首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We review recent progress on our understanding of radio emission from solar flares and coronal mass ejections (CMEs) with emphasis on those aspects of the subject that help us address questions about energy release and its properties, the configuration of flare?–?CME source regions, coronal shocks, particle acceleration and transport, and the origin of solar energetic particle (SEP) events. Radio emission from electron beams can provide information about the electron acceleration process, the location of injection of electrons in the corona, and the properties of the ambient coronal structures. Mildly relativistic electrons gyrating in the magnetic fields of flaring loops produce radio emission via the gyrosynchrotron mechanism, which provides constraints on the magnetic field and the properties of energetic electrons. CME detection at radio wavelengths tracks the eruption from its early phase and reveals the participation of a multitude of loops of widely differing scale. Both flares and CMEs can ignite shock waves and radio observations offer the most robust tool to study them. The incorporation of radio data into the study of SEP events reveals that a clear-cut distinction between flare-related and CME-related SEP events is difficult to establish.  相似文献   

2.
Non-thermal phenomena on the Sun are characterized by the transient acceleration of electrons and ions to energies ranging from several keV to tens of GeV, and the impulsive heating of plasma to temperatures exceeding 5 × 107 K. These energetic processes result in the emission of a broad spectrum of electromagnetic radiation and of high-energy neutrons, as well as the escape of high energy electrons and ions from the acceleration region. The determination of the energy spectrum, polarization, and spatial distribution of these emissions, which contain detailed information on the acceleration and heating process, and the conditions at the sites at which this energy is generated and dissipated, is the principal objective of high-energy solar studies.The study of the evolution of magnetic structures in the solar convection zone and atmosphere which underlie the metastable conditions which precede these energetic processes, of the conditions that trigger the release of energy, and of the impact of the energy released on the solar atmosphere, is most effectively carried out by observations of thermal and quasi-thermal phenomena which precede, coincide with, and follow the impulsive acceleration and heating event itself. Multispectral observations of the phenomena associated with non-thermal events on the Sun are reviewed, and the requirements for visible, ultraviolet, extreme ultraviolet, and soft X-ray observations which are necessary for future advances are briefly described.  相似文献   

3.
Solar radio spikes are one of the most intriguing spectral types of radio bursts. Their very short lifetimes, small source size and super-high brightness temperature indicate that they should be involved in some strong energy release, particle acceleration and coherent emission processes closely related to solar flares. In particular, for the microwave spike bursts, their source regions are much close to the related flaring source region which may provide the fundamental information of the flaring process. In this work,we identify more than 600 millisecond microwave spikes which recorded by the Solar Broadband Radio Spectrometer in Huairou(SBRS/Huairou) during an X3.4 solar flare on 2006 December 13 and present a statistical analysis about their parametric evolution characteristic. We find that the spikes have nearly the same probability of positive and negative frequency drifting rates not only in the flare rising phase, but also in the peak and decay phases. So we suppose that the microwave spike bursts should be generated by shockaccelerated energetic electrons, just like the terminational shock(TS) wave produced by the reconnection outflows near the loop top. The spike bursts occurred around the peak phase have the highest central frequency and obviously weak emission intensity, which imply that their source region should have the lowest position with higher plasma density due to the weakened magnetic reconnection and the relaxation of TS during the peak phase. The right-handed polarization of the most spike bursts may be due to the TS lying on the top region of some very asymmetrical flare loops.  相似文献   

4.
Very Large Array (VLA) observations at wavelengths of 20 and 91 cm have been combined with data from the SOHO and RHESSI solar missions to study the evolution of transequatorial loops connecting active regions on the solar surface. The radio observations provide information about the acceleration and propagation of energetic electrons in these large-scale coronal magnetic structures where energy release and transport take place. On one day, a long-lasting Type I noise storm at 91 cm was seen to intensify and shift position above the northern hemisphere region following an impulsive hard X-ray burst in the southern hemisphere footpoint region. VLA 20-cm observations as well as SOHO EIT EUV images showed evolving coronal plasma that appeared to move across the solar equator during this time period. This suggests that the transequatorial loop acted as a conduit for energetic particles or fields that may have triggered magnetic changes in the corona where the northern noise storm region was seen. On another day, a hard X-ray burst detected at the limb was accompanied by impulsive 20- and 91-cm burst emission along a loop connecting to an active region in the same hemisphere but about 5′ away, again suggesting particle propagation and remote flare triggering across interconnecting loops.  相似文献   

5.
Based on a comprehensive analysis of the October 25, 1994 event, we consider the balance of energetic particles in a type-IV solar radio emission source with a zebra-type fine structure (in a coronal magnetic loop). The zebra pattern is formed through the injection of fast electrons into a trap and the formation of a ring-type nonequilibrium electron distribution function. We estimated the characteristic zebra-pattern lifetime, which is determined by the escape of fast particles from the trap into the loss cone. In addition, we determined the number of fast particles that must be injected into the trap to provide the observed radio brightness temperature in zebra-pattern stripes by analyzing the plasma emission mechanism responsible for the zebra-pattern generation. As a result, we estimated the efficiency of the electron acceleration mechanism in coronal magnetic loops at the post-flare evolutionary phase of an active region.  相似文献   

6.
The magnetic nature of solar flares   总被引:3,自引:0,他引:3  
The main challenge for the theory of solar eruptions has been to understand two basic aspects of large flares. These are the cause of the flare itself and the nature of the morphological features which form during its evolution. Such features include separating ribbons of H emission joined by a rising arcade of soft x-ray loops, with hard x-ray emission at their summits and at their feet. Two major advances in our understanding of the theory of solar flares have recently occurred. The first is the realisation that a magnetohydrodynamic (MHD) catastrophe is probably responsible for the basic eruption and the second is that the eruption is likely to drive a reconnection process in the field lines stretched out by the eruption. The reconnection is responsible for the ribbons and the set of rising soft x-ray loops, and such a process is well supported by numerical experiments and detailed observations from the Japanese satellite Yohkoh. Magnetic energy conversion by reconnection in two dimensions is relatively well understood, but in three dimensions we are only starting to understand the complexity of the magnetic topology and the MHD dynamics which are involved. How the dynamics lead to particle acceleration is even less well understood. Particle acceleration in flares may in principle occur in a variety of ways, such as stochastic acceleration by MHD turbulence, acceleration by direct electric fields at the reconnection site, or diffusive shock acceleration at the different kinds of MHD shock waves that are produced during the flare. However, which of these processes is most important for producing the energetic particles that strike the solar surface remains a mystery. Received 2 January 2001 / Published online 17 July 2001  相似文献   

7.
The Solar Electron Proton Telescope on board the twin STEREO spacecraft measures electrons and ions in the energy range from 30 to above 400 keV with an energy resolution better than 10%. On 22 February 2010 during a short interval of 100 minutes, a sequence of impulsive energetic electron events in the range below 120 keV was observed with the STEREO-A/SEPT instrument. Each of the four events was associated with a type III radio burst and a narrow EUV jet. All the events show nearly symmetric “spike”-like time profiles with very short durations ≃ 5 min. The estimated electron injection time for each individual event shows a small time delay between the electron spike and the corresponding type III radio emission and a close coincidence with an EUV jet. These observations reveal the existence of spike-like electron events showing nearly “scatter-free” propagation from the Sun to STEREO-A. From the time coincidence we infer that the mildly relativistic electrons are accelerated at the same time and at the same location as the accompanying type III emitting electrons and coronal EUV jets. The characteristics of the spikes reflect the injection and acceleration profiles in the corona rather than interplanetary propagation effects.  相似文献   

8.
A mechanism of electron acceleration and storage of energetic particles in solar and stellar coronal magnetic loops, based on oscillations of the electric current, is considered. The magnetic loop is presented as an electric circuit with the electric current generated by convective motions in the photosphere. Eigenoscillations of the electric current in a loop induce an electric field directed along the loop axis. It is shown that the sudden reductions that occur in the course of type IV continuum and pulsating type III observed in various frequency bands (25?–?180 MHz, 110?–?600 MHz, 0.7?–?3.0 GHz) in solar flares provide evidence for acceleration and storage of the energetic electrons in coronal magnetic loops. We estimate the energization rate and the energy of accelerated electrons and present examples of the storage of energetic electrons in loops in the course of flares on the Sun or on ultracool stars. We also discuss the efficiency of the suggested mechanism as compared with the electron acceleration during the five-minute photospheric oscillations and with the acceleration driven by the magnetic Rayleigh–Taylor instability.  相似文献   

9.
We analyze particle acceleration processes in large solar flares, using observations of the August, 1972, series of large events. The energetic particle populations are estimated from the hard X-ray and γ-ray emission, and from direct interplanetary particle observations. The collisional energy losses of these particles are computed as a function of height, assuming that the particles are accelerated high in the solar atmosphere and then precipitate down into denser layers. We compare the computed energy input with the flare energy output in radiation, heating, and mass ejection, and find for large proton event flares that:
  1. The ~10–102 keV electrons accelerated during the flash phase constitute the bulk of the total flare energy.
  2. The flare can be divided into two regions depending on whether the electron energy input goes into radiation or explosive heating. The computed energy input to the radiative quasi-equilibrium region agrees with the observed flare energy output in optical, UV, and EUV radiation.
  3. The electron energy input to the explosive heating region can produce evaporation of the upper chromosphere needed to form the soft X-ray flare plasma.
  4. Very intense energetic electron fluxes can provide the energy and mass for interplanetary shock wave by heating the atmospheric gas to energies sufficient to escape the solar gravitational and magnetic fields. The threshold for shock formation appears to be ~1031 ergs total energy in >20 keV electrons, and all of the shock energy can be supplied by electrons if their spectrum extends down to 5–10 keV.
  5. High energy protons are accelerated later than the 10–102 keV electrons and most of them escape to the interplanetary medium. The energetic protons are not a significant contributor to the energization of flare phenomena. The observations are consistent with shock-wave acceleration of the protons and other nuclei, and also of electrons to relativistic energies.
  6. The flare white-light continuum emission is consistent with a model of free-bound transitions in a plasma with strong non-thermal ionization produced in the lower solar chromosphere by energetic electrons. The white-light continuum is inconsistent with models of photospheric heating by the energetic particles. A threshold energy of ~5×1030 ergs in >20 keV electrons is required for detectable white-light emission.
The highly efficient electron energization required in these flares suggests that the flare mechanism consists of rapid dissipation of chromospheric and coronal field-aligned or sheet currents, due to the onset of current-driven Buneman anomalous resistivity. Large proton flares then result when the energy input from accelerated electrons is sufficient to form a shock wave.  相似文献   

10.
Pohjolainen  S.  Valtaoja  E.  Urpo  S.  Aurass  H. 《Solar physics》1997,173(1):131-149
Two small radio flares following the great gamma-ray burst on 11 June 1991 are studied. We analyse the different association of emission features at microwaves, decimeter waves, and soft and hard X-rays for the events. The first flare has well-defined emission features in microwaves and soft and hard X-rays, and a faint decimetric signature well after the hard X-ray burst. It is not certain if the decimetric event is connected to the burst features. The second event is characterized by an almost simultaneous appearance of hard X-ray burst maxima and decimetric narrowband drift bursts, but soft X-ray emission is missing from the event. With the exception of the possibility that the soft X-ray emission is absorbed along the way, the following models can explain the reported differences in the second event: (1) Microwave emission in the second event is produced by 150 keV electrons spiraling in the magnetic field relatively low in the corona, while the hard X-ray emission is produced at the beginning of the burst near the loop top as thick-target emission. If the bulk of electrons entered the loop, the low-energy electrons would not be effectively mirrored and would eventually hit the footpoints and cause soft X-ray emission by evaporation, which was not observed. The collisions at the loop top would not produce observable plasma heating. The observed decimetric type III bursts could be created by plasma oscillations caused by electron beams traveling along the magnetic field lines at low coronal heights. (2) Microwave emission is caused by electrons with MeV energies trapped in the large magnetic loops, and the electrons are effectively mirrored from the loop footpoints. The hard X-ray emission can come both from the loop top and the loop footpoints as the accelerated lower energy electrons are not mirrored. The low-energy electrons are not, however, sufficient to create observable soft X-ray emission. The type III emission in this case could be formed either at low coronal heights or in local thick regions in the large loops, high in the corona.  相似文献   

11.
We present a multi-wavelength study of a solar eruption event on 20 July 2004, comprising observations in H??, EUV, soft X-rays, and in radio waves with a wide frequency range. The analyzed data show both oscillatory patterns and shock wave signatures during the impulsive phase of the flare. At the same time, large-scale EUV loops located above the active region were observed to contract. Quasi-periodic pulsations with ???10 and ???15 s oscillation periods were detected both in microwave??C?millimeter waves and in decimeter??C?meter waves. Our calculations show that MHD oscillations in the large EUV loops ?C but not likely in the largest contracting loops ?C could have produced the observed periodicity in radio emission, by triggering periodic magnetic reconnection and accelerating particles. As the plasma emission in decimeter??C?meter waves traces the accelerated particle beams and the microwave emission shows a typical gyrosynchrotron flux spectrum (emission created by trapped electrons within the flare loop), we find that the particles responsible for the two different types of emission could have been accelerated in the same process. Radio imaging of the pulsed decimetric??C?metric emission and the shock-generated radio type II burst in the same wavelength range suggest a rather complex scenario for the emission processes and locations. The observed locations cannot be explained by the standard model of flare loops with an erupting plasmoid located above them, driving a shock wave at the CME front.  相似文献   

12.
We present the analysis of a large solar near-relativistic electron event observed by the Ulysses and the ACE spacecraft on 8 November 2000, when Ulysses was located at a heliocentric distance of 2.4 AU and at a heliographic latitude of ??80° S. We use a particle propagation model to infer the local interplanetary transport conditions and the injection histories of the near-relativistic electrons observed by both spacecraft. We find different local transport conditions for each set of observations. The inferred injection profiles for both spacecraft extend for several hours; but the injection at Ulysses was smaller and started later. The association with type II radio emission suggests that the heliospheric electrons were provided by coronal shock acceleration. An analysis of the in situ magnetic field and plasma measurements indicates that the global configuration of the heliosphere (disturbed by transient structures) could play a role in shaping the characteristics of solar energetic particle events observed from different locations.  相似文献   

13.
Willson  Robert F. 《Solar physics》2002,211(1-2):289-313
Very-Large-Array (VLA) observations of the Sun at 20, 91 and 400 cm have been combined with data from the SOHO, TRACE and Wind solar missions to study the properties of long-lasting Type I noise storms and impulsive metric and decimetric bursts during solar flares and associated coronal mass ejections. These radio observations provide information about the acceleration and propagation of energetic electrons in the low and middle corona as well as their interactions with large-scale magnetic structures where energy release and transport takes place. For one flare and its associated CME, the VLA detected impulsive 20 and 91 cm bursts that were followed about ten minutes later by 400 cm burst emission that appeared to move outward into the corona. This event was also detected by the Waves experiment on Wind which showed intense, fast-drifting interplanetary Type III bursts following the metric and decimetric bursts detected by the VLA. For another event, impulsive 91 cm emission was detected about a few minutes prior to impulsive bursts at 20.7 cm, suggesting an inwardly propagating beam of electrons that excited burst emission at lower levels and shorter wavelengths. We also find evidence for significant changes in the intensity of Type I noise storms in the same or nearby active region during impulsive decimetric bursts and CMEs. These changes might be attributed to flare-initiated heating of the Type I radio source plasma by outwardly-propagating flare ejecta or to the disruption of ambient magnetic fields by the passage of a CME.  相似文献   

14.
Flares and coronal mass ejections (CMEs) contribute to the acceleration and propagation of solar energetic particles (SEP) detected in the interplanetary space, but the exact roles of these phenomena are yet to be understood. We examine two types of energetic particle tracers related with 15 CME-less flares that emit bright soft X-ray bursts (GOES X class): radio emission of flare-accelerated electrons and in situ measurements of energetic electrons and protons near 1 AU. The CME-less flares are found to be vigorous accelerators of microwave-emitting electrons, which remain confined in low coronal structures. This is shown by unusually steep low-frequency microwave spectra and by lack of radio emission from the middle and high corona, including dm?–?m wave type IV continua and metre-to-hectometre type III bursts. The confinement of the particles accelerated in CME-less flares agrees with the magnetic field configuration of these events inferred by others. Two events produced isolated metric type II bursts revealing coronal shock waves. None of the seven flares in the western hemisphere was followed by enhanced particle fluxes in the GOES detectors, but one, which was accompanied by a type II burst, caused a weak SEP event detected at SoHO and ACE. Three of the CME-less flares were followed within some hours by SEP-associated flares from the same active region. These SEP-producing events were clearly distinct from the CME-less ones by their association with fast and broad CMEs, dm?–?m wave radio emission, and intense DH type III bursts. We conclude that radio emission at decimetre and longer waves is a reliable indication that flare-accelerated particles have access to the high corona and interplanetary space. The absence of such emission can be used as a signal that no SEP event is to be expected despite the occurrence of a strong soft X-ray burst.  相似文献   

15.
We have studied the energetics of two impulsive solar flares of X-ray class X1.7 by assuming the electrons accelerated in several episodes of energy release to be the main source of plasma heating and reached conclusions about their morphology. The time profiles of the flare plasma temperature, emission measure, and their derivatives, and the intensity of nonthermal X-ray emission are compared; images of the X-ray sources and magnetograms of the flare region at key instants of time have been constructed. Based on a spectral analysis of the hard X-ray emission from RHESSI data and GOES observations of the soft X-ray emission, we have estimated the spatially integrated kinetic power of nonthermal electrons and the change in flare-plasma internal energy by taking into account the heat losses through thermal conduction and radiation and determined the parameters needed for thermal balance. We have established that the electrons accelerated at the beginning of the events with a relatively soft spectrum directly heat up the coronal part of the flare loops, with the increase in emission measure and hard X-ray emission from the chromosphere being negligible. The succeeding episodes of electron acceleration with a harder spectrum have virtually no effect on the temperature rise, but they lead to an increase in emission measure and hard X-ray emission from the footpoints of the flare loops.  相似文献   

16.
A. O. Benz  S. R. Kane 《Solar physics》1986,104(1):179-185
Properties of electron acceleration in flares, especially the density structure in the acceleration region, are deduced from a correlation study between decimetric type III, spike, and hard X-ray (HXR) bursts. The high association rate found (71%) strongly suggests that spikes also originate from energetic electrons. Spikes and type III bursts have been found to be easily identified by their different polarizations. The two types of emission generally do not overlap in frequency. A reliable lower limit to the density is derived from the starting frequency of type III and U bursts. The spike emission very likely yields an upper limit. The density inhomogeneity in the acceleration region spans more than one order of magnitude and is more than one order of magnitude larger in the associated type U sources. A peak-to-peak correlation does not always exist between type III, spike and HXR bursts. This discrepancy can be interpreted in terms of the different source conditions and propagation properties. Whereas spikes need special conditions to become visible, type III and peaks of HXR may be the product of many elementary accelerations.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

17.
Combined SOHO (Solar and Helisopheric Observatory) and ground based radio observations show evidently signatures of electrons accelerated by a shock wave during the event on July 9, 1996. A solar type II radio burst has been received as a signature of a coronal shock wave at 300 MHz on 9:10:54 UT. It was accompanied with electron beams appearing as type III radio bursts below 80 MHz. Simultaneously, the COSTEP (Comprehensive Suprathermal and Energetic Particle Analyzer) instrument aboard SOHO has measured enhanced electron fluxes in the range 30 keV – 3 MeV. This indicates that a coronal shock wave was able to produce high energetic electrons. A mechanism of electron acceleration up to relativistic velocities is presented and compared with the observations. The electron acceleration takes place at substructures of quasi-parallel collisionless shocks. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Rapid developments in the techniques of interferometry at millimeter wavelengths now permit the use of telescope arrays similar to the Very Large Array at microwave wavelengths. These new arrays represent improvements of orders of magnitude in the spatial resolution and sensitivity of millimeter observations of the Sun, and will allow us to map the solar chromosphere at high spatial resolution and to study solar radio burst sources at millimeter wavelengths with high spatial and temporal resolution. Here we discuss the emission mechanisms at millimeter wavelengths and the phenomena which we expect will be the focus of such studies. We show that the flare observations study the most energetic electrons produced in solar flares, and can be used to constrain models for electron acceleration. We discuss the advantages and disadvantages of millimeter interferometry, and in particular focus on the use of and techniques for arrays of small numbers of telescopes.Paper presented at the 4th CESRA Workshop in Ouranopolis (Greece) 1991.  相似文献   

19.
The observations of a microwave burst with multiple impulses on 1993 Oct 2, 073940–074100 UT are analysed. This event consists of multiple impulses superimposed on a slowly varying burst background. Our formula for coronal magnetic field diagnostics was used here for the first time to derive the field strength and information on the energetic electrons. The results are: 1) The mean spectral index of the impulsive component in the optically thin part is less than that of the slow background by 1 (a harder spectrum). The mean brightness temperature at 19.6 GHz of the former is 6 times that of the latter. 2) The mean magnetic strengths of the impulse and slow burst regions are 158 G and 531 G, respectively. The time variation in the slow burst region is saddle-shaped, being 50% lower in the middle than at the beginning and end. 3) The column density NL and number density N of energetic electrons in the impulsive component are 4% and 8% of those of the slow component, but the energy flux and emission coefficient are 100% and 800% greater. The two components appear to be produced by two different electron groups with different energy distributions in two different regions.  相似文献   

20.
We investigate the origin of the increasing spectra observed at submillimeter wavelengths detected in the flare on 2 November 2003 starting at 17:17 UT. This flare, classified as an X8.3 and 2B event, was simultaneously detected by RHESSI and the Solar Submillimeter Telescope (SST) at 212 and 405 GHz. Comparison of the time profiles at various wavelengths shows that the submillimeter emission resembles that of the high-energy X rays observed by RHESSI whereas the microwaves observed by the Owens Valley Solar Array (OVSA) resemble that of ∼50 keV X rays. Moreover, the centroid position of the submillimeter radiation is seen to originate within the same flaring loops of the ultraviolet and X-ray sources. Nevertheless, the submillimeter spectra are distinct from the usual microwave spectra, appearing to be a distinct spectral component with peak frequency in the THz range. Three possibilities to explain this increasing radio spectra are discussed: (1) gyrosynchrotron radiation from accelerated electrons, (2) bremsstrahlung from thermal electrons, and (3) gyrosynchrotron emission from the positrons produced by pion or radioactive decay after nuclear interactions. The latter possibility is ruled out on the grounds that to explain the submillimeter observations requires 3000 to 2×105 more positrons than what is inferred from X-ray and γ-ray observations. It is possible to model the emission as thermal; however, such sources would produce too much flux in the ultraviolet and soft X-ray wavelengths. Nevertheless we are able to explain both spectral components at microwave and submillimeter wavelengths by gyrosynchrotron emission from the same population of accelerated electrons that emit hard X rays and γ rays. We find that the same 5×1035 electrons inferred from RHESSI observations are responsible for the compact submillimeter source (0.5 arcsec in radius) in a region of 4500 G low in the atmosphere, and for the traditional microwave spectral component by a more extended source (50 arcsec) in a 480 G magnetic field located higher up in the loops. The extreme values in magnetic field and source size required to account for the submillimeter emission can be relaxed if anisotropy and transport of the electrons are taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号