首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Portions of the Moon were observed by the Wisconsin Ultraviolet Photopolarimeter Experiment ( WUPPE ) on 1995 March 12, 14 and 17, and represent the first ultraviolet (UV) spectropolarimetric observations of the Moon. The polarimetric observations confirm that a change in the dominant scattering process occurs in the UV, changing from volume scattering in the near-UV to surface scattering in the far-UV. The data are investigated empirically. It is found that Umov's relationship holds when the polarization is perpendicular to the scattering plane. It is also found that the degree of polarization can be modelled by a phase-angle-dependent polarization modified by a wavelength-dependent depolarization factor. The scattering function for each observation is determined.  相似文献   

2.
We discuss the status of ultraviolet knowledge of Solar System objects. We begin with a short historical survey, followed by a review of knowledge gathered so far and of existing observational assets. The survey indicates that UV observations, along with data collected in other spectral bands, are necessary and in some cases essential to understand the nature of our neighbors in the Solar System. By extension, similar observations are needed to explore the nature of extrasolar planets, to support or reject astro-biology arguments, and to compose and test scenarios for the formation and evolution of planetary systems.We propose a set of observations, describing first the necessary instrumental capabilitites to collect these and outlining what would be the expected scientific return. We identify two immediate programmatic requirements: the establishment of a mineralogic database in the ultraviolet for the characterization of planetary, ring, satellite, and minor planet surfaces, and the development and deployment of small orbital solar radiation monitors. The first would extend the methods of characterizing surfaces of atmosphere-less bodies by adding the UV segment. The latter are needed to establish a baseline against which contemporaneous UV observations of Solar System objects must be compared.We identify two types of UV missions, one appropriate for a two-meter-class telescope using almost off-the-shelf technology that could be launched in the next few years, and another for a much larger (5–20 meter class) instrument that would provide the logical follow-up after a decade of utilizing the smaller facility.Michel Festou, our co-author and a very important contributor to this paper, passed away while this paper was being completed. We dedicate it to his memory.Deceased 11 May 2005  相似文献   

3.
Observing the properties of solar lightscattered by TNOs is (up to now) the only way to obtain information on the physical properties of their surfaces. As such observations, performed near backscattering, become available, it is important to stress the significance of the phase angle and wavelength dependences of the linear polarization of the scattered light. At small phase angles, a narrow spike in brightness and a significantly negative polarization could be typical of icy regoliths, actually expected to be formed by alteration of icy bodies surfaces. Accurate experimental simulations of icyaggregates and regoliths formation that should take place with the ICAPS facility on board the ISS are presented, with emphasis on light scattering measurements providing a link between remote observations of TNOs and physical properties of their surfaces.  相似文献   

4.
A hardware and software complex of the MANIA experiment designed to search for and study the photometric variability of astrophysical objects with a temporal resolution of 10?6 s is described. The panoramic photospectropolarimeter uses interchangeable optical units, which allow the observations to be performed in four modes—spectroscopic, spectropolarimetric, photometric, and polarimetric. A coordinate—sensitive detector equipped with a set of microchannel plates is capable of recording flux fluctuations from objects and comparison stars simultaneously in different photometric bands and in different polarization planes. The Quantochron 4–48 data acquisition facility operating on line with a computer acquires observational data with a temporal resolution of 1microsecond. The methods of analysis of panoramic data with high temporal resolution are discussed.  相似文献   

5.
Abstract— Based on reflectance spectroscopy and chemical/mineralogical remote sensing methods, it is generally assumed that asteroids are parent bodies for most meteorites reaching the Earth. However, more detailed observations indicate that differences exist in composition between asteroids and meteorites resulting in difficulties when searching for meteorite‐asteroid match. We show that among other physical parameters the magnetic susceptibility of an asteroid can be determined remotely from the magnetic induction by solar wind using an orbiting spacecraft or directly using the AC coil on the lander, or it can be measured in samples returned to the laboratory. The shape corrected value of the true magnetic susceptibility of an asteroid can be compared to those of meteorites in the existing database, allowing closer match between asteroids and meteorites. The database of physical properties contains over 700 samples and was recently enlarged with measurements of meteorites in European museums using mobile laboratory facility.  相似文献   

6.
The photometry of mutual occultations and eclipses of natural planetary satellites can be used to infer very accurate astrometric data. This can be achieved by processing the light curves of the satellites observed during international campaigns of photometric observations of these mutual events.
This work focuses on processing the complete data base of photometric observations of the mutual occultations and eclipses of the Galilean satellites made during the international campaign in 2002–2003. The final goal is to derive new accurate astrometric data.
We propose the most accurate photometric model of mutual events based on all the data available to date about the satellites, and develop the corresponding method for extracting astrometric data. This method is applied to derive astrometric data from photometric observations of mutual occultations and eclipses of the Galilean satellites.
We process the 371 light curves obtained during the international campaign of photometric observations of the Galilean satellites in 2002–2003. As compared with the theory, the rms 'O-C' residuals with respect to theory is equal to 0.055 and 0.064 arcsec in right ascension and declination, respectively, for the 274 best observations. Topocentric or heliocentric angular differences for satellite pairs are obtained for 119 time instants during the time period from 2002 October 10 to 2003 July 17.  相似文献   

7.
The estimation of the frequency, amplitude and phase of a sinusoid from observations contaminated by correlated noise is considered. It is assumed that the observations are regularly spaced, but may suffer missing values or long time stretches with no data. The typical astronomical source of such data is high-speed photoelectric photometry of pulsating stars. The study of the observational noise properties of nearly 200 real data sets is reported: noise can almost always be characterized as a random walk with superposed white noise. A scheme for obtaining weighted non-linear least-squares estimates of the parameters of interest, as well as standard errors of these estimates, is described. Simulation results are presented for both complete and incomplete data. It is shown that, in finite data sets, results are sensitive to the initial phase of the sinusoid.  相似文献   

8.
In radio astronomy, the Ultra-Long Wavelengths (ULW) regime of longer than 10 m (frequencies below 30 MHz), remains the last virtually unexplored window of the celestial electromagnetic spectrum. The strength of the science case for extending radio astronomy into the ULW window is growing. However, the opaqueness of the Earth’s ionosphere makes ULW observations by ground-based facilities practically impossible. Furthermore, the ULW spectrum is full of anthropogenic radio frequency interference (RFI). The only radical solution for both problems is in placing an ULW astronomy facility in space. We present a concept of a key element of a space-borne ULW array facility, an antenna that addresses radio astronomical specifications. A tripole–type antenna and amplifier are analysed as a solution for ULW implementation. A receiver system with a low power dissipation is discussed as well. The active antenna is optimized to operate at the noise level defined by the celestial emission in the frequency band 1 ? 30 MHz. Field experiments with a prototype tripole antenna enabled estimates of the system noise temperature. They indicated that the proposed concept meets the requirements of a space-borne ULW array facility.  相似文献   

9.
New vacuum solar telescope and observations with high resolution   总被引:1,自引:0,他引:1  
The New Vacuum Solar Telescope(NVST) is a one meter vacuum solar telescope that aims to observe fine structures on the Sun. The main goals of NVST are high resolution imaging and spectral observations, including measurements of the solar magnetic field. NVST is the primary ground-based facility used by the Chinese solar research community in this solar cycle. It is located by Fuxian Lake in southwest China, where the seeing is good enough to perform high resolution observations. We first introduce the general conditions at the Fuxian Solar Observatory and the primary science cases of NVST. Then, the basic structures of this telescope and instruments are described in detail. Finally, some typical high resolution data of the solar photosphere and chromosphere are also shown.  相似文献   

10.
Summary We present some results from a preliminary analysis of a new radial-velocity survey of 244 stars in Selected Area 57, complete for stars withV brighter than 12.0 mag. We have considered all pairs with angular separations between 2 and 600 arc sec, but find only one probable physical binary with a separation larger than 100 arc sec. These data provide a stronger constraint on the distribution of wide binaries in the Galaxy than was previously available. Our results suggest that binaries with separations larger than 0.1 pc are rare. The research reported here is based in part on observations made with the Multiple Mirror Telescope, a joint facility of the Smithsonian Institution and the University of Arizona. Presented by T. Mazeh.  相似文献   

11.
Besides new observations, mining old photographic plates and CCD image archives represents an opportunity to recover and secure newly discovered asteroids, also to improve the orbits of Near Earth Asteroids (NEAs), Potentially Hazardous Asteroids (PHAs) and Virtual Impactors (VIs). These are the main research aims of the EURONEAR network. As stated by the IAU, the vast collection of image archives stored worldwide is still insufficiently explored, and could be mined for known NEAs and other asteroids appearing occasionally in their fields. This data mining could be eased using a server to search and classify findings based on the asteroid class and the discovery date as “precoveries” or “recoveries”. We built PRECOVERY, a public facility which uses the Virtual Observatory SkyBoT webservice of IMCCE to search for all known Solar System objects in a given observation. To datamine an entire archive, PRECOVERY requires the observing log in a standard format and outputs a database listing the sorted encounters of NEAs, PHAs, numbered and un‐numbered asteroids classified as precoveries or recoveries based on the daily updated IAU MPC database. As a first application, we considered an archive including about 13 000 photographic plates exposed between 1930 and 2005 at the Astronomical Observatory in Bucharest, Romania. Firstly, we updated the database, homogenizing dates and pointings to a common format using the JD dating system and J2000 epoch. All the asteroids observed in planned mode were recovered, proving the accuracy of PRECOVERY. Despite the large field of the plates imaging mostly 2.27° × 2.27° fields, no NEA or PHA could be encountered occasionally in the archive due to the small aperture of the 0.38m refractor insufficiently to detect objects fainter than V ∼ 15. PRECOVERY can be applied to other archives, being intended as a public facility offered to the community by the EURONEAR project. This is the first of a series of papers aimed to improve orbits of PHAs and NEAs using precovered data derived from archives of images to be data mined in collaboration with students and amateurs. In the next paper we will search the CFHT Legacy Survey, while data mining of other archives is planned for the near future (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Optical observations remain the most widely used method for studying meteors, even though they are limited by daylight and weather conditions. Visual observations have been used throughout history. They lack the precision of other methods, since they rely on the judgment of observers for trajectory information. However, since no special equipment is required, visual observations are widespread, and can give valuable information on the activity profile of showers. Photographic observations are much more precise. Rotating shutters allow velocities to be determined, and networks of cameras permit the height and trajectory of a meteor to be calculated. Except for the Super-Schmidt observations at Harvard, most photographic observations record only meteors brighter than 0 magnitude. Video observations, using image intensifiers, can record much fainter meteors down to +7 magnitude. Processing is becoming very automated, so that large quantities of data can be reduced relatively easily. Most video cameras have much lower precision than photographic cameras, but new technologies are changing this. Spectral observations of meteors, using video or photographic techniques, can be used to investigate the chemistry of meteoroids, while telescopic observations allow measurements to be extended to much fainter meteors (+10 or fainter).  相似文献   

13.
New, high spectral resolution X-ray observations from astrophysical photoionised plasmas have been recorded in recent years by the Chandra and XMM-Newton orbiting telescopes. These observations provide a wealth of detailed information and have motivated new efforts at developing a detailed understanding of the atomic kinetics and radiation physics of photoionised plasmas. The Z facility at Sandia National Laboratories is a powerful source of X-rays that enables us to produce and study photoionised plasmas in the laboratory under well characterised conditions. We discuss a series of radiation-hydrodynamic simulations to help understand the X-ray environment, plasma hydrodynamics and atomic kinetics in experiments where a collapsing wire array at Z is used as an ionising source of radiation to create a photoionised plasma. The numerical simulations are used to investigate the role that the key experimental parameters have on the photoionised plasma characteristics.  相似文献   

14.
The paper deals with the automatic grid azimuth determination of an object on the earth using the electronic theodolite Kern E2 by observing the sun, a star, or a planet. The observation time and the readings of horizontal and vertical circles of the electronic theodolite enter automatically the electronic calculator Hewlett-Packard HP41CX. The calculator computes the grid azimuth of the terrestrial object and directs the observer what to do. Therefore, even a personnel without specific high education can make observations. For the solar observations it is not necessary to have an astronomical almanac, because the program computes the solar coordinates. The general input data, together with the measured ones, can be stored on a magnetic cassette and later on, if necessary, one can correct the general data and recalculate the azimuth. The method proved to be very practical in the field work.  相似文献   

15.
The COBE data on cosmic Background radiation (CBR) isotropy and spectrum are generally considered to be explicable only in the context of the Big Bang theory and to be confirmation of that theory. However, this data can also be explained by an alternative, non-Big Bang model which hypothesizes an intergalactic radio-absorbing and scattering medium. A simple, inhomogenous model of such an absorbing medium can reproduce both the isotropy and spectrum of the CBR within the limits observed by COBE, and in fact gives a better to fit to the spectrum observations than does a pure blackbody. Such a model does not contradict any other observations, such as the existence of distant radio sources.  相似文献   

16.
We present a summary of results from ten years of interplanetary scintillation (IPS) observations of stream interaction regions (SIRs) in the solar wind. Previous studies had shown that SIRs were characterized by intermediate-velocity solar wind and – in the case of compressive interactions – higher levels of scintillation. In this study we considered all cases of intermediate velocities in IPS observations from the European Incoherent SCATter (EISCAT) radar facility made at low- and mid-heliographic latitudes between 1994 and 2003. After dismissing intermediate-velocity observations which were associated with solar-wind transients (such as coronal mass ejections) we found that the remaining cases of intermediate velocities lay above coronal structures where stream interaction would be expected. An improved ballistic mapping method (compared to that used in earlier EISCAT studies of interaction regions) was used to identify the regions of raypath in IPS observations which might be expected to include interaction regions and to project these regions out to the distances of in-situ observations. The early stages of developing compression regions, consistent with their development on the leading edges of compressive stream interaction regions, were clearly detected as close to the Sun as 30 R , and further ballistic projection out to the distances of in-situ observations clearly associated these developing structures with density and velocity features characteristic of developed interaction regions in in-situ data in the cases when such data were available. The same approach was applied to study non-compressive interaction regions (shear layers) between solar-wind streams of different velocities where the stream interface lay at near-constant latitude and the results compared with those from compressive interaction regions. The results confirm that intermediate velocities seen in IPS observations above stream boundaries may arise from either detection of intermediate-velocity flow in compression regions, or from non-compressive shear layers. The variation in velocity about the mean determined from IPS measurements (representing the spread in velocity across that part of the raypath associated with the interaction region in the analysis) was comparable in compressive and non-compressive regions – a potentially interesting result which may contain important information on the geometry of developing SIRs. It is clear from these results that compressive and non-compressive interaction regions belong to the same class of stream – stream interaction, with the dominant mode determined by the latitudinal gradient of the stream interface. Finally, we discuss the results from this survey in the light of new data from the Heliospheric Imagers (HI) on the Solar TErrestrial RElations Observatory (STEREO) spacecraft and other instruments, and suggest possible directions for further work.  相似文献   

17.
A new Data Acquisition and Control System for performing continuum radio-astronomical observations with the RATAN-600 radio telescope is presented. One of the “building blocks” of the system is the Embedded Radiometric Data Acquisition System (ER-DAS) developed at the RATAN-600. It is a measurement facility meant for digitizing and reducing radiometer signals and for transmitting the result of these operations via Ethernet networks. ER-DAS system is shown to have a low self-noise level and to lack 1/f-type noise. The measurement facility is shown to operate efficiently in radio-astronomical observations. Radiometric measurements of the parameters of high-sensitivity radiometers are illustrated in the case of the measurements of radiometer gain fluctuations.  相似文献   

18.
We have used maximum entropy eclipse-mapping to recover images of the visual surface brightness distribution of the primary component of the RS CVn eclipsing binary SV Cam, using high-precision photometry data obtained during three primary eclipses with Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope ( HST ). These were augmented by contemporaneous ground-based photometry secured around the rest of the orbit. The goal of these observations was to determine the filling factor and size distribution of star-spots too small to be resolved by Doppler imaging. The information content of the final image and the fit to the data were optimized with respect to various system parameters using the χ2 landscape method, using an eclipse-mapping code that solves for large-scale spot coverage. It is only with the unprecedented photometric precision of the HST data (0.000 15 mag) that it is possible to see strong discontinuities at the four contact points in the residuals of the fit to the light curve. These features can only be removed from the residual light curve by the reduction of the photospheric temperature, to synthesize high unresolvable spot coverage, and the inclusion of a polar spot. We show that this spottedness of the stellar surface can have a significant impact on the determination of the stellar binary parameters and the fit to the light curve by reducing the secondary radius from  0.794 ± 0.009  to  0.727 ± 0.009 R  . This new technique can also be applied to other binary systems with high-precision spectrophotometric observations.  相似文献   

19.
The Earth’s atmosphere is an integral part of the detector in ground-based imaging atmospheric Cherenkov telescope (IACT) experiments and has to be taken into account in the calibration. Atmospheric and hardware-related deviations from simulated conditions can result in the mis-reconstruction of primary particle energies and therefore of source spectra. During the eight years of observations with the High Energy Stereoscopic System (H.E.S.S.) in Namibia, the overall yield in Cherenkov photons has varied strongly with time due to gradual hardware aging, together with adjustments of the hardware components, and natural, as well as anthropogenic, variations of the atmospheric transparency. Here we present robust data selection criteria that minimize these effects over the full data set of the H.E.S.S. experiment and introduce the Cherenkov transparency coefficient as a new atmospheric monitoring quantity. The influence of atmospheric transparency, as quantified by this coefficient, on energy reconstruction and spectral parameters is examined and its correlation with the aerosol optical depth (AOD) of independent MISR satellite measurements and local measurements of atmospheric clarity is investigated.  相似文献   

20.
When the observational data are not enough to compute a meaningful orbit for an asteroid/comet we can represent the data with an attributable, i.e., two angles and their time derivatives. The undetermined variables range and range rate span an admissible region of Solar System orbits, which can be sampled by a set of Virtual Asteroids (VAs) selected by means of an optimal triangulation [Milani, A., Gronchi, G.F., de' Michieli Vitturi, M., Kne?evi?, Z., 2004. Celest. Mech. Dyn. Astron. 90, 59-87]. The attributable 4 coordinates are the result of a fit and they have an uncertainty, represented by a covariance matrix. Two short arcs of observations, represented by two attributables, can be linked by considering for each VA (in the admissible region of the first arc) the covariance matrix for the prediction at the time of the second arc, and by comparing it with the attributable of the second arc with its own covariance. By defining an identification penalty we can select the VAs allowing to fit together both arcs and compute a preliminary orbit. Two attributables may not be enough to compute an orbit with convergent differential corrections. Thus the preliminary orbit is used in a constrained differential correction, providing solutions along the Line Of Variation which can be used as second generation VAs to further predict the observations at the time of a third arc. In general the identification with a third arc will ensure a well determined orbit, to which additional sets of observations can be attributed. To test these algorithms we use a large scale simulation and measure the completeness, the reliability and the efficiency of the overall procedure to build up orbits by accumulating identifications. Under the conditions expected for the next generation asteroid surveys, the methods developed in this and in the preceding papers are efficient enough to be used as primary identification methods, with very good results. One important property is that the completeness in finding the possible identifications is as good for comparatively rare orbits, such as the ones of Near-Earth Objects, as for main belt orbits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号