首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have conducted body waveform modeling studies of 13 historic earthquakes to provide a better understanding of the long-term spatial and temporal pattern of seismicity and deformation within a region extending from Barbuda, Lesser Antilles, to Cumana, Venezuela. Our results suggest that shallow earthquakes (<50 km deep) along the South American-Caribbean plate margin reflect right-lateral and extensional deformation. Intermediate depth events (100 km) show left-lateral strike-slip motion beneath the Paria peninsula of Venezuela. In the Lesser Antilles the 1960 Barbuda and 1946 Martinique earthquakes appear to be interplate thrust events, however the greatest moment release in the region has occurred at intermediate depths as a mixture of normal and strike-slip faulting, generally along trends oblique to the arc. The deformation rate estimated from the seismic moment release between 1926 and 1960 is only 1 to 10% of the estimated plate convergence rate for the region.  相似文献   

2.
Interplate coupling plays an important role in the seismogenesis of great interplate earthquakes at subduction zones. The spatial and temporal variations of such coupling control the patterns of subduction zone seismicity. We calculate stresses in the outer rise based on a model of oceanic plate bending and coupling at the interplate contact, to quantitatively estimate the degree of interplate coupling for the Tonga, New Hebrides, Kurile, Kamchatka, and Marianas subduction zones. Depths and focal mechanisms of outer rise earthquakes are used to constrain the stress models. We perform waveform modeling of body waves from the GDSN network to obtain reliable focal depth estimates for 24 outer rise earthquakes. A propagator matrix technique is used to calculate outer rise stresses in a bending 2-D elastic plate floating on a weak mantle. The modeling of normal and tangential loads simulates the total vertical and shear forces acting on the subducting plate. We estimate the interplate coupling by searching for an optimal tangential load at the plate interface that causes the corresponding stress regime within the plate to best fit the earthquake mechanisms in depth and location.We find the estimated mean tangential load over 125–200 km width ranging between 166 and 671 bars for Tonga, the New Hebrides, the Kuriles, and Kamchatka. This magnitude of the coupling stress is generally compatible with the predicted shear stress at the plate contact from thermal-mechanical plate models byMolnar andEngland (1990), andVan den Buekel andWortel (1988). The estimated tectonic coupling,F tc , is on the order of 1012–1013 N/m for all the subduction zones.F tc for Tonga and New Hebrides is about twice as high as in the Kurile and Kamchatka arcs. The corresponding earthquake coupling forceF ec appears to be 1–10% of the tectonic coupling from our estimates. There seems to be no definitive correlation of the degree of seismic coupling with the estimated tectonic coupling. We find that outer rise earthquakes in the Marianas can be modeled using zero tangential load.  相似文献   

3.
A Newtonian fluid model is proposed to describe the oblique subduction of a planar 2-D slab. The slab is assumed to subduct in response to the ridge push force exerted along the trench, the slab pull force at the downdip of the slab, the gravitational body force within the slab, and the frictional resistance force at the upper surface of the slab. Because the slab motion along strike is being resisted by the frictional resistance at the interplate coupling area while the slab motion along the trench normal is being maintained by the gravitational pulling, the slab turns gradually toward the trench normal direction as it subducts. This model offers an alternative explanation for earthquake slip partitioning, the observation that the earthquake slip vectors deflect away from the relative plate motion direction toward the trench normal direction along most of the oblique subduction zones worldwide. Numerical models suggest that slip partitioning caused by slab deformation could be as much as 30% at 100 km downdip of the slab. The slab viscosity, the plate coupling width, the interplate resistance coefficient, the slab pull force, and the gravitational body force are all important in determining the geometry of the slab subduction.  相似文献   

4.
The western Hellenic arc has been commonly considered as a largely aseismic subduction zone, from the comparison of a small rate of shortening derived from the seismic moment release, with a large rate of convergence inferred from geology. Complete seismic coupling would instead be expected from models that consider a control by plate tectonic forces, because of the trenchward velocity of the Hellenic–Aegean upper plate now confirmed with GPS measurements. In the region of the Ionian Islands, a subduction interplate boundary has been recently imaged and its seismogenic downdip width suggested to be moderate, from reflection seismic profiling and local earthquake tomography. In the appropriate model for such an earthquake source region, which considers a single interplate fault and takes into account these features, the moderate seismic moment release is found consistent with complete seismic coupling of this subduction. The shallow downdip limit of the seismogenic zone can be interpreted as due to the interplate boundary being overlain there by the ductile deeper crust of the orogenically thickened Hellenides.  相似文献   

5.
—We propose a new model to physically explain the seismic quiescence precursory to a large interplate earthquake. A numerical simulation is performed to quantitatively examine possible stress changes prior to a great interplate earthquake in a subduction zone. In the present study, the frictional force following a laboratory-derived friction law, in which the friction coefficient is dependent on slip rate and slip history, is assumed to act on a dip-slip fault plane of infinite width in a uniform elastic half-space. The values of friction parameters are determined so that the result of numerical simulation may explain some properties of great interplate earthquakes in subduction zones, such as the recurrence interval and the seismic coupling coefficient. The result of simulation reveals that significant quasi-stable sliding occurs prior to a great earthquake and, accordingly, stresses are changed on and around the plate boundary. In a relatively wide area of the overriding continental plate, the compres sional horizontal-stress perpendicular to the trench axis is decreased for a few years before the occurrence of a great earthquake. This decrease in regional compressional stress may account for the appearance of seismic quiescence prior to a great interplate earthquake.  相似文献   

6.
This brief article presents a quantitative analysis of the ability of eight published empirical ground-motion prediction equations (GMPEs) for subduction earthquakes (interface and intraslab) to estimate observed earthquake ground motions on the islands of the Lesser Antilles (specifically Guadeloupe, Martinique, Trinidad, and Dominica). In total, over 300 records from 22 earthquakes from various seismic networks are used within the analysis. It is found that most of the GMPEs tested perform poorly, which is mainly due to a larger variability in the observed ground motions than predicted by the GMPEs, although two recent GMPEs derived using Japanese strong-motion data provide reasonably good predictions. Analyzing separately the interface and intraslab events does not significant modify the results. Therefore, it is concluded that seismic hazard assessments for this region should use a variety of GMPEs in order to capture this large epistemic uncertainty in earthquake ground-motion prediction for the Lesser Antilles.  相似文献   

7.
The spatio-temporal variation of seismicity in the southern Peru and northern Chile seismic gaps is analyzed with teleseismic data (m b 5.5) between 1965 and 1991, to investigate whether these gaps present the precursory combination of compressional outer-rise and tensional downdip events observed in other subduction zones. In the outer-rise and the inner-trench (0 to 100 km distance from the trench) region, lower magnitude (5.0m b <5.5) events were also studied. The results obtained show that the gaps in southern Peru and northern Chile do not present compressional outer-rise events. However, both gaps show a continuous, tensional downdip seismicity. For both regions, the change from compressional to tensional regime along the slab occurs at a distance of about 160 km from the trench, apparently associated with the coupled-uncoupled transition of the interplate contact zone. In southern Peru, an increase of compressional seismicity near the interplate zone and of tensional events (5.0m b 6.3) in the outer-rise and inner-trench regions is observed between 1987 and 1991. A similar distribution of seismicity in the outer-rise and inner-trench regions is observed with earthquakes (m b <5.5). In northern Chile there is a relative absence of compressional activity (m b 5.5) near the interplate contact since the sequence of December 21, 1967. After that, only a cluster of low-magnitude compressional events has been located in the area 50 to 100 km from the trench. The compressional activity occurring near the interplate zone in both seismic gaps represents that a seismic preslip is occurring in and near the plate contact. Therefore, if this seismic preslip is associated with the maturity of the gap, the fact that it is larger in southern Peru than in northern Chile may reflect that the former gap is more mature than the latter. However, the more intense downdip tensional activity and the absence of compressional seismicity near the contact zone observed in northern Chile, may also be interpreted as evidence that northern Chile is seismically more mature than southern Peru. Therefore, the observed differences in the distribution of stresses and seismicity analyzed under simple models of stress accumulation and transfer in coupled subduction zones are not sufficient to assess the degree of maturity of a seismic gap.  相似文献   

8.
To evaluate the tectonic significance of the October 20, 1986 Kermadec earthquake (M w =7.7), we performed a comprehensive analysis of source parameters using surface waves, body waves, and relocated aftershocks. Amplitude and phase spectra from up to 93 Rayleigh waves were inverted for centroid time, depth, and moment tensor in a two-step algorithm. In some of the inversions, the time function was parameterized to include information from the body-wave time function. The resulting source parameters were stable with respect to variations in the velocity and attenuation models assumed, the parameterization of the time function, and the set of Rayleigh waves included. The surface wave focal mechanism derived (=275°, =61°, =156°) is an oblique-compressional mechanism that is not easy to interpret in terms of subduction tectonics. A seismic moment of 4.5×1020 N-m, a centroid depth of 45±5 km, and a centroid time of 13±3 s were obtained. Directivity was not resolvable from the surface waves. The short source duration is in significant contrast to many large earthquakes.We performed a simultaneous inversion ofP andSH body waves for focal mechanism and time function. The focal mechanism agreed roughly with the surface wave mechanism. Multiple focal mechanisms remain a possibility, but could not be resolved. The body waves indicate a short duration of slip (15 to 20 s), with secondary moment release 60s later. Seismically radiated energy was computed from the body-wave source spectrum. The stress drop computed from the seismic energy is about 30 bars. Sixty aftershocks that occurred within three months of the mainshock were relocated using the method of Joint Hypocentral Determination (JHD). Most of the aftershocks have underthrusting focal mechanisms and appear to represent triggered slip on the main thrust interface. The depth, relatively high stress drop, short duration of slip, and paucity of true aftershocks are consistent with intraplate faulting within the downgoing plate. Although it is not clear on which nodal plane slip occurred, several factors favor the roughly E-W trending plane. The event occurred near a major segmentation in the downgoing plate at depth, near a bend in the trench, and near a right-lateral offset of the volcanic are by 80 km along an E-W direction. Also, all events in the region from 1977 to 1991 with CMT focal mechanisms similar to that of the Mainshock occurred near the mainshock epicenter, rather than forming an elongate zone parallel to the trench as did the aftershock activity. We interpret this event as part of the process of segmentation or tearing of the subducting slab. This segmentation appears to be related to the subduction of the Louisville Ridge, which may act as an obstacle to subduction through its buoyancy.  相似文献   

9.
—The plate boundary along the north-central Caribbean margin is geologically complex. Our understanding of this complexity is hampered by the fact that plate motions are relatively slow (1 to 2 cm/yr), so that recent seismicity often does not provide a complete picture of tectonic deformation. Studies of the faulting processes of instrumentally recorded earthquakes occurring prior to 1962 thus provide important information regarding the nature and rate of seismic deformation within the region, and are essential for a comprehensive assessment of seismic hazard. We have conducted body waveform modeling studies of eight earthquakes which occurred along the north-central Caribbean plate margin, extending from southeastern Cuba to the Swan Island fracture zone (75 to 83°W). None of these earthquakes has been previously studied and several occurred in regions where no recent (post-1962) seismicity has been recorded. The plate margin in the western portion of our study area is characterized by a transform fault-spreading center system. In the central and eastern portions of our study area the plate margin is a complex, diffuse region of deformation that couples transform motion in the Cayman trough to subduction along the Lesser Antilles arc. Our results show that the western portion of the study area has only experienced large strike-slip earthquakes. Off southeastern Cuba two earthquakes appear to have occurred on high angle, northward dipping, reverse faults with south to southeastward directed slip vectors. An earthquake in northern Jamaica in 1957 shows pure strike-slip faulting, most likely along an east-west trending fault. Finally, an unusual sequence of events located in the Pedro Bank region ~70 km southwest of Jamaica has a mainshock with a reverse-oblique mechanism, suggesting continuity of the plate interface stress field well south of the northern Caribbean margin.  相似文献   

10.
—A tectonic state of a locked subduction is considered to be a possible source of a future interplate earthquake. Discriminating an actually locked state to verify its extent is therefore essential in constructing an accurate prospect against the forthcoming earthquake. Micorearthquake seismicity is an effective tool for such an analysis because it is considered to be a faithful indicator of the stress state, and is expected to exhibit a characteristic pattern in the area where the locked state in the subduction appears with a certain stress concentration. Focusing on the microearthquake seismicity around the Tokai district in central Japan, where a large interplate earthquake is feared to occur, we tried to identify such an area of locked subduction on the Philippine Sea plate, possibly related to the future earthquake. We investigated the microearthquake seismicity from various perspectives. First, the hypocenter distribution was analyzed to identify the extent of the locked area. The characteristic profile of the distribution was presumed to represent a stress concentrated area induced from the mechanical contact between both plates. The second approach is to interpret stress patterns reflected in focal mechanisms. The locked state was recognized and verified by a comparison of the P-axis distribution pattern with that expected from a model imaging a partially locked subduction. The third approach is to monitor the temporal change of the seismic wave spectrum. Analyzing predominant frequencies of P and S waves and monitoring their changes for a period of 10 years, we found a trend of gradual increase common to both waves. This means an increase of stress drop in microfracturings, and in its turn implies accumulation of stress around the focus area. The rate of the stress change converted from the frequency change was compared with the result derived from a numerical simulation. The simulation, performed on the basis of a constitutive friction law for a stick sliding on the plate interface, computed a changing rate of the maximum shear stress around the locked zone and showed its spatial variation along the subduction axis. Thus the simulated result indicated a certain compatibility with the observed one. Although ambiguities and uncertainties still exist in the study, all the results derived here seem to indicate an identical conclusion that the plate subduction is actually locked in this region at present.  相似文献   

11.
--A 2-D finite-element-method (FEM) numerical experiment of earthquake cycles at a subduction zone is performed to investigate the effect of viscoelasticity of the earth on great interplate earthquake fault slip. We construct a 2-D viscoelastic FEM model of northeast Japan, which consists of an elastic upper crust and a viscoelastic mantle wedge under gravitation overlying the subducting elastic Pacific plate. Instead of the dislocation model prescribing an amount of slip on a plate interface, we define an earthquake cycle, in which the plate interface down to a depth is locked during an interseismic period and unlocked during coseismic and postseismic periods by changing the friction on the boundary with the master-slave method. This earthquake cycle with steady plate subduction is periodically repeated to calculate the resultant earthquake fault slip.¶As simulated in a previous study (Wang, 1995), the amount of fault slip at the first earthquake cycle is smaller than the total relative plate motion. This small amount of fault slip in the viscoelastic medium was considered to be one factor explaining the small seismic coupling observed at several subduction zones. Our simulation, however, shows that the fault slip grows with an increasing number of repeated earthquake cycles and reaches an amount comparable to the total relative plate motion after more than ten earthquake cycles. This new finding indicates that the viscoelasticity of the earth is not the main factor in explaining the observed small seismic coupling. In comparison with a simple one-degree-of-freedom experiment, we demonstrate that the increase of the fault slip occurs in the transient state from the relaxed initial state to the stressed equilibrium state due to the intermittent plate loading in a viscoelastic medium.  相似文献   

12.
While most aspects of subduction have been extensively studied, the process of subduction initiation lacks an observational foundation. The Macquarie Ridge complex (MRC) forms the Pacific-Australia plate boundary between New Zealand to the north and the Pacific-Australia-Antarctica triple junction to the south. The MRC consists of alternating troughs and rises and is characterized by a transitional tectonic environment in which subduction initiation presently occurs. There is a high seismicity level with 15 large earthquakes (M>7) in this century. Our seismological investigation is centered on the largest event since 1943: the 25 MAY 1981 earthquake. Love, Rayleigh, andP waves are inverted to find: a faulting geometry of right-lateral strike-slip along the local trend of the Macquarie Ridge (N30°E); a seismic moment of 5×1027 dyn cm (M w=7.7) a double event rupture process with a fault length of less than 100km to the southwest of the epicenter and a fault depth of less than 20km. Three smaller thrust earthquakes occurred previous to the 1981 event along the 1981 rupture zone; their shallow-dipping thrust planes are virtually adjacent to the 1981 vertical fault plane. Oblique convergence in this region is thus accommodated by a dual rupture mode of several small thrust events and a large strike-slip event. Our study of other large MRC earthquakes, plus those of other investigators, produces focal mechanisms for 15 earthquakes distributed along the entire MRC; thrust and right-lateral strike-slip events are scattered throughout the MRC. Thus, all of the MRC is characterized by oblique convergence and the dual rupture mode. The true best-fit rotation pole for the Pacific-Australia motion is close to the Minster & Jordan RM2 pole for the Pacific-India motion. Southward migration of the rotation pole has caused the recent transition to oblique convergence in the northern MRC. We propose a subduction initiation process that is akin to crack propagation; the 1981 earthquake rupture area is identified as the crack-tip region that separates a disconnected mosaic of small thrust faults to the south from a horizontally continuous thrust interface to the north along the Puysegur trench. A different mechanism of subduction initiation occurs in the southernmost Hjort trench region at the triple junction. newly created oceanic lithosphere has been subducted just to the north of the triple junction. The entire MRC is a soft plate boundary that must accommodate the plate motion mismatch between two major spreading centers (Antarctica-Australia and Pacific-Antarctica). The persistence of spreading motion at the two major spreading centers and the consequent evolution of the three-plate system cause the present-day oblique convergence and subduction initiation in the Macquarie Ridge complex.  相似文献   

13.
Earthquake source parameters, seismological, geological, geophysical, geodetic, and macroseismic data are reported for the source zone of the Tohoku earthquake (M = 9) that occurred on March 11, 2011 near the eastern coast of Honshu Island. The seismotectonic position of the seismic source situated in the western Pacific active margin, distribution of epicenters and hypocenters of the main shock, foreshocks and aftershocks, features of the focal mechanism solutions, and directions of the horizontal and vertical offsets of the Island surface were studied to focus attention on the nature of deformation in the Honshu Region. The obtained data make it possible to establish intraplate and interplate components in the complex source of the earthquake. Relationships between seismic and geodetic manifestations were investigated. The Tohoku earthquake was suggested to be a great lithospheric structure.  相似文献   

14.
— I studied crustal deformation in the Kanto district, central Japan, based on continuous GPS data. Horizontal as well as vertical displacement rate demonstrate significant interaction between the landward Kanto block and the Philippine Sea plate. Although the subduction effect of the Pacific plate is not apparent, it is reasonable to consider the entire Kanto district is displaced westward due to the interaction with the Pacific plate. The GPS velocity data were inverted to estimate the slip deficit distribution on the Sagami Trough subduction zone. The result delineates a strongly coupled region on the plate interface, part of which corresponds to the 1923 Kanto earthquake. The strongly coupled region is located shallower than 20 km. In addition, the plate interaction is laterally heterogeneous even in the same depth range, implying thermal structure is not the only factor controlling interplate coupling. The GPS data also detected a silent earthquake event on the interface of the Philippine Sea slab east of the Boso Peninsula in the middle of May, 1996. The silent rupture propagated over a 50 km * 50 km wide area during about a week. The maximum slip was approximately 50 mm and the released seismic moment was 4.7*1018Nm (M w 6.4). There was a small seismicity triggered by this silent event. The silent slip was located in the peripheral of the strongly coupled area, suggesting that frictional properties and/or stress conditions are inhomogeneous on the plate boundary interface.  相似文献   

15.
The Cocos plate subducts beneath North America at the Mexico trench. The northernmost segment of this trench, between the Orozco and Rivera fracture zones, has ruptured in a sequence of five large earthquakes from 1973 to 1985; the Jan. 30, 1973 Colima event (M s 7.5) at the northern end of the segment near Rivera fracture zone; the Mar. 14, 1979 Petatlan event (M s 7.6) at the southern end of the segment on the Orozco fracture zone; the Oct. 25, 1981 Playa Azul event (M s 7.3) in the middle of the Michoacan gap; the Sept. 19, 1985 Michoacan mainshock (M s 8.1); and the Sept. 21, 1985 Michoacan aftershock (M s 7.6) that reruptured part of the Petatlan zone. Body wave inversion for the rupture process of these earthquakes finds the best: earthquake depth; focal mechanism; overall source time function; and seismic moment, for each earthquake. In addition, we have determined spatial concentrations of seismic moment release for the Colima earthquake, and the Michoacan mainshock and aftershock. These spatial concentrations of slip are interpreted as asperities; and the resultant asperity distribution for Mexico is compared to other subduction zones. The body wave inversion technique also determines theMoment Tensor Rate Functions; but there is no evidence for statistically significant changes in the moment tensor during rupture for any of the five earthquakes. An appendix describes theMoment Tensor Rate Functions methodology in detail.The systematic bias between global and regional determinations of epicentral locations in Mexico must be resolved to enable plotting of asperities with aftershocks and geographic features. We have spatially shifted all of our results to regional determinations of epicenters. The best point source depths for the five earthquakes are all above 30 km, consistent with the idea that the down-dip edge of the seismogenic plate interface in Mexico is shallow compared to other subduction zones. Consideration of uncertainties in the focal mechanisms allows us to state that all five earthquakes occurred on fault planes with the same strike (N65°W to N70°W) and dip (15±3°), except for the smaller Playa Azul event at the down-dip edge which has a steeper dip angle of 20 to 25°. However, the Petatlan earthquake does prefer a fault plane that is rotated to a more east-west orientation—one explanation may be that this earthquake is located near the crest of the subducting Orozco fracture zone. The slip vectors of all five earthquakes are similar and generally consistent with the NUVEL-predicted Cocos-North America convergence direction of N33°E for this segment. The most important deviation is the more northerly slip direction for the Petatlan earthquake. Also, the slip vectors from the Harvard CMT solutions for large and small events in this segment prefer an overall convergence direction of about N20°E to N25°E.All five earthquakes share a common feature in the rupture process: each earthquake has a small initial precursory arrival followed by a large pulse of moment release with a distinct onset. The delay time varies from 4 s for the Playa Azul event to 8 s for the Colima event. While there is some evidence of spatial concentration of moment release for each event, our overall asperity distribution for the northern Mexico segment consists of one clear asperity, in the epicentral region of the 1973 Colima earthquake, and then a scattering of diffuse and overlapping regions of high moment release for the remainder of the segment. This character is directly displayed in the overlapping of rupture zones between the 1979 Petatlan event and the 1985 Michoacan aftershock. This character of the asperity distribution is in contrast to the widely spaced distinct asperities in the northern Japan-Kuriles Islands subduction zone, but is somewhat similar to the asperity distributions found in the central Peru and Santa Cruz Islands subduction zones. Subduction of the Orozco fracture zone may strongly affect the seismogenic character as the overlapping rupture zones are located on the crest of the subducted fracture zone. There is also a distinct change in the physiography of the upper plate that coincides with the subducting fracture zone, and the Guerrero seismic gap to the south of the Petatlan earthquake is in the wake of the Orozco fracture zone. At the northern end, the Rivera fracture zone in the subducting plate and the Colima graben in the upper plate coincide with the northernmost extent of the Colima rupture zone.  相似文献   

16.
Sources of Tsunami and Tsunamigenic Earthquakes in Subduction Zones   总被引:1,自引:0,他引:1  
—We classified tsunamigenic earthquakes in subduction zones into three types earth quakes at the plate interface (typical interplate events), earthquakes at the outer rise, within the subducting slab or overlying crust (intraplate events), and "tsunami earthquakes" that generate considerably larger tsunamis than expected from seismic waves. The depth range of a typical interplate earthquake source is 10–40km, controlled by temperature and other geological parameters. The slip distribution varies both with depth and along-strike. Recent examples show very different temporal change of slip distribution in the Aleutians and the Japan trench. The tsunamigenic coseismic slip of the 1957 Aleutian earthquake was concentrated on an asperity located in the western half of an aftershock zone 1200km long. This asperity ruptured again in the 1986 Andreanof Islands and 1996 Delarof Islands earthquakes. By contrast, the source of the 1994 Sanriku-oki earthquake corresponds to the low slip region of the previous interplate event, the 1968 Tokachi-oki earthquake. Tsunamis from intraplate earthquakes within the subducting slab can be at least as large as those from interplate earthquakes; tsunami hazard assessments must include such events. Similarity in macroseismic data from two southern Kuril earthquakes illustrates difficulty in distinguishing interplate and slab events on the basis of historical data such as felt reports and tsunami heights. Most moment release of tsunami earthquakes occurs in a narrow region near the trench, and the concentrated slip is responsible for the large tsunami. Numerical modeling of the 1996 Peru earthquake confirms this model, which has been proposed for other tsunami earthquakes, including 1896 Sanriku, 1946 Aleutian and 1992 Nicaragua.  相似文献   

17.
—In order to study both the interplate seismic loading cycle and the distribution of intraplate deformation of the Andes, a 215 site GPS network covering Chile and the western part of Argentina was selected, monumented and observed in 1993 and 1994. A dense part of the network in northern Chile and northwest Argentina, comprising some 70 sites, was re-observed after two years in October/November, 1995. The M w = 8.0 Antofagasta (North Chile) earthquake of 30th July, 1995 took place between the two observations. The city of Antofagasta shifted 80 cm westwards by this event and the displacement still reached 10 cm at locations 300 km from the trench. Three different deformation processes have been considered for modeling the measured displacements (1) interseismic accumulation of elastic strain due to subduction coupling, (2) coseismic strain release during the Antofagasta earthquake and (3) crustal shortening in the Sub-Andes.¶Eastward displacement of the sites to the north and to the south of the area affected by the earthquake is due to the interseismic accumulation of elastic deformation. Assuming a uniform slip model of interseismic coupling, the observed displacements at the coast require a fully locked subduction interface and a depth of seismic coupling of 50 km. The geodetically derived fault plane parameters of the Antofagasta earthquake are consistent with results derived from wave-form modeling of seismolog ical data. The coseismic slip predicted by the variable slip model reaches values of 3.2 m in the dip-slip and 1.4 m in the strike-slip directions. The derived rake is 66°. Our geodetic results suggest that the oblique Nazca–South American plate convergence is accommodated by oblique earthquake slip with no slip partitioning. The observed displacements in the back-arc indicate a present-day crustal shortening rate of 3–4 mm/year which is significantly slower than the average of 10 mm/year experienced during the evolution of the Andean plateau.  相似文献   

18.
The Timiskaming earthquake, which occurred near the Quebec-Ontario border at the northwest end of the Western Quebec seismic zone in 1935, is one of the five largest instrumentally recorded southeastern Canadian earthquakes. Previous studies of this earthquake concentrated on modeling teismograms recorded at regional distances, a better constrained focal mechanism is obtained. The waveforms indicate thrust faulting on a moderately dipping northwest striking plane at a depth of 10 km. TheM w of 6.1 determined in this study is in good agreement with previous magnitude estimates (m b 6.1,M s 6.0, andm bLg 6.2–6.3). The focal mechanism is similar to those of many recent small to moderate earthquakes in the region, and the inferred (from theP axis) acting stress of northeast compression is consistent with the overall eastern North American stress field. The Lake Timiskaming Rift Valley in which the earthquake occurred, comprises several northwest striking faults consistent with the strike of the 1935 event. Thus, the 1935 earthquake appears to be a result of faulting on the reactivated Timiskaming graben.  相似文献   

19.
This short communication presents the assessment of seismic inelastic and elastic displacement demands computed from earthquake ground motions (EQGMs) recorded in Mexico City during the intermediate‐depth intraslab Puebla‐Morelos earthquake on 19 September 2017 (Mw = 7.1). Evaluation is conducted by means of peak elastic and inelastic displacement demand spectra, inelastic displacement ratio, CR, spectra, and generalized interstory drift spectra computed for selected recording stations located in different soil sites of Mexico City, including those located in areas of reported collapsed buildings. Results of this study confirm previous observations made from interplate (subduction) EQGMs that peak inelastic displacement demands are greater than corresponding elastic counterparts for short‐to‐medium period structures, while the opposite is true for medium‐to‐long period structures. Possible basin site effects were identified from generalized interstory drift spectra. It is also shown that an equation introduced in the literature to obtain estimates of CR developed from interplate EQGMs provides also a good estimate for mean CR computed from the intermediate‐depth intraslab EQGMs.  相似文献   

20.
We construct a viscoelastic FEM model with 3-D configuration of the subducting Philippine Sea plate in Southwest Japan to simulate recent 300-year kinematic earthquake cycles along the Nankai-Suruga-Sagami trough, based on the kinematic earthquake cycle model. This 300-year simulation contains a series of three great interplate earthquakes. The inclusion of viscoelasticity produces characteristic velocity field during earthquake cycles regardless of the assumed constant plate coupling throughout the interseismic period. Just after the occurrence of interplate earthquakes, the viscoelastic relaxation creates the seaward motion in the inland region. In the middle period, the seaward motion gradually decreases, and the resultant velocity field is similar to the elastic one. Later, just before the next interplate earthquake, displacements due to the interplate coupling in the viscoelastic material are distributed more broadly in the forearc region than in the purely elastic one, since the viscoelastic relaxation due to the previous earthquake mostly disappears. The effects of such interplate earthquake cycles on five major inland faults in southwest Japan, where large intraplate earthquakes occurred during this period, are quantitatively evaluated using the Coulomb failure function (CFF). The calculated change in CFF successfully predicts the occurrence of the 1995 Kobe earthquake (M~7). The occurrence of other inland earthquakes, however, cannot be explained by the calculated changes in CFF, and especially the 1891 Nobi earthquake (M~8), the largest inland earthquake in Japan, which occurred at the time close to the local minimum of CFF. This implies that further improvements are necessary for our FEM modeling, such as the modeling of steady east-west compressive force and stress interactions between the inland faults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号