首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study proposes two fuzzy logic controllers (FLCs) for operating control force of piezoelectric friction dampers used for seismic protection of base-isolated buildings against various types of earthquake excitations. The first controller employs a hierarchic control strategy in which a higher-level supervisory controller operates a single sub-level FLC by modifying its input normalization factors in order to determine command voltage of the damper according to current level of ground motion. The second controller is a self organizing FLC that employs genetic algorithms in order to build a knowledge base for the fuzzy controller. Numerical simulations of a base-isolated building are conducted to evaluate the performance of the controllers. For comparison purposes, an optimal controller is also developed and considered in the simulations together with maximum passive operation of the friction damper. Results for several historical ground motions show that developed fuzzy logic controllers can effectively reduce isolation system deformations without the loss of potential advantages of seismic base isolation.  相似文献   

2.
A semi‐active fuzzy control strategy for seismic response reduction using a magnetorheological (MR) damper is presented. When a control method based on fuzzy set theory for a structure with a MR damper is used for vibration reduction of a structure, it has an inherent robustness, and easiness to treat the uncertainties of input data from the ground motion and structural vibration sensors, and the ability to handle the non‐linear behavior of the structure because there is no longer the need for an exact mathematical model of the structure. For a clipped‐optimal control algorithm, the command voltage of a MR damper is set at either zero or the maximum level. However, a semi‐active fuzzy control system has benefit to produce the required voltage to be input to the damper so that a desirable damper force can be produced and thus decrease the control force to reduce the structural response. Moreover, the proposed control strategy is fail‐safe in that the bounded‐input, bounded‐output stability of the controlled structure is guaranteed. The results of the numerical simulations show that the proposed semi‐active control system consisting of a fuzzy controller and a MR damper can be beneficial in reducing seismic responses of structures. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
Many of the control algorithms proposed for structures subjected to seismic excitations are based on a centralized design philosophy, such as the linear quadratic regulator (LQR) design. The information of all the states of the system is usually required in these methods to determine the control command. For applications involving large‐scale systems, it may be more convenient to design decentralized controllers that depend only on the information of the local states for control command calculation. In this study, a nonlinear decentralized robust control algorithm is proposed. The structural system is decomposed into several artificially uncoupled subsystems. The interconnections between adjacent subsystems are treated as uncertain but bounded disturbances to the subsystems. The controller associated with one subsystem determines the control command based only on the states of the local subsystem. Numerical examples of linear and nonlinear structural models are presented to demonstrate the effectiveness and robustness of the proposed controller. The traditional LQR design is used as a baseline for comparison. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
In most of the research work on structural vibration control only two‐dimensional plane structural modelling has been considered, although only a few practical building structures can be modelled as planar structures. Therefore, these methods are not directly applicable to the majority of the practical building structures. This paper discusses the design of a multiobjective optimal fuzzy logic controller (FLC) driven hybrid mass damper (HMD) system for seismically excited torsionally coupled building structures. Floor acceleration and velocity information have been used as feedback to the fuzzy logic controller. A three branch tournament Genetic Algorithm has been used for the multiobjective optimal design of the FLC driven HMD system, where the minimization of the non‐dimensionalized peak displacement, acceleration and rotation of the structure about its vertical axis, have been as the three objective functions. The proposed multiobjective optimal fuzzy logic controller has been verified for an example problem reported in the literature. This HMD system consists of four HMDs arranged in such a way that the system can control the torsional mode of vibration effectively in addition to the flexure modes of vibration. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
A semi-active strategy for model predictive control (MPC), in which magneto-rheological dampers are used as an actuator, is presented for use in reducing the nonlinear seismic response of high-rise buildings. A multi-step predictive model is developed to estimate the seismic performance of high-rise buildings, taking into account of the effects of nonlinearity, time-variability, model mismatching, and disturbances and uncertainty of controlled system parameters by the predicted error feedback in the multi-step predictive model. Based on the predictive model, a Kalman-Bucy observer suitable for semi-active strategy is proposed to estimate the state vector from the acceleration and semi-active control force feedback. The main advantage of the proposed strategy is its inherent stability, simplicity, on-line real-time operation, and the ability to handle nonlinearity, uncertainty, and time-variability properties of structures. Numerical simulation of the nonlinear seismic responses of a controlled 20-story benchmark building is carried out, and the simulation results are compared to those of other control systems. The results show that the developed semi-active strategy can efficiently reduce the nonlinear seismic response of high-rise buildings.  相似文献   

6.
工程结构地震响应模糊半主动控制   总被引:3,自引:1,他引:2  
提出了使用MR阻尼器(Magnetorheological Damper)作为控制设备,模糊集为基础的半主动控制算法,并运用提出的算法对土木工程结构地震响应进行了振动控制分析.本文方法的优势在于算法自身的鲁棒性、处理非线性问题的能力和不需要结构的精确数学模型,算法需要的输入变量少,可以解决实际工程中结构响应信息难以测量的困难.模糊算法的输出直接控制MR阻尼器的输入电压,控制器的计算非常简单且易于在工程中实现.本文以一个3层框架结构为算例,分析了本文算法与前人研究算法的异同.数值结果表明,本文提出的模糊半主动控制具有较高的效率,可以减小需要的控制力,充分使用了MR阻尼器的输入电压可以调节的功能,使MR阻尼器的功能得到了更好的发挥.  相似文献   

7.
Structural vibration control using active or passive control strategy is a viable technology for enhancing structural functionality and safety against natural hazards such as strong earthquakes and high wind gusts. Both the active and passive control systems have their limitations. The passive control system has limited capability to control the structural response whereas the active control system depends on external power. The power requirement for active control of civil engineering structures is usually quite high. Thus, a hybrid control system is a viable solution to alleviate some of the limitations. In this paper a multi‐objective optimal design of a hybrid control system for seismically excited building structures has been proposed. A tuned mass damper (TMD) and an active mass driver (AMD) have been used as the passive and active control components of the hybrid control system, respectively. A fuzzy logic controller (FLC) has been used to drive the AMD as the FLC has inherent robustness and ability to handle the non‐linearities and uncertainties. The genetic algorithm has been used for the optimization of the control system. Peak acceleration and displacement responses non‐dimensionalized with respect to the uncontrolled peak acceleration and displacement responses, respectively, have been used as the two objectives of the multi‐objective optimization problem. The proposed design approach for an optimum hybrid mass damper (HMD) system, driven by FLC has been demonstrated with the help of a numerical example. It is shown that the optimum values of the design parameters of the hybrid control system can be determined without specifying the modes to be controlled. The proposed FLC driven HMD has been found to be very effective for vibration control of seismically excited buildings in comparison with the available results for the same example structure but with a different optimal absorber. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
相邻结构地震反应MR阻尼器控制的仿真分析   总被引:2,自引:0,他引:2  
本文仿真分析了应用磁流变(MR)阻尼器对相邻结构地震反应的控制效果,为进一步开展模型试验研究奠定了基础。建立了地震激励下相邻结构MR阻尼器控制系统的运动方程,提出了描述MR阻尼器阻尼力滞回特性的改进S igmoid模型,分别对应用开关控制、半主动控制以及最小或最大电流被动控制的四种控制方法的相邻结构地震反应的控制效果进行了仿真分析。结果表明,在相邻结构间连接安装MR阻尼器可以有效地控制相邻结构的地震反应,且开关控制方法和半主动控制方法的控制效果均好于两种被动控制方法,体现了MR阻尼器阻尼力可调的优点;在四种控制方法中,半主动控制方法的控制效果最好,体现了MR阻尼器阻尼力具有连续调节能力的优点;若能解决MR阻尼器的剩磁问题,半主动控制方法的控制效果会得到进一步的提高。  相似文献   

9.
This paper investigates the seismic response control of a 20-story nonlinear benchmark building with a new recentering variable friction device (RVFD). The RVFD combines energy dissipation capabilities of a variable friction damper (VFD) with the recentering ability of shape memory alloy (SMA) wires. The VFD that is the first subcomponent of the hybrid device consists of a friction generation unit and piezoelectric actuators. The clamping force of the VFD can be adjusted according to the current level of ground motion by adjusting the voltage level of piezoelectric actuators. SMA wires that exhibit a unique hysteretic behavior and full shape recovery after experiencing large strains is the second subcomponent of the hybrid device. Numerical simulations of a seismically excited 20-story benchmark building are conducted to evaluate the performance of the hybrid device. A continuous hysteretic model is used to capture frictional behavior of the VFD and a neuro-fuzzy model is employed to describe highly nonlinear behavior of the SMA components of the hybrid device. A fuzzy logic controller is developed to adjust the voltage level of VFDs for favorable performance in an RVFD hybrid application. Results show that the RVFD modulated with a fuzzy logic control strategy can effectively reduce interstory drifts and permanent deformations without increasing acceleration response of the benchmark building for most cases. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
A comparative analytical study of several control strategies for semi-active(SA) devices installed in baseisolated buildings aiming to reduce earthquake induced vibrations is presented.Three force tracking schemes comprising a linear controller plus a "clipped" algorithm and a nonlinear output feedback controller(NOFC) are considered to tackle this problem.Linear controllers include the integral controller(I),the linear quadratic regulator(LQR) and the model predictive controller(MPC).A single degree-of-freedom system subjected to input accelerograms representative of the Portuguese seismic actions are first used to validate and evaluate the feasibility of these strategies.The obtained results show that structural systems using SA devices can in general outperform those equipped with passive devices for lower fundamental frequency structural systems,namely base-isolated buildings.The effectiveness of the proposed strategies is also evaluated on a 10 storey base-isolated dual frame-wall building.The force tracking scheme with an integral controller outperforms the other three as well as the original structure and the structure equipped with passive devices.  相似文献   

11.
高架桥梁地震响应模糊半主动控制   总被引:3,自引:0,他引:3  
提出了使用MR阻尼器(Magnetorheological Damper)作为控制设备,以模糊集为基础的半主动控制算法,研究了8种模糊控制规则在高架桥梁地震响应中的控制效果。本文提出的模糊方法的优势在于算法自身的鲁棒性、处理非线性问题的能力和不需要结构的精确数学模型,算法需要的输入变量少,模糊算法的输出直接控制MR阻尼器的输入电压,与LQR-clipped算法不同,MR阻尼器的输入电压可以是零与最大值之间的任意值。根据高架桥梁的结构特点,将典型的墩-支座-桥面结构简化为一个两自由度的线性系统,计算了El Centro地震激励下,MR模糊半主动控制的地震响应,并分别与没有控制及其他控制时的地震响应进行了对比,分析了各种控制算法的控制效果。研究结果表明,MR模糊半主动控制算法可以达到LQR-clipped半主动的控制效果,且模糊控制所需要的控制力较小,为有效地发挥MR阻尼器的功能提供了一种简单的半主动算法。  相似文献   

12.
Seismic structural control using semi-active tuned mass dampers   总被引:8,自引:1,他引:8  
This paper focuses on how to determine the instantaneous damping of the semi-active tuned mass damper (SATMD) with continuously variable damping. An off-and-towards-equilibrium (OTE) algorithm is employed to examine the control performance of the structure/SATMD system by considering the damping as an assumptive control action. The damping modification of the SATMD is carried out according to the proposed OTE algorithm, which is formulated based on analysis of the structural movement under external excitations, and the measured responses of the structure at every time instant. As examples two numerical simulations of a five-storey and a ten-storey shear structures with a SATMD on the roof are conducted. The effectiveness on vibration reduction of MDOF systems subjected to seismic excitations is discussed. Analysis results show that the behavior of the structure with a SATMD is significantly improved and the feasibility of applying the OTE algorithm to the structural control design of SATMD is also verified.  相似文献   

13.
磁流变阻尼器作为一种比较典型的半主动控制元件,具有构造简单、响应速度快、耐久性好、阻尼力大且连续可调等优点。即使地震中能源中断,磁流变阻尼器仍可以作为被动耗能装置继续工作发挥作用,可靠性高。设计合理有效的磁流变阻尼器半主动控制方法,对于整体结构的减震效果尤其重要。提出一种改进的磁流变阻尼器的半主动控制策略-改进的Bang-Bang控制策略,对装有磁流变阻尼器的减震控制3层框架结构进行了一系列的实时混合模拟试验,对多种半主动控制方法下的振动控制效果进行试验分析。试验结果表明:磁流变阻尼器对框架结构的减震效果显著,并验证了提出的磁流变阻尼器半主动控制策略的有效性。  相似文献   

14.
This paper presents an active control algorithm using the probability density function of structural energy. It is assumed that structural energy under excitation has a Rayleigh probability distribution. This assumption is based on the fact that the Rayleigh distribution satisfies the condition that the structural energy is always positive and the occurrence probability of minimum energy is zero. The magnitude of the control force is determined by the probability that the structural energy exceeds the specified target critical energy, and the sign of the control force is determined by the Lyapunov controller design method. The proposed control algorithm shows much reduction of peak responses under seismic excitation compared with the LQR controller, and it can consider the control force limit in the controller design. Also, the chattering problem which sometimes occurs in the Lyapunov controller can be avoided. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
基于抑制升船结构顶部厂房地震鞭梢效应的目的,本文提出了升船结构顶部厂房屋盖MR智能隔震模糊控制的思想。文中,在建立屋盖智能隔震升船结构计算力学模型的基础上,建立了屋盖MR智能隔震系统对升船结构顶部厂房地震反应模糊控制的设计计算方法。文中并以中国某大坝巨型升船结构为背景,设计了屋盖MR智能隔震系统对升船结构顶部厂房地震反应模糊控制的控制系统。仿真分析和对MR阻尼器的参数研究表明,安装合适的屋盖MR智能隔震系统并采用模糊控制策略能有效地抑制具有不确定参数升船结构顶部厂房地震反应的鞭梢效应,且模糊控制器能保持较好的稳定性能。  相似文献   

16.
Applying active control systems to civil engineering structures subjected to dynamic loading has received increasing interest. This study proposes an active pulse control model, termed unsupervised fuzzy neural network structural active pulse controller (UFN‐SAP controller), for controlling civil engineering structures under dynamic loading. The proposed controller combines an unsupervised neural network classification (UNC) model, an unsupervised fuzzy neural network (UFN) reasoning model, and an active pulse control strategy. The UFN‐SAP controller minimizes structural cumulative responses during earthquakes by applying active pulse control forces determined via the UFN model based on the clusters, classified through the UNC model, with their corresponding control forces. Herein, we assume that the effect of the pulses on structure is delayed until just before the next sampling time so that the control force can be calculated in time, and applied. The UFN‐SAP controller also averts the difficulty of obtaining system parameters for a real structure for the algorithm to allow active structural control. Illustrative examples reveal significant reductions in cumulative structural responses, proving the feasibility of applying the adaptive unsupervised neural network with the fuzzy classification approach to control civil engineering structures under dynamic loading. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
Due to their intrinsically nonlinear characteristics, development of control strategies that are implementable and can fully utilize the capabilities of semiactive control devices is an important and challenging task. In this study, two control strategies are proposed for protecting buildings against dynamic hazards, such as severe earthquakes and strong winds, using one of the most promising semiactive control devices, the magnetorheological (MR) damper. The first control strategy is implemented by introducing an inverse neural network (NN) model of the MR damper. These NN models provide direct estimation of the voltage that is required to produce a target control force calculated from some optimal control algorithms. The major objective of this research is to provide an effective means for implementation of the MR damper with existing control algorithms. The second control strategy involves the design of a fuzzy controller and an adaptation law. The control objective is to minimize the difference between some desirable responses and the response of the combined system by adaptively adjusting the MR damper. The use of the adaptation law eliminates the need to acquire characteristics of the combined system in advance. Because the control strategy based on the combination of the fuzzy controller and the adaptation law doesn’t require a prior knowledge of the combined building-damper system, this approach provides a robust control strategy that can be used to protect nonlinear or uncertain structures subjected to random loads. Supported by: Hong Kong Research Grant Council Competitive Earmarked Research Grant HKUST 6218 / 99E and by the National Science Foundation under grant CMS 99-00234.  相似文献   

18.
A fuzzy‐logic control algorithm, based on the fuzzification of the MR damper characteristics, is presented for the semiactive control of building frames under seismic excitation. The MR damper characteristics are represented by force–velocity and force–displacement curves obtained from the sinusoidal actuation test. The method does not require any analytical model of MR damper characteristics, such as the Bouc‐Wen model, to be incorporated into the control algorithm. The control algorithm has a feedback structure and is implemented by using the fuzzy‐logic and Simulink toolboxes of MATLAB. The performance of the algorithm is studied by using it to control the responses of two example buildings taken from the literature—a three‐storey building frame, in which controlled responses are obtained by clipped‐optimal control and a ten‐storey building frame. The results indicate that the proposed scheme provides nearly the same percentage reduction of responses as that obtained by the clipped‐optimal control with much less control force and much less command voltage. Position of the damper is found to significantly affect the controlled responses of the structure. It is observed that any increase in the damper capacity beyond a saturation level does not improve the performance of the controller. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
本文针对高层建筑风振控制问题,应用基于遗传算法优化模糊规则库的模糊控制方法,通过MR阻尼器实现减小高层建筑风振反应. 采用双输入、单输出的模糊控制策略, 即以风荷载和其变化率为输入量, 以MR阻尼器所提供的控制力为输出量.利用基于遗传算法的优化的模糊规则库,根据作用模糊子集的推理方法进行模糊推理运算, 并采用常用的重心法进行解模糊处理.以某12层框架结构为例, 进行数值模拟分析,并与优化前的模糊控制策略和LQR最优控制策略进行比较.数值分析结果表明,利用遗传算法使优化模糊规则库得以优化,改善了模糊控制的效果,有效地减小了结构的风振反应.  相似文献   

20.
将TS模糊控制模型用于结构振动控制中,提出了一种新型的模糊控制器。利用传统LQR控制算法确定TS模糊控制器的参数,提出一种新的形成模糊控制规则的方法,克服了TS模糊控制器参数较多,规则难以确定的缺点;并结合一座三层钢框架模型,进行仿真分析,验证了提出的方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号