首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
High-resolution spectral radiance measurements were taken by a spectral radiometer on board a heli copter over the US Oklahoma Southern Great Plain near the Atmospheric Radiation Measurements (ARM) site during August 1998. The radiometer has a spectral range from 350 nm to 2500 nm at 1 nm resolution. The measurements covered several grass and cropland scene types at multiple solar zenith angles. Detailed atmospheric corrections using the Moderate Resolution Transmittance (MODTRAN) radiation model and in-situ sounding and aerosol measurements have been applied to the helicopter measurements in order to re trieve the surface and top of atmosphere (TOA) Bidirectional Reflectance Distribution Function (BRDF) characteristics. The atmospheric corrections are most significant in the visible wavelengths and in the strong water vapor absorption wavelengths in the near infrared region. Adjusting the BRDF to TOA requires a larger correction in the visible channels since Rayleigh scattering contributes significantly to the TOA reflectance. The opposite corrections to the visible and near infrarred wavelengths can alter the radiance dif ference and ratio that many remote sensing techniques are based on, such as the normalized difference vege tation index (NDVI). The data show that surface BRDFs and spectral albedos are highly sensitive to the veg etation type and solar zenith angle while BRDF at TOA depends more on atmospheric conditions and the vi ewing geometry. Comparison with the Clouds and the Earth's Radiant Energy System (CERES) derived clear sky Angular Distribution Model (ADM) for crop and grass scene type shows a standard deviation of 0.08 in broadband anisotropic function at 25° solar zenith angle and 0.15 at 50° solar zenith angle, respectively.  相似文献   

2.
Source/sink distributions of heat, water vapour andCO2 within a rice canopy were inferred using aninverse Lagrangian dispersion analysis and measuredmean profiles of temperature, specific humidity andCO2 mixing ratio. Monin–Obukhov similarity theorywas used to account for the effects of atmosphericstability on w(z), the standard deviation ofvertical velocity and L(z), the Lagrangian timescale of the turbulence. Classical surface layer scaling was applied in the inertial sublayer (z > zruf)using the similarity parameter = (z - d)/L, where z is height above ground, d is the zero plane displacementheight for momentum, L is the Obukhov length,and zruf 2.3hc, where hc iscanopy height. A single length scale hc, was usedfor the stability parameter 3 = hc/L in the height range 0.25 < z/hc < 2.5. This choice is justified by mixing layer theory, which shows that within the roughness sublayer there is one dominant turbulence length scaledetermined by the degree of inflection in the windprofile at the canopy top. In the absence of theoretical or experimental evidence for guidance,standard Monin–Obukhov similarity functions, with = hc/L, were used to calculate the stabilitydependence of w(z) and L(z) in the roughness sublayer. For z/hc < 0.25 the turbulence length and time scales are influenced by the presence of the lowersurface, and stability effects are minimal. With theseassumptions there was excellent agreement between eddycovariance flux measurements and deductions from theinverse Lagrangian analysis. Stability correctionswere particularly necessary for night time fluxes whenthe atmosphere was stably stratified.The inverse Lagrangian analysis provides a useful toolfor testing and refining multilayer canopy models usedto predict radiation absorption, energy partitioningand CO2 exchanges within the canopy and at thesoil surface. Comparison of model predictions withsource strengths deduced from the inverse analysisgave good results. Observed discrepancies may be dueto incorrect specification of the turbulent timescales and vertical velocity fluctuations close to theground. Further investigation of turbulencecharacteristics within plant canopies is required toresolve these issues.  相似文献   

3.
利用高光谱红外探测资料反演大气参数   总被引:8,自引:2,他引:8       下载免费PDF全文
文章介绍了红外高光谱的卫星探测技术以及利用现有的机载和星载高光谱资料的反演方法,着重讨论了美国NASA地球观测系统上携带的大气红外探测仪AIRS的反演方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号