首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low‐energy gamma ray spectroscopy has been employed to estimate floodplain sedimentation rates using measurements of 210Pb in floodplain alluvium. The utility of the technique is assessed through the analysis of excess (unsupported) 210Pb profiles in three sediment cores taken from the floodplain of the Labasa River on Vanua Levu in northern Fiji. A low‐energy germanium spectrometer (LEGe) was used for the nondestructive determination of excess 210Pb in a region cultivated intensively with sugarcane. Measured average historical (c. 25 years) vertical accretion rates are between 2.2 and 4.4 cm yr?1. The findings are broadly comparable with published sedimentation rates from analyses of radionuclide profiles elsewhere in the tropical South Pacific Islands, but the rates are higher than those measured previously at the same Labasa River sites using 137Cs profiles. Accelerated soil erosion owing to cane burning and land tillage seems to be largely responsible for sediment production, although flood‐related effects such as channel accretion by coarse bedload and the emplacement of large organic debris also influence floodplain sedimentation. However, application of the 210Pb technique in Fiji (and perhaps neighbouring island countries) is found to have serious drawbacks compared to the more robust 137Cs method, owing principally to the low 210Pb concentrations in the sandy alluvial sediment tested.  相似文献   

2.
Fluvial processes, especially rates of floodplain accretion, are less well understood in the wet tropics than in other environments. In this study, the caesium-137 (137Cs) method was used to examine the recent historical sedimentation rate on the floodplain of the Wainimala River, in the basin of the Rewa River, the largest fluvial system in Fiji and the tropical South Pacific Islands. 137Cs activity in the floodplain stratigraphy showed a well-defined profile, with a clear peak at 115 cm depth. Our measured accretion rate of 3.2 cm year−1 over the last ca. 45 years exceeds rates recorded in humid regions elsewhere. This is explained by the high frequency of tropical cyclones near Fiji (40 since 1970) which can produce extreme rainfalls and large magnitude floods. Since the beginning of hydrological records, large overbank floods have occurred every 2 years on average at the study site. The biggest floods attained peak flows over 7000 m3 s−1, or six times the bankfull discharge. Concentrations of suspended sediments are very high (max. 200–500 g l−1), delivered mainly by channel bank erosion. In the future, climatic change in the tropical South Pacific region may be associated with greater tropical cyclone intensities, which will probably increase the size of floods in the Rewa Basin and rates of floodplain sedimentation.  相似文献   

3.
James C. Knox   《Geomorphology》2006,79(3-4):286
Understanding the time scales and pathways for response and recovery of rivers and floodplains to episodic changes in erosion and sedimentation has been a long standing issue in fluvial geomorphology. Floodplains are an important component of watershed systems because they affect downstream storage and delivery of overbank flood waters, and they also serve as sources and temporary sinks for sediments and toxic substances delivered by river systems. Here, 14C and 137Cs isotopic dating methods are used along with ages of culturally related phenomena associated with mining and agriculture to determine rates of sedimentation and morphologic change for a reach of the upper Mississippi River and adjacent tributaries in southwestern Wisconsin and northwestern Illinois. The most important environmental change that influenced fluvial activity in this region during last 10,000 years involved the conversion of a late Holocene mosaic of prairie and forest to a landscape dominated by cropland and pastureland associated with Euro-American settlement. Results presented herein for the Upper Mississippi Valley (UMV) show that the shift from pre-agriculture, natural land cover to landscape dominance by agricultural land use of the last 175–200 years typically increased rates and magnitudes of floodplain sedimentation by at least an order of magnitude. Accelerated overbank flooding led to increased bank heights on tributary streams and, in turn, contributed to more frequent deep flows of high energy. These high energy flows subsequently promoted bank erosion and lateral channel migration, and the formation of a historical meander belt whose alluvial surface constitutes a new historical floodplain inset against the earlier historical floodplain. The new historical floodplain serves as a “flume-like” channel that provides efficient downstream transport of water and sediment associated with moderate and large magnitude floods. Floodplains on lower tributaries, however, continue to experience rates of overbank sedimentation that are of anomalously high magnitude given improved land cover and land conservation since about 1950. This lower valley anomaly is explained by minimal development of historical (agriculture period) meander belts because of relatively low stream power in these channel and floodplain reaches of relatively low gradient. In general, long-term pre-agriculture rates of vertical accretion between about 10,000 and 200 years ago averaged about 0.2 mm yr− 1 in tributary watersheds smaller than about 700 km2 and about 0.9 mm yr− 1 on the floodplain of the upper Mississippi River where the contributing watershed area increases to about 170,000 km2. On the other hand, rates of historical vertical accretion during the period of agricultural dominance of the last 200 years average between 2 and 20 mm yr− 1, with short episodes of even higher rates during times of particularly poor land conservation practices. Significant hydrologic effects of mining and agricultural started by the 1820s and became widespread in the study region by the mid-19th century. The hydrologic and geomorphic influences of mining were relatively minor compared to those related to agriculture. High resolution dating of floodplain vertical accretion deposits shows that large floods have frequently provided major increments of sedimentation on floodplains of tributaries and the main valley upper Mississippi River. The relative importance of large floods as contributors to floodplain vertical accretion is noteworthy because global atmospheric circulation models indicate that the main channel upper Mississippi River should experience increased frequencies of extreme hydrologic events, including large floods, with anticipated continued global warming. Instrumental and stratigraphic records show that, coincident with global warming, a shift to more frequent large floods occurred since 1950 on the upper Mississippi River, and these floods generally contributed high magnitudes of floodplain sedimentation.  相似文献   

4.
长江三峡阶地的成因机制   总被引:15,自引:0,他引:15  
根据对长江三峡阶地堆积物进行的野外调查与室内分析发现三峡阶地的成因具有以下特点:构成阶地上部的河漫滩相堆积、中部的冲积砾石层与作为阶地基座的基岩平台是在不同时期形成的;阶地上部河漫滩相堆积是在中全新世气候温暖、长江三峡高水位条件下形成的.因此,长江三峡阶地是在构造上升的基础上由于气候及长江三峡流量及水位变化而形成的,并非一定是间歇性构造上升的标志.  相似文献   

5.
Temporal patterns in floodplain genesis and alluvial sedimentation in lowlands tropical rain forest zones of Ghana, Sierra Leone and western Kalimantan (Indonesian Borneo) based upon 14C age determinations are described.Alluvial low terraces or buried sediments in West Africa yielded ages of 36-21 ka. In west Kalimantan a widespread episode of alluviation has yielded dates of 54-51 ka. The 20-13 ka interval was characterised by channel incision with valley floor erosion and neither region records sedimentation. Holocene alluvial sedimentation and floodplain construction in West Africa occurred during two temporal intervals: 10-7 ka and 4 ka to present and in western Kalimantan in response to early Holocene sea level rise followed by late Holocene regression and coastal outgrowth.The clustering of 14C dates closely corresponds to regional lake level fluctuations and vegetational changes and to global indications of climatic change. We propose that periods of more frequent episodes of accelerated floodplain erosion and reconstitution, channel morpho-sedimentary activity and alluvial accumulation (1) are responses to interstadial and interglacial periods of higher precipitation following intervening periods of cooler and drier conditions; and (2) may be synchronous during the last 60 ka throughout the African and Asian inner humid lowland tropics.  相似文献   

6.
The geomorphology and dynamics of the Mfolozi River floodplain and estuary, located in the subtropical region of northern KwaZulu-Natal, South Africa, were considered with respect to existing models of avulsion and alluvial stratigraphy. The Mfolozi River floodplain may be divided into regions based on longitudinal slope and dominant geomorphic processes. Confinement of the Mfolozi River above the floodplain has led to the development of an alluvial fan at the floodplain head, characterized by a relatively high sedimentation rate and avulsion frequency, at a gradient of 0.10%. The lower floodplain is controlled by sea level, with an average gradient of 0.05%. Between the two lies an extremely flat region with an average gradient of 0.02%, which may be controlled by faulting of the underlying bedrock.Avulsion occurrences on the Mfolozi floodplain are linked to the two main zones of aggradation, the alluvial fan at the floodplain head, and toward the river mouth in the lower floodplain. On the alluvial fan, normal flow conditions result in scour from local steepening. During infrequent, large flood events, the channel becomes overwhelmed with sediment and stream flow, and avulses. The resulting avulsion is regional, and affects the location of the channel from the floodplain head to the river mouth. Deposits resulting from such avulsions contribute significantly to the total volume of sediment stored in the floodplain, and tend to persist for long periods after the avulsion. Contrastingly, on the lower floodplain, reaching of the avulsion threshold is not necessarily linked to large flood events, but rather to long-term aggradation on the channel that decreases the existing channels gradient while increasing its elevation above the surrounding floodplain. Resultant avulsions tend to be local and do not contribute significantly to the overall volume of floodplain alluvium.  相似文献   

7.
The post-orogenic evolution of the Laramide landscape of the western U.S. has been characterized by late Cenozoic channel incision of basins and their adjacent ranges. One means of constraining the incision history of basins is dating the remnants of gravel-capped surfaces above modern streams. Here, we focus on an extensive remnant of the Rocky Flats surface between Golden and Boulder, Colorado, and use in situ-produced 10Be and 26Al concentrations in terrace alluvium to constrain the Quaternary history of this surface. Coal and Ralston Creeks, both tributaries of the South Platte River, abandoned the Rocky Flats surface and formed the Verdos and Slocum pediments, which are cut into Cretaceous bedrock between Rocky Flats and the modern stream elevations. Rocky Flats alluvium ranges widely in age, from > 2 Ma to  400 ka, with oldest ages to the east and younger ages closer to the mountain front. Numerical modeling of isotope concentration depth profiles suggests that individual sites have experienced multiple resurfacing events. Preliminary results indicate that Verdos and Slocum alluvium along Ralston Creek, which is slightly larger than Coal Creek, is several hundred thousand years old. Fluvial incision into these surfaces appears therefore to progress headward in response to downcutting of the South Platte River. The complex ages of these surfaces call into question any correlation of such surfaces based solely on their elevation above the modern channel.  相似文献   

8.
Floodplains provide valuable social and ecological functions, and understanding the rates and patterns of overbank sedimentation is critical for river basin management and rehabilitation. Channelization of alluvial systems throughout the world has altered hydrological and sedimentation processes within floodplain ecosystems. In the loess belt region of the Lower Mississippi Alluvial Valley of the United States, channelization, the geology of the region, and past land-use practices have resulted in the formation of dozens of valley plugs in stream channels and the formation of shoals at the confluence of stream systems. Valley plugs completely block stream channels with sediment and debris and can result in greater deposition rates on floodplain surfaces. Presently, however, information is lacking on the rates and variability of overbank sedimentation associated with valley plugs and shoals.We quantified deposition rates and textures in floodplains along channelized streams that contained valley plugs and shoals, in addition to floodplains occurring along an unchannelized stream, to improve our understanding of overbank sedimentation associated with channelized streams. Feldspar clay marker horizons and marker poles were used to measure floodplain deposition from 2002 to 2005 and data were analyzed with geospatial statistics to determine the spatial dynamics of sedimentation within the floodplains.Mean sediment deposition rates ranged from 0.09 to 0.67 cm/y at unchannelized sites, 0.16 to 2.27 cm/y at shoal sites, and 3.44 to 6.20 cm/y at valley plug sites. Valley plug sites had greater rates of deposition, and the deposited sediments contained more coarse sand material than either shoal or unchannelized sites. A total of 59 of 183 valley plug study plots had mean deposition rates > 5 cm/y. The geospatial analyses showed that the spatial dynamics of sedimentation can be influenced by the formation of valley plugs and shoals on channelized streams; however, responses can vary. Restoration efforts in the region need to have basinwide collaboration with landowners and address catchment-scale processes, including the geomorphic instability of the region, to be successful.  相似文献   

9.
The Portil lagoon is a natural freshwater reservoir located at the southwest of Spain, near the coast. In its surroundings an important tourist complex has been developed since the earlier 1970s. This has resulted in increased loads of nutrients, specially during summer months. In order to evaluate the impact from humans on the lagoon caused by anthropogenic activities, we have determined vertical profiles of excess 210Pb and 137Cs in a sediment core taken from its bottom. Vertical profile of excess 210Pb seems to indicate that the sediment core was affected by large-scale mixing processes. Nevertheless this possibility was ruled out based on the shape of the 137Cs vertical distribution after modelling the 137Cs profile considering large-scale mixing. The chronology developed from 210Pb and 137Cs has allowed us to calculate the temporal evolution of the mass sedimentation rate during the last century. This mass sedimentation rate increased in 1973: from 0.08(2) g cm-2 a-1 in the period 1900-1973 to 0.17(5) g cm-2 a-1 in the period 1973-1995. This increase could be related to land-movements in the drainage area and to permitted sewage inputs into the lagoon, both with its origin in the growing/running of the surrounding tourist complex.  相似文献   

10.
This study examines environmental change in the upper montane zone of the Australian Eastern Highlands during the late Holocene, by analysing vegetation, fire and erosion records contained within a small fen located in a frost hollow. Differences in environmental parameters across the prehistoric—historic boundary were particularly investigated in an attempt to characterise better the changes associated with the imposition of European land‐use practices. Decreases in arboreal pollen and an increased charcoal concentration near the base of the analysed sequence, interpreted to be about 1600 y BP until about 1300 y BP, are suggestive of reduced moisture availability. After this, a period of relative stability continued to the close of the prehistoric period. The arrival of Europeans in the region triggered changes in the sediment record, including an increase in the accumulation of sediment by an order of magnitude, and changes in the surrounding vegetation. Saturated isothermal remnant magnetism (SIRM) was found to be significantly higher in the historic period compared to the analysed prehistoric period, suggesting an alteration in the erosional processes within the catchment. The concentration of charcoal was comparable between the prehistoric and historic periods; however, the increased sedimentation rate of the historic period infers an increased accumulation of charcoal. Fire did not appear to be related to the vegetation changes evident in the historic period, perhaps due to the use of cool fires by the pastoralists.  相似文献   

11.
Environmental degradation, including shallowing, deterioration of aquatic habitat and water pollution, has arisen from the inflow of fine sediment to Lake Takkobu in northern Japan. The lake has experienced gradual environmental degradation due to agricultural development, which has introduced both fine sediment and sediment-associated nutrients into the lake. We have reconstructed the history of sediment yield to Lake Takkobu in Kushiro Mire over the last 300 years and have examined trends with reference to land-use development. Fifteen lake sediment core samples were obtained, and various physical variables of lake sediments were analyzed and dated using 137Cs and tephrochronology. The physical variables showed that all points contained mainly silt, except for two points close to the river mouths, where the mean diameter was < 35 μm. The peaks were defined as a “signal” when the physical variables were synchronous in a profile. These were created by floods and engineering works constructing drainage systems. The signal of canal construction in 1898 was detected in all core points. Lake Takkobu core samples contained two tephra layers. From the refractive indices of dehydrated glasses, the lower tephra layer was identified as Ko-c2 (1694) and the upper tephra layer as Ta-a (1739). A clear peak in the 137Cs concentration was detected at all the sampling points, except for the site close to the Takkobu River. This site showed two peaks in the 137Cs concentration, which was attributed to perturbation from flood events and a drainage project. The maximum 137Cs concentration was identified as the sediment surface from 1963, enveloped by the 1962 and 1964 signals. The sediment yield averaged over the last 300 years for Lake Takkobu was reconstructed for four periods using the signal, tephra and 137Cs as marker layers. The sediment yield under the natural erosion condition for the first two periods was 226 tons/year from 1694 to 1739 and 196 tons/year from 1739 to 1898. The development of the Takkobu watershed started in 1880s with partial deforestation and channelization in 1898, 1959, and 1962 leading to an increased sedimentation yield of 1016 tons/year from 1898 to 1963. Continued deforestation, channelization works in 1964, road construction in 1980–1990s, as well as agriculture development caused a further increase to 1354 tons/year from 1963 to 2004. Compared to the averaged natural sedimentation yield of 206 tons/year until 1898, initial land-use development in a catchment accelerated lake sedimentation, indicated by the 5-fold sediment yield. With increasing agricultural development since 1960s, sedimentation yields were highest for 1963–2004; a 7-fold increase compared with pre-impact conditions. To reduce sediment yield, riparian buffers along the rivers should be preserved or rebuilt, and sluices may function effectively during short-term periods of flooding. Environmental management policy and laws restricting uncontrolled and inappropriate land-use might help in addition to ensure longer-term environmental health by reducing the sedimentation rate.  相似文献   

12.
An avulsion of the lower Saskatchewan River in the 1870s inundated a large segment of peat-covered floodplain that subsequently has become aggraded with a broad (500 km2) belt of alluvium deposited by the redirected flow. Routing of water and sediment discharge through the avulsion-affected area has been accomplished mainly by networks of sandy bedded anastomosed channels that have formed, evolved, and abandoned as the alluvial belt prograded down the floodplain slope. These processes continue today, though at a much-reduced rate. New channels, formed by crevassing and basinward extension of distributaries, are initially small and shallow, with bottom elevations situated within the avulsive alluvium but above the pre-avulsion peat (floodplain) surface. Subsequent enlargement and downcutting of many of these channels eventually uncovers the underlying peat layer whose resistance to erosion exerts significant influence on cross-sectional shape and further channel development. Peat-floored channels tend to have rectangular cross-sections, high ratios of average to maximum depth (D/Dmax), and a large range of width-to-depth ratios. If the channel continues to enlarge, the peat layer eventually becomes breached, commonly leading to temporarily irregular cross-sections caused by localized scouring at the breach sites. Eventually, the peat layer is completely eroded from the channel floor by undercutting and slumping, after which channel shape becomes governed mainly by other perimeter characteristics. Channels unaffected by peat, either before the peat layer is encountered during early channel development or after it is entirely removed, tend to have low width/depth ratios and a large range of D/Dmax values.  相似文献   

13.
西江的河流阶地与洪冲积阶地   总被引:1,自引:1,他引:0  
刘尚仁  彭华 《热带地理》2003,23(4):314-318
西江第一级阶地主要由Q3沉积构成,三水青歧以上属于可被洪水淹没的半埋藏阶地,与Q4河漫滩共同组成冲积平原,青歧以下属于西江三角洲下面的埋藏阶地.第二级阶地主要由Q2末期的冲积物组成,少量可延续到Q3初期;第三级阶地多由Q2中期的冲积物组成;第四级阶地仅在封开发现,是目前广东最高的河流阶地,由Q1末期或Q2初期的冲积物构成.西江两旁有老和新的两级洪冲积阶地,老阶地高出山前倾斜平原,主要由Q2洪冲积物组成,新阶地在山前倾斜平原呈埋藏和半埋藏状态,主要由Q3洪冲积物组成,与少量的Q4洪冲积物共同组成该山前倾斜平  相似文献   

14.
In this study, we combined grain size and geochemical analyses with radioisotope analysis of lead-210 (210Pb), caesium-137 (137Cs) and radiocarbon (14C) ages to reconstruct the sedimentation history of two urbanised coastal lagoons in south-east Australia. Towradgi and Fairy Lagoons were both found to exhibit slow initial sedimentation of less than 1 mm year−1 prior to anthropogenic influences. Land clearing in the catchments increased runoff and erosion in the creeks feeding into the estuaries, and has resulted in progradation of fluvial material into the estuarine systems with a marked increase in sedimentation to between 2 and 7 mm year−1. The upper 20–50 cm of the sediment column in both lagoons contained elevated concentrations of heavy metals such as Pb, Cu, Ni and Zn. This pollution trend was found to be consistent with the history of industrialisation and urbanisation in the region, which expanded rapidly post World War 2. The total metal concentrations were consistent with other urbanised/industrialised estuaries around the world. Despite the fairly disturbed nature of these coastal lagoons, the use of 210Pb, 137Cs and 14C dating in combination with bulk geochemical analyses allowed detailed reconstruction of sedimentation history.  相似文献   

15.
Global fallout is the main source of anthropogenic radionuclides in the Mediterranean Sea. This work presents 137Cs, 239+240Pu and 241Am concentrations in the water column in the southwest Alboran Sea, which was sampled in December 1999. A sediment core was taken at 800 m depth in the area (35°47′ N, 04°48′ W). 210Pb, 226Ra, 137Cs and 239+240Pu specific activities were measured at multiple depths in the core for dating purposes. 137Cs and 239+240Pu profiles did not show defined peaks that could be used as time markers, and they extended up to depths for which the 210Pb-based constant rate of supply (CRS) dating model provided inconsistent dates. These profiles can be useful to test dating models, understood as particular solutions of a general advection–diffusion problem, if the time series of radionuclide inputs into the sediment is provided. Thus, historical records of depth-averaged 137Cs and 239+240Pu concentrations in water, and their corresponding fluxes into the sediment, were reconstructed. A simple water-column model was used for this purpose, involving atmospheric fallout, measured distribution coefficient (k d) values, and a first-estimate of sedimentation rates. A dating model of constant mixing with constant sedimentation rate was applied successfully to three independent records (unsupported 210Pb, 137Cs and 239+240Pu), and provided the objective determination of mixing parameters and mass sedimentation rate. These results provide some insight into the fate of atmospheric inputs to this marine environment and, particularly, into the contribution from the Chernobyl accident.  相似文献   

16.
210Pb geochronologies should be validated with independent tracers such as 137Cs. In the cases with constant 210Pb activity in the topmost sediments, the presence of a distinct 137Cs peak within the 210Pb plateau has been used as a definitive demonstration of acceleration (increase in the sedimentation rate in recent years) versus fast mixing. Nevertheless, some limitations can be identified in the use of semiquantitative arguments, and a global understanding of the whole 137Cs activity profile is then required. Particularly, the incomplete mixing within the top sediment zone (described through the Incomplete Mixing Zone model) can explain quantitatively and simultaneously the 137Cs peak and the flattening in the 210Pb activity profile. This is demonstrated using selected examples from literature data. Thus, measured constant 210Pb activities in the top 6 cm of a sediment core from Lake Zürich. Nevertheless, they found 7Be only in the uppermost layer, the distinct 137Cs maximum at 6 cm depth, and undisturbed varves. The fast mixing seemed then opposed to common sense. The constant rate of supply model shows acceleration and it adequately matches the position of the 1963 137Cs peak. Nevertheless it fails to explain the whole 137Cs profile when handling time series of 137Cs atmospheric deposition. Finally, it is shown how the incomplete mixing of the activity (through the pore water) over a certain mass depth at the top sediment, with a finite value of the mixing coefficient, can quantitatively explain the whole activity versus mass depth profiles of 137Cs and 210Pb, and the presence of 7Be only in the uppermost sediment layer. A further validation of these ideas is presented from other literature data.  相似文献   

17.
ABSTRACT Magnetostratigraphic chronologies, together with sedimentological, petrological, seismic and borehole data derived from the Oligo/Miocene Lower Freshwater Molasse Group of the North Alpine foreland basin enable a detailed reconstruction of alluvial architecture in relation to Alpine orogenic events. Six depositional systems are recorded in the Lower Freshwater Molasse Group. The bajada depositional system comprises 200–400-m-thick successions of ribbon channel conglomerates and overbank fines including mud- and debris-flows which were derived from the Alpine border chain. The alluvial megafan depositional system is made up of massive pebble-to-cobble conglomerates up to 3 km thick which reveal a fan-shaped geometry. This depositional environment grades downcurrent into the conglomerate channel belt depositional system, which comprises an ≈2-km-thick alternation of channel conglomerates and overbank fines. The sandstone channel belt depositional system is bordered by the 100–400-m-thick overbank fines assigned to the floodplain depositional system. At the feather edge of the basin, 50–400-m-thick lacustrine sediments in both clastic and carbonate facies represent the lacustrine depositional system. The spatial and temporal arrangement of these depositional systems was controlled by the geometrical evolution of the Molasse Basin. During periods of enhanced sediment supply and during phases of stable sliding of the entire wedge, >2000-m-thick coarsening-and thickening-upward megasequences comprising the conglomerate channel belt, alluvial megafan and bajada depositional systems were deposited in a narrow wedge-shaped basin. In the distal reaches of the basin, however, no sedimentary trend developed, and the basin fill comprises a <500-m-thick series of sandstone meander belt, floodplain and lacustrine depositional systems. During phases of accretion at the toe of the wedge, the basin widened, and prograding systems of multistorey channel sandstones extended from the thrust front to the distal reaches of the basin. The rearrangement of the depositional systems as a function of changing orogenic conditions created discordances, which are expressed seismically by onlap and erosion of beds delimiting sedimentary sequences. Whereas stable sliding of the wedge succeeded by accretion at the toe of the wedge is recorded in the proximal Lower Freshwater Molasse by a coarsening-and thickening-upward megasequence followed by erosion, the opposite trend developed in the distal reaches of the Molasse. Here, fine-grained sandstones and mudstones were deposited during periods of stable sliding, whereas phases of accretion caused a coarsening- and thickening-up megasequence to form.  相似文献   

18.
This pilot study used sediment tracers to identify general source areas of channel bottom sediment within three tributaries of the Umatilla and upper Grande Ronde basins in northeastern Oregon. Land use in each stream was dominated by agriculture, logging, or grazing. The nuclear bomb-derived radionuclide 137Cs, carbon, and nitrogen were used as tracers to fingerprint sediment sources. Sediment was collected from the stream bottom inside the active channels and compared to samples from the surface horizon and channel banks. Samples were processed to separate the <63 μm fraction and characterized on the basis of tracer concentrations. A simple mixing model was used to estimate the relative portion of channel bottom sediment derived from the surface horizon and channel banks. Calculations from the 137Cs tracer indicated that channel banks accounted for 56%, 74%, and 93% of the bottom sediment in the three study drainages, although these figures have a high margin of error. 137Cs proved unexpectedly useful in the identification of actively eroding alluvial deposits deposited since the mid-1950s in one study area, likely resulting from the floods of 1964 and 1965. [Key words: bank erosion, 137Cs, sediment tracers, Columbia Basin, nonpoint sediment sources.]  相似文献   

19.
In the conventional model of floodplain sediment accumulation, mechanisms of floodplain growth are differentiated into lateral and vertical accretion processes, in which within-channel deposits are capped by overbank deposits. In the high-energy, gravel-based Squamish River, sediments laid down on bar surfaces are composed of trough and planar crossbedded coarse sands. These sequences contrast incongruously with adjacent floodplain deposits which are composed in large part of vertically accreted fine sands atop coarse alluvial gravels. Using element analysis it is inferred that bar platform sediments are stripped away by chute channels, which are subsequently infilled with lower-energy deposits. From this, a model of floodplain growth based on selective preservation of bar platform sands and prefrential preservation of vertically accreted deposits is proposed. This mechanism of sediment replacement occurs independent of channel planform type.  相似文献   

20.
Holocene Alluvial Chronology of One Tree Creek, Southern Alberta, Canada   总被引:1,自引:0,他引:1  
An alluvial chronology for the One Tree Creek basin, a southern tributary of the Red Deer River in southern Alberta, is reconstructed using terrace and palaeochannel remnants and associated radiocarbon dated bones. Prior to the development of One Tree Creek as a northeastward flowing tributary, the prairie surface was scoured by proglacial floodwaters decanting from Glacial Lake Bassano/Patricia in the west. Radiocarbon dates on bones from the bedload gravels in palaeochannels provide a morphochronology of Holocene stream incision. Tentative average incision rates for the middle and upper reaches are calculated at 0.34–0.38 cm a‐1 since 2.8 ka BP and 0.80 – 1.60 cm and 0.81 – 0.96 cm a‐1 for the two periods of 1870 to 1230 BP and 1230 BP to modern respectively. Terraces and palaeochannels dating to the period of highest incision (1870 BP to modern) include numerous reworked bones dating to earlier periods, indicating that fluvial downcutting triggered slope instability and terrace reworking. Although the lower bedrock reaches of the creek may have incised down to the present level of the Red Deer River during early postglacial time, the middle and upper reaches were rapidly incised into Quaternary sediments during the late Holocene when climatic conditions were more humid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号