共查询到12条相似文献,搜索用时 0 毫秒
1.
Structural identification of Egnatia Odos bridges based on ambient and earthquake induced vibrations
Evaggelos Ntotsios Christos Karakostas Vasilios Lekidis Panagiotis Panetsos Ioannis Nikolaou Costas Papadimitriou Thomas Salonikos 《Bulletin of Earthquake Engineering》2009,7(2):485-501
The dynamic characteristics of two representative R/C bridges on Egnatia Odos motorway in Greece are estimated based on low
amplitude ambient and earthquake-induced vibrations. The present work outlines the instrumentation details, algorithms for
computing modal characteristics (modal frequencies, damping ratios and modeshapes), modal-based finite element model (FEM)
updating methods for estimating structural parameters, and numerical results for the modal and structural dynamic characteristics
of the two bridges based on ambient and earthquake induced vibrations. Transverse, bending and longitudinal modes are reliably
identified and stiffness-related properties of the piers, deck and elastomeric bearings of the FEMs of the two bridges are
estimated. Results provide qualitative and quantitative information on the dynamic behavior of the bridge systems and their
components under low-amplitude vibrations. Modeling assumptions are discussed based on the differences in the characteristics
identified from ambient and earthquake vibration measurements. The sources of the differences observed between the identified
modal and structural characteristics of the bridges and those predicted by FEMs used for design are investigated and properly
justified. 相似文献
2.
Ambient vibration tests of a seven-story reinforced concrete building in Van Nuys, California, damaged by the 1994 Northridge earthquake 总被引:3,自引:0,他引:3
S. S. Ivanovi M. D. Trifunac E. I. Novikova A. A. Gladkov M. I. Todorovska 《Soil Dynamics and Earthquake Engineering》2000,19(6):974
Results of two detailed ambient vibration surveys of a 7-story reinforced concrete building in Van Nuys, California, are presented. Both surveys were conducted after the building was severely damaged by the 17 January 1994, Northridge earthquake (ML=5.3, epicenter 1.5 km west from the building site) and its early aftershocks. The first survey was conducted on 4 and 5 February 1994, and the second one on 19 and 20 April 1994, about one month after the 20 March aftershock (ML=5.3, epicenter 1.2 km north–west from the building site). The apparent frequencies and two- and three-dimensional mode shapes for longitudinal, transverse and vertical vibrations were calculated. The attempts to detect the highly localized damage by simple spectral analyses of the ambient noise data were not successful. It is suggested that very high spatial resolution of recording points is required to identify localized column and beam damage, due to the complex building behavior, with many interacting structural components. The loss of the axial capacity of the damaged columns could be seen in the vertical response of the columns, but similar moderate or weak damage typically would not be noticed in ambient vibration surveys. Previous analysis of the recorded response of this building to 12 earthquakes suggests that, during large response of the foundation and piles, the soil is pushed sideways and gaps form between the foundation and the soil. These gaps appear to be closing during “dynamic compaction” when the building site is shaken by many small aftershocks. The apparent frequencies of the soil–foundation–structure system appear to be influenced significantly by variations in the effective soil–foundation stiffness. These variations can be monitored by a sequence of specialized ambient vibration tests. 相似文献
3.
Using the concept of lumped masses and rigid floor slabs, several mathematical models were built using a popular PC‐based finite element program to model a tall building with a frame‐core wall structural system. These models were analysed to obtain the first nine mode shapes and their natural frequencies which were compared with those from field measurements, using numerical correlation indicators. The comparison shows several factors that can have a significant effect on the analysis results. Firstly, outriggers connecting the outer framed tube system to the inner core walled tube system have a significant effect on fundamental translational mode behaviour. Secondly, detailed modelling of the core considering major and minor openings as well as internal thin walls has the strongest influence on torsional behaviour, whose measurements were shown to be an important aspect of the dynamic behaviour for the structure studied. Fine tuning of an analytical model requires not just considering variation in values of structural parameters but also attention to fine detail. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
4.
Ahmet Can Altunişik Alemdar Bayraktar Barış Sevim Şevket Ateş 《Soil Dynamics and Earthquake Engineering》2011
This paper describes ambient vibration based seismic evaluation procedure of an isolated highway bridge. The procedure includes finite element modeling, ambient vibration testing, finite element model updating and time history analysis. Gülburnu Highway Bridge located on the Giresun–Espiye state highway is selected as a case study. Three dimensional finite element model of the bridge is created by SAP2000 software to determine the dynamic characteristics analytically. Since input force is not measured, Operational Modal Analysis is applied to identify dynamic characteristics. Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods are used to obtain experimental dynamic characteristics. Analytical and experimental dynamic characteristic are compared with each other and finite element model of the bridge is updated by changing of material properties to reduce the differences between the results. Analytical model of the bridge after model updating is analyzed using 1992 Erzincan earthquake record to determine the seismic behavior. EW, NS and UP components of the ground motion are applied to the bridge at the longitudinal, transverse and vertical directions, respectively. It is demonstrated that the ambient vibration measurements are enough to identify the most significant modes of highway bridges. Maximum differences between the natural frequencies are reduced averagely from 9% to 2% by model updating. It is seen from the earthquake analyses that friction pendulum isolators are very effective in reducing the displacements and internal forces. 相似文献
5.
钢结构房屋动力特性脉动法测试研究 总被引:3,自引:0,他引:3
对上海地区的10幢钢结构建筑进行脉动法测试并采集数据,得到广义钢结构房屋的动力特性。选取其中1栋典型建筑通过多次测试和数值模拟分别验证测试的稳定性和准确性。通过分析处理测试数据建立钢结构建筑一阶周期与结构层数或高度的线性关系式,并归纳总结了等效阻尼比的测试结果,为验证结构动力特性理论计算结果、钢结构建筑减震隔震设计以及鉴定、加固改造、损伤识别提供依据。 相似文献
6.
This work presents a unified procedure for determining the natural frequencies, modal damping ratios and modal shapes of a structure from its ambient vibration, free vibration and earthquake response data. To evaluate the coefficient matrices of a state‐space model, the proposed procedure applies a subspace approach cooperating with an instrumental variable concept. The dynamic characteristics of a structure are determined from the coefficient matrices. The feasibility of the procedure is demonstrated through processing an in situ ambient vibration measurement of a five‐storey steel frame, an impulse response measurement of a three‐span continuous bridge, and simulated earthquake responses of five‐storey steel frames from shaking table tests. The excellent agreement of the results obtained herein with those published previously confirms the feasibility of the present procedure. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
7.
Modified three‐dimensional seismic assessment method for buildings based on ambient vibration tests: extrapolation to higher shaking levels and measuring the dynamic amplification portion of natural torsion 下载免费PDF全文
This paper presents applications of the modified 3D‐SAM approach, a three‐dimensional seismic assessment methodology for buildings directly based on in situ experimental modal tests to calculate global seismic demands and the dynamic amplification portion of natural torsion. Considering that the building modal properties change from weak to strong motion levels, appropriate modification factors are proposed to extend the application of the method to stronger earthquakes. The proposed approach is consistent with the performance‐based seismic assessment approach, which entails the prediction of seismic displacements and drift ratios that are related to the damage condition and therefore the functionality of the building. The modified 3D‐SAM is especially practical for structures that are expected to experience slight to moderate damage levels and in particular for post‐disaster buildings that are expected to remain functional after an earthquake. In the last section of this paper, 16 low to mid‐rise irregular buildings located in Montreal, Canada, and that have been tested under ambient vibrations are analyzed with the method, and the dynamic amplification portion of natural torsion of the dataset is reported and discussed. The proposed methodology is appropriate for large‐scale assessments of existing buildings and is applicable to any seismic region of the world. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
8.
Vibration-based structural identification is an essential technique for assessing structural conditions by inferring information from the dynamic characteristics of structures. However, the robustness of such techniques in monitoring the progressive damage of real structures has been validated with only a handful of research efforts, largely due to the paucity of monitoring data recorded from damaged structures. In a recent experimental program, a mid-rise cold-formed steel building was constructed at full scale atop a large shake table and subsequently subjected to a unique multi-hazard scenario including earthquake, post-earthquake fire, and finally post-fire earthquake loading. Complementing the simulated hazard events, low-amplitude vibration tests, including ambient vibrations and white noise base excitation tests, were conducted throughout the construction and the test phases. Using the vibration data collected during the multi-hazard test program, this paper focuses on understanding the modal characteristics of the cold-formed steel building in correlation with the construction and the structural damage progressively induced by the simulated hazard events. The modal parameters of the building (i.e., natural frequencies, damping ratios, and mode shapes) are estimated using two input–output and two output-only time-domain system identification techniques. Agreement between the evolution of modal parameters and the observations of the progression of physical damage demonstrates the effectiveness of the vibration-based system identification techniques for structural condition monitoring and damage assessment. 相似文献
9.
10.
The Di Wang Tower located in Shenzhen has 79 storeys and is about 325 m high. Field measurements have been conducted to investigate the dynamic characteristics of the super‐tall building. In parallel with the field measurements, seven finite element models have been established to model the multi‐outrigger‐braced tall building and to analyse the effects of various arrangements of outrigger belts and vertical bracings on the dynamic characteristics and responses of the Di Wang Tower under the design wind load and earthquake action. The distributions of shear forces in vertical structural components along the building height are also presented and discussed. The results from detailed modelling of group shear walls with several types of finite elements are addressed and compared to investigate various modelling assumptions. Finally, the performance of the finite element models is evaluated by correlating the natural frequencies and mode shapes from the numerical analysis with the finite element models and the field measurements. The results generated from this study are expected to be of interest to professionals and researchers involved with the design of tall buildings. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
11.
本文依据实际工程的背景,通过高层建筑转换梁上的两个短肢剪力墙试件的拟静力试验,研究其破坏模式,抗震性能和计算方法。在试验研究的基础上,采用非线性有限元方法进行分析计算,为解决实际的复杂体型高层建筑抗震设计提供一些建议。 相似文献
12.
Dynamic characteristics and seismic behavior of prefabricated steel stairs in a full‐scale five‐story building shake table test program 下载免费PDF全文
Xiang Wang Rodrigo Astroza Tara C. Hutchinson Joel P. Conte José I. Restrepo 《地震工程与结构动力学》2015,44(14):2507-2527
This paper investigates the dynamic characteristics and seismic behavior of prefabricated steel stairs in a full‐scale five‐story building shake table test program. The test building was subjected to a suite of earthquake input motions and low‐amplitude white noise base excitations first, while the building was isolated at its base, and subsequently while it was fixed to the shake table platen. This paper presents the modal characteristics of the stairs identified using the data recorded from white noise base excitation tests as well as the physical and measured responses of the stairs from the earthquake tests. The observed damage to the stairs is categorized into three distinct damage states and is correlated with the interstory drift demands of the building. These shake table tests highlight the seismic vulnerability of modern designed stair systems and in particular identifies as a key research need the importance of improving the deformability of flight‐to‐building connections. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献