocities from laboratory impact experiments using basalt and cement mortar. Further, the hydrocode calculations have determined that the energy needed to fracture a body has a much stronger dependence on target size than predicted from most scaling theories. In addition, velocity distributions obtained (using homogeneous targets at impact velocities around 2 km s−1) indicate that mean ejecta speeds resulting from large-body collisions do not generally exceed escape velocities.

The SPH model provides a fully three-dimensional framework for studying impacts, so that phenomena such as oblique collisions or impacts into non-spherical targets may be studied. The gridless code allows for arbitrary levels of distortion, and is hence appropriate for modeling the large-scale deformations which accompany most impact events. Because fragments are modeled explicitly, greater numerical accuracy is achieved in the regions of large fragments than with the purely statistical approach of the 2D model. Of course, this accuracy comes at the expense of significantly greater computational requirements.

These codes can be, and have been, used to make specific predictions about particular objects in our solar system. But more significantly, they allow us to explore a broad range of collisional events. Certain parameters (size, time) can be studied only over a very restricted range within the laboratory; other parameters (initial spin, low gravity, exotic structure or composition) are difficult to study at all experimentally. The outcomes of numerical simulations lead to a more general and accurate understanding of impacts in their many forms.  相似文献   


9.
A search for the most likely parent bodies of multi-km near-Earth asteroids (NEAs) is attempted, in the framework of a scenario based on a few simple assumptions. (1) Multi-km NEAs are produced by collisional fragmentation of single parent bodies. (2) The fragments are injected into either the 3/1 mean-motion resonance with Jupiter or the ν6 secular resonance, or they achieve Mars-crossing orbits. (3) The collisional events responsible for the production of multi-km NEAs do not produce observable dynamical families. We show that a limited number of potential parent bodies of multi-km NEAs compatible with the above assumptions do exist in the asteroid Main Belt. It is not clear whether these objects can likely explain the current inventory of known NEAs having sizes around 1-2 km. Our results seem to indicate that the assumed scenario is not completely adequate to justify the number of observed NEAs larger than 2 km. This preliminary analysis must be complemented by a more precise analysis of the rates of occurrence of NEA-feeding events. If present results are confirmed, the conclusion that the origin of multi-km NEAs must be explained by different models, based on long-term dynamical diffusion produced by the interplay of collisional, gravitational, and nongravitational mechanisms in the Main Belt, plus a possible cometary contribution, will be strengthened.  相似文献   

10.
Insights into collisional physics may be obtained by studying the asteroid belt, where large-scale collisions produced groups of asteroid fragments with similar orbits and spectra known as the asteroid families. Here we describe our initial study of the Karin cluster, a small asteroid family that formed 5.8±0.2 Myr ago in the outer main belt. The Karin cluster is an ideal ‘natural laboratory’ for testing the codes used to simulate large-scale collisions because the observed fragments produced by the 5.8-Ma collision suffered apparently only limited dynamical and collisional erosion. To date, we have performed more than 100 hydrocode simulations of impacts with non-rotating monolithic parent bodies. We found good fits to the size-frequency distribution of the observed fragments in the Karin cluster and to the ejection speeds inferred from their orbits. These results suggest that the Karin cluster was formed by a disruption of an ≈33-km-diameter asteroid, which represents a much larger parent body mass than previously estimated. The mass ratio between the parent body and the largest surviving fragment, (832) Karin, is ≈0.15-0.2, corresponding to a highly catastrophic event. Most of the parent body material was ejected as fragments ranging in size from yet-to-be-discovered sub-km members of the Karin cluster to dust grains. The impactor was ≈5.8 km across. We found that the ejections speeds of smaller fragments produced by the collision were larger than those of the larger fragments. The mean ejection speeds of >3-km-diameter fragments were . The model and observed ejection velocity fields have different morphologies perhaps pointing to a problem with our modeling and/or assumptions. We estimate that ∼5% of the large asteroid fragments created by the collision should have satellites detectable by direct imaging (separations larger than 0.1 arcsec). We also predict a large number of ejecta binary systems with tight orbits. These binaries, located in the outer main belt, could potentially be detected by lightcurve observations. Hydrocode modeling provides important constraints on the interior structure of asteroids. Our current work suggests that the parent asteroid of the Karin cluster may have been an unfractured (or perhaps only lightly fractured) monolithic object. Simulations of impacts into fractured/rubble pile targets were so far unable to produce the observed large gap between the first and second largest fragment in the Karin cluster, and the steep slope at small sizes (≈6.3 differential index). On the other hand, the parent asteroid of the Karin cluster was produced by an earlier disruptive collision that created the much larger, Koronis family some 2-3 Gyr ago. Standard interpretation of hydrocode modeling then suggests that the parent asteroid of the Karin cluster should have been formed as a rubble pile from Koronis family debris. We discuss several solutions to this apparent paradox.  相似文献   

11.
We present a kinetic model of a disk of solid particles, orbiting a primary and experiencing inelastic collisions. In distinction to other collisional models that use a 2D (mass-semimajor axis) binning and perform a separate analysis of the velocity (eccentricity, inclination) evolution, we choose mass and orbital elements as independent variables of a phase space. The distribution function in this space contains full information on the combined mass, spatial, and velocity distributions of particles. A general kinetic equation for the distribution function is derived, valid for any set of orbital elements and for any collisional outcome, specified by a single kernel function. The first implementation of the model utilizes a 3D phase space (mass-semimajor axis-eccentricity) and involves averages over the inclination and all angular elements. We assume collisions to be destructive, simulate them with available material- and size-dependent scaling laws, and include collisional damping. A closed set of kinetic equations for a mass-semimajor axis-eccentricity distribution is written and transformation rules to usual mass and spatial distributions of the disk material are obtained. The kinetic “core” of our approach is generic. It is possible to add inclination as an additional phase space variable, to include cratering collisions and agglomeration, dynamical friction and viscous stirring, gravity of large perturbers, drag forces, and other effects into the model. As a specific application, we address the collisional evolution of the classical population in the Edgeworth-Kuiper belt (EKB). We run the model for different initial disk's masses and radial profiles and different impact strengths of objects. Our results for the size distribution, collisional timescales, and mass loss are in agreement with previous studies. In particular, collisional evolution is found to be most substantial in the inner part of the EKB, where the separation size between the survivors over EKB's age and fragments of earlier collisions lies between a few and several tens of km. The size distribution in the EKB is not a single Dohnanyi-type power law, reflecting the size dependence of the critical specific energy in both strength and gravity regimes. The net mass loss rate of an evolved disk is nearly constant and is dominated by disruption of larger objects. Finally, assuming an initially uniform distribution of orbital eccentricities, we show that an evolved disk contains more objects in orbits with intermediate eccentricities than in nearly circular or more eccentric orbits. This property holds for objects of any size and is explained in terms of collisional probabilities. The effect should modulate the eccentricity distribution shaped by dynamical mechanisms, such as resonances and truncation of perihelia by Neptune.  相似文献   

12.
This paper builds on preliminary work in which numerical simulations of the collisional disruption of large asteroids (represented by the Eunomia and Koronis family parent bodies) were performed and which accounted not only for the fragmentation of the solid body through crack propagation, but also for the mutual gravitational interaction of the resulting fragments. It was found that the parent body is first completely shattered at the end of the fragmentation phase, and then subsequent gravitational reaccumulations lead to the formation of an entire family of large and small objects with dynamical properties similar to those of the parent body. In this work, we present new and improved numerical simulations in detail. As before, we use the same numerical procedure, i.e., a 3D SPH hydrocode to compute the fragmentation phase and the parallel N-body code pkdgrav to compute the subsequent gravitational reaccumulation phase. However, this reaccumulation phase is now treated more realistically by using a merging criterion based on energy and angular momentum and by allowing dissipation to occur during fragment collisions. We also extend our previous studies to the as yet unexplored intermediate impact energy regime (represented by the Flora family formation) for which the largest fragment's mass is about half that of the parent body. Finally, we examine the robustness of the results by changing various assumptions, the numerical resolution, and different numerical parameters. We find that in the lowest impact energy regime the more realistic physical approach of reaccumulation leads to results that are statistically identical to those obtained with our previous simplistic approach. Some quantitative changes arise only as the impact energy increases such that higher relative velocities are reached during fragment collisions, but they do not modify the global outcome qualitatively. As a consequence, these new simulations confirm previous main results and still lead to the conclusion that: (1) all large family members must be made of gravitationally reaccumulated fragments; (2) the original fragment size distribution and their orbital dispersion are respectively steeper and smaller than currently observed for the real families, supporting recent studies on subsequent evolution and diffusion of family members; and (3) the formation of satellites around family members is a frequent and natural outcome of collisional processes.  相似文献   

13.
We investigate the flux of main-belt asteroid fragments into resonant orbits converting them into near-Earth asteroids (NEAs), and the variability of this flux due to chance interasteroidal collisions. A numerical model is used, based on collisional physics consistent with the results of laboratory impact experiments. The assumed main-belt asteroid size distribution is derived from that of known asteroids extrapolated down to sizes of ≈ 40 cm, modified in such a way to yield a quasi-stationary fragment production rate over times ≈ 100 Myr. The results show that the asteroid belt can supply a few hundred km-sized NEAs per year, well enough to sustain the current population of such bodies. On the other hand, if our collisional physics is correct, the number of existing 10-km objects implies that these objects either have very long-lived orbits, or must come from a different source (i.e., comets). Our model predicts that the fragments supplied from the asteroid belt have initially a power-law size distribution somewhat steeper than the observed one, suggesting preferential removal of small objects. The component of the NEA population with dynamical lifetimes shorter than or of the order of 1 Myr can vary by a factor reaching up to a few tens, due to single large-scale collisions in the main belt; these fluctuations are enhanced for smaller bodies and faster evolutionary time scales. As a consequence, the Earth's cratering rate can also change by about an order of magnitude over the 0.1 to 1 Myr time scales. Despite these sporadic spikes, when averaged over times of 10 Myr or longer the fluctuations are unlikely to exceed a factor two.  相似文献   

14.
F. Roig  R. Duffard  D. Lazzaro 《Icarus》2003,165(2):355-370
A simple mechanical model is formulated to study the dynamics of rubble-pile asteroids, formed by the gravitational re-accumulation of fragments after the collisional breakup of a parent body. In this model, a rubble-pile consists of N interacting fragments represented by rigid ellipsoids, and the equations of motion explicitly incorporate the minimal degrees of freedom necessary to describe the attitude and rotational state of each fragment. In spite of its simplicity, our numerical examples indicate that the overall behavior of our model is in line with several known properties of collisional events, like the energy and angular momentum partition during high velocity impacts. Therefore, it may be considered as a well defined minimal model.  相似文献   

15.
Numerical simulations of asteroid breakups, including both the fragmentation of the parent body and the gravitational interactions between the fragments, have allowed us to reproduce successfully the main properties of asteroid families formed in different regimes of impact energy, starting from a non-porous parent body. In this paper, using the same approach, we concentrate on a single regime of impact energy, the so-called catastrophic threshold usually designated by , which results in the escape of half of the target’s mass. Thanks to our recent implementation of a model of fragmentation of porous materials, we can characterize for both porous and non-porous targets with a wide range of diameters. We can then analyze the potential influence of porosity on the value of , and by computing the gravitational phase of the collision in the gravity regime, we can characterize the collisional outcome in terms of the fragment size and ejection speed distributions, which are the main outcome properties used by collisional models to study the evolutions of the different populations of small bodies. We also check the dependency of on the impact speed of the projectile.In the strength regime, which corresponds to target sizes below a few hundreds of meters, we find that porous targets are more difficult to disrupt than non-porous ones. In the gravity regime, the outcome is controlled purely by gravity and porosity in the case of porous targets. In the case of non-porous targets, the outcome also depends on strength. Indeed, decreasing the strength of non-porous targets make them easier to disrupt in this regime, while increasing the strength of porous targets has much less influence on the value of . Therefore, one cannot say that non-porous targets are systematically easier or more difficult to disrupt than porous ones, as the outcome highly depends on the assumed strength values. In the gravity regime, we also confirm that the process of gravitational reaccumulation is at the origin of the largest remnant’s mass in both cases. We then propose some power-law relationships between and both target’s size and impact speed that can be used in collisional evolution models. The resulting fragment size distributions can also be reasonably fitted by a power-law whose exponent ranges between −2.2 and −2.7 for all target diameters in both cases and independently on the impact velocity (at least in the small range investigated between 3 and 5 km/s). Then, although ejection velocities in the gravity regime tend to be higher from porous targets, they remain on the same order as the ones from non-porous targets.  相似文献   

16.
A model was developed for the mass distribution of fragments that are ejected at a given velocity for impact and explosion craters. The model is semiempirical in nature and is derived from (1) numerical calculations of cratering and the resultant mass versus ejection velocity, (2) observed ejecta blanket particle size distributions, (3) an empirical relationships between maximum ejecta fragment size and crater diameter, (4) measurements of maximum ejecta size versus ejecta velocity, and (5) an assumption on the functional form for the distribution of fragments ejected at a given velocity. This model implies that for planetary impacts into competent rock, the distribution of fragments ejected at a given velocity is broad; e.g., 68% of the mass of the ejecta at a given velocity contains fragments having a mass less than 0.1 times a mass of the largest fragment moving at that velocity. Using this model, we have calculated the largest fragment that can be ejected from asteroids, the Moon, Mars, and Earth as a function of crater diameter. The model is unfortunately dependent on the size-dependent ejection velocity limit for which only limited data are presently available from photography of high explosive-induced rock ejecta. Upon formation of a 50-km-diameter crater on an atmosphereless planet having the planetary gravity and radius of the Moon, Mars, and Earth, fragments having a maximum mean diameter of ≈30, 22, and 17 m could be launched to escape velocity in the ejecta cloud. In addition, we have calculated the internal energy of ejecta versus ejecta velocity. The internal energy of fragments having velocities exceeding the escape velocity of the moon (~2.4 km/sec) will exceed the energy required for incipient melting for solid silicates and thus, the fragments ejected from Mars and the Earth would be melted.  相似文献   

17.
In the last few years, thanks to the development of sophisticated numerical codes, a major breakthrough has been achieved in our understanding of the processes involved in small body collisions. In this review, we summarize the most recent results provided by numerical simulations, accounting for both the fragmentation of an asteroid and the gravitational interactions of the generated fragments. These studies have greatly improved our knowledge of the mechanisms that are at the origin of some observed features in the asteroid belt. In particular, the simulations have demonstrated that, for bodies larger than several kilometers, the collisional process not only involves the fragmentation of the asteroid but also the gravitational interactions between the ejected fragments. This latter mechanism can lead to the formation of large aggregates by gravitational reaccumulation of smaller fragments, and helps explain the presence of large members within asteroid families. Numerical simulations of the complete process have thus reproduced successfully for the first time the main properties of asteroid families, each formed by the disruption of a large parent body, and provided information on the possible internal structure of the parent bodies. A large amount of work remains necessary, however, to understand in deeper detail the physical process as a function of material properties and internal structures that are relevant to asteroids, and to determine in a more quantitative way the outcome properties such as fragment shapes and rotational states.  相似文献   

18.
Robin M. Canup 《Icarus》2008,196(2):518-538
Prior models of lunar-forming impacts assume that both the impactor and the target protoearth were not rotating prior to the Moon-forming event. However, planet formation models suggest that such objects would have been rotating rapidly during the late stages of terrestrial accretion. In this paper I explore the effects of pre-impact rotation on impact outcomes through more than 100 hydrodynamical simulations that consider a range of impactor masses, impact angles and impact speeds. Pre-impact rotation, particularly in the target protoearth, can substantially alter collisional outcomes and leads to a more diverse set of final planet-disk systems than seen previously. However, the subset of these impacts that are also lunar-forming candidates—i.e. that produce a sufficiently massive and iron-depleted protolunar disk—have properties similar to those determined for collisions of non-rotating objects [Canup, R.M., Asphaug, E., 2001. Nature 412, 708-712; Canup, R.M., 2004a. Icarus 168, 433-456]. With or without pre-impact rotation, a lunar-forming impact requires an impact angle near 45 degrees, together with a low impact velocity that is not more than 10% larger than the Earth's escape velocity, and produces a disk containing up to about two lunar masses that is composed predominantly of material originating from the impactor. The most significant differences in the successful cases involving pre-impact spin occur for impacts into a retrograde rotating protoearth, which allow for larger impactors (containing up to 20% of Earth's mass) and provide an improved match with the current Earth-Moon system angular momentum compared to prior results. The most difficult state to reconcile with the Moon is that of a rapidly spinning, low-obliquity protoearth before the giant impact, as these cases produce disks that are not massive enough to yield the Moon.  相似文献   

19.
Hyperion is an irregularly shaped object of about 285 km in mean diameter, which appears as the likely remmant of a catastrophic collisional evolution. Since the peculiar orbit of this satellite (in 43 resonance locking with Titan) provides an effective mechanism to prevent any reaccretion of secondary fragments originated in a breakup event, the present Hyperion is probably the “core” of a disrupted precursor. This contrasts with the other, regularly shaped small satellites of Saturn, which, according to B.A. Smith et al. [Science215, 504–537 (1982)], were disrupted several times but could reaccrete from narrow rings of collisional fragments. The numerical experiments performed to explore the region of the phase space surrounding the present orbit show that most fragments ejected with a relative velocity ?0.1 km/sec rapidly attain chaotic-type orbits, having repeated close encounters with Titan. Ejection velocities of this order of magnitude are indeed expected for a collision at a velocity of ~ 10 km/sec with a projectile-to-target mass ratio of the order of 10?3; similar effects could be produced by less energetic but nearly grazing collisions. Such events are not likely to displace the largest remnant (i.e., the present Hyperion) outside the stable region of the phase space associated with the resonance, but could be responsible for the large amplitude of the observed orbital libration.  相似文献   

20.
More than a decade of dedicated experimental work on the collisional physics of protoplanetary dust has brought us to a point at which the growth of dust aggregates can-for the first time-be self-consistently and reliably modeled. In this article, the emergent collision model for protoplanetery dust aggregates, as well as the numerical model for the evolution of dust aggregates in protoplanetary disks, is reviewed. It turns out that, after a brief period of rapid collisional growth of fluffy dust aggregates to sizes of a few centimeters, the protoplanetary dust particles are subject to bouncing collisions, in which their porosity is considerably decreased. The model results also show that low-velocity fragmentation can reduce the final mass of the dust aggregates but that it does not trigger a new growth mode as discussed previously. According to the current stage of our model, the direct formation of kilometer-sized planetesimals by collisional sticking seems unlikely, implying that collective effects, such as the streaming instability and the gravitational instability in dust-enhanced regions of the protoplanetary disk, are the best candidates for the processes leading to planetesimals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号