首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The inverse problem of magnetometry is solved for a horizontal layer. Model masses are magnetized nonuniformly. The magnetization vector is a function of two horizontal coordinates. The components of this vector are determined from data on the external magnetic field.  相似文献   

2.
The Boundary Element Method (BEM), a numerical technique for solving boundary integral equations, is introduced to determine the earth's gravity field. After a short survey on its main principles, we apply this method to the fixed gravimetric boundary value problem (BVP), i.e. the determination of the earth's gravitational potential from measurements of the intensity of the gravity field in points on the earth's surface. We show how to linearize this nonlinear BVP using an implicit function theorem and how to transform the linearized BVP into a boundary integral equation using the single layer representation. A Galerkin method is used to transform the boundary integral equation using the single layer representation. A Galerkin method is used to transform the boundary integral equation into a linear system of equations. We discuss the major problems of this approach for setting up and solving the linear system. The BVP is numerically solved for a bounded part of the earth's surface using a high resolution reference gravity model, measured gravity values of high density, and a 50 50 m2 digital terrain model to describe the earth's surface. We obtain a gravity field resolution of 1 1 km2 with an accuracy of the order 10–3 to 10–4 in about 1 CPU-hour on a Siemens/Fujitsu SIMD vector pipeline machine using highly sophisticated numerical integration techniques and fast equation solvers. We conclude that BEM is a powerful numerical tool for solving boundary value problems and may be an alternative to classical geodetic techniques.  相似文献   

3.
Summary A method has been derived for computing the gravity effect of a segment of an infinite homogeneous elliptical cylinder. The initial data was represented by formulae expressing the components of the field of gravity of a homogeneous two-dimensional body by means of line integrals. The method is based on the integration of theln R function over the boundary of the cross-section of the attracting body, R being the distance from a fixed point in which the gravity effect is determined. The problem was solved in confocal co-ordinates.  相似文献   

4.
A method of potential field processing based on the transformation of vectors of the total horizontal gradient in windows of various sizes is considered. The gradients are calculated at the centers of triangles, whose vertices are points of observations, as a rule, of gravity and magnetic fields. Averaging of horizontal gradients of the field rather than initial values of the field is the main distinction of this approach from the known methods. This procedure, referred to in this paper as vector scanning of the field, makes it possible to obtain layer distributions of field sources in a 3-D diagram that is a quasi-density model of the study medium within the framework of certain model concepts. The paper presents a model example demonstrating the possibility of separating the fields produced by two sources located on a vertical line and an example illustrating the application of this method to the interpretation of the gravity field in the zone of the geodynamic influence of the Urals.  相似文献   

5.
An inverse gravity problem is solved for a geological model consisting of bodies of Sretenskii’s class. The position of the middle plane is fixed for each body. It is required to determine the upper and lower boundaries of a body, which are described by analytical functions and are parameterized. The solution of the problem is illustrated by an example.  相似文献   

6.
The nonlinear equation of the first order of the Riccati type has been obtained for the wave impedance of acoustic gravity waves in the nonisothermal atmosphere. The vertically nonuniform horizontal wind and the effect of viscosity on the horizontal components of the velocity field have been taken into account in the calculations. The boundary-value problem for the Riccati equation is defined by the boundary emission condition at high altitudes. Upon finding the wave impedance along with the generalized polarization relationship, all remaining disturbances of the atmospheric parameters related to acoustic gravity waves are found with the help of a simple integration. The results of using a developed formalism are illustrated by the numerical computation of acoustic gravity wave fields in the atmosphere with real vertical profiles of temperature and horizontal field velocity.  相似文献   

7.
基于非均匀分布的陆地重力观测数据,重构局部重力场模型是区域重力资料处理与解释的重要环节。本文对比了多种局部重力场建模方法,并以EGM2008模型提供的自由空气重力异常模型重采样数据进行测试,综合比较了不同噪声条件下不同建模方法的实际效果。结果表明:在不同噪声水平下,优选出适合重力位场问题的协方差函数后,最小二乘配置法的建模效果优于其它方法。   相似文献   

8.
位场总水平导数极值位置空间变化规律研究   总被引:5,自引:2,他引:3       下载免费PDF全文
王万银 《地球物理学报》2010,53(9):2257-2270
通过对位场总水平导数函数性质的研究表明,位场总水平导数不是位函数,因而利用位场总水平导数构造新的边缘识别方法时会出现"奇点",使得计算结果的稳定性下降.对单一边界、双边界、多边界模型重力异常总水平导数和重力异常垂向导数总水平导数极值位置的空间变化规律研究表明,重力异常垂向导数总水平导数和化极磁力异常总水平导数的极值位置相同,与重力异常总水平导数的极值位置空间变化规律相似.利用位场总水平导数极大值位置能够准确识别单一直立边界地质体的边缘位置,但不能准确识别其它任何形体的边缘位置,其识别结果的偏移量大小随地质体的埋深、水平尺寸以及倾斜程度等变化,但能收敛于某一固定值;重力异常垂向导数总水平导数比重力异常总水平导数的峰值更加尖锐、横向识别能力更强,其极大值位置更靠近地质体上顶面边缘位置,但存在"次极大值"的影响.  相似文献   

9.
海域流动点外部扰动引力无奇异计算模型   总被引:3,自引:0,他引:3       下载免费PDF全文
针对海域重力场变化特征和远程飞行器机动发射保障应用需求,本文分析研究了地球外部空间扰动引力三类传统计算模型的技术特点及其适用性,指出了采用表层法作为海域流动点扰动引力计算模型的合理性及需要解决的关键问题,分析论证了空中扰动引力计算对地面观测数据的分辨率和精度要求,提出通过引入局部积分域恒等式变换、局域泰勒级数展开和非网格点内插方法,消除表层法计算模型积分奇异性固有缺陷的研究思路,进而推出了适合于海域流动点应用的扰动引力无奇异计算模型,较好地满足了全海域和全高度段对局部扰动重力场快速赋值的实际需求.以超高阶全球位模型EGM2008作为标准场,通过数值计算验证了无奇异计算模型的可行性和有效性,在重力场变化比较剧烈的海沟区,该模型的计算精度优于2×10-5m·s-2.  相似文献   

10.
The paper presents a high-resolution global gravity field modelling by the boundary element method (BEM). A direct BEM formulation for the Laplace equation is applied to get a numerical solution of the linearized fixed gravimetric boundary-value problem. The numerical scheme uses the collocation method with linear basis functions. It involves a discretization of the complicated Earth’s surface, which is considered as a fixed boundary. Here 3D positions of collocation points are simulated from the DNSC08 mean sea surface at oceans and from the SRTM30PLUS_V5.0 global topography model added to EGM96 on lands. High-performance computations together with an elimination of the far zones’ interactions allow a very refined integration over the all Earth’s surface with a resolution up to 0.1 deg. Inaccuracy of the approximate coarse solutions used for the elimination of the far zones’ interactions leads to a long-wavelength error surface included in the obtained numerical solution. This paper introduces an iterative procedure how to reduce such long-wavelength error surface. Surface gravity disturbances as oblique derivative boundary conditions are generated from the EGM2008 geopotential model. Numerical experiments demonstrate how the iterative procedure tends to the final numerical solutions that are converging to EGM2008. Finally the input surface gravity disturbances at oceans are replaced by real data obtained from the DNSC08 altimetryderived gravity data. The ITG-GRACE03S satellite geopotential model up to degree 180 is used to eliminate far zones’ interactions. The final high-resolution global gravity field model with the resolution 0.1 deg is compared with EGM2008.  相似文献   

11.
重力数据的物性反演面临着严重的多解性问题,降低多解性的有效手段是加入约束条件.而边界识别、深度估计及成像方法可获取地质体的水平位置、深度范围等几何参数信息,本文将基于数据本身挖掘的地质体几何参数信息约束到物性反演中,以降低反演的多解性.通过引入基于深度信息的深度加权函数及基于水平位置的水平梯度加权函数建立优化约束条件,有效地提高了反演结果的横向及纵向分辨率.重力梯度数据包含更多的地质体空间特征信息,将优化约束反演方法应用到全张量数据的反演中,模型试验表明本文方法反演结果与理论模型更加吻合.最后对美国路易斯安那州文顿盐丘实测航空重力梯度数据的应用表明,本文方法在其他地球物理、地质资料不足的情况下获得更可靠的反演结果.  相似文献   

12.
本文利用解的叠加原理求解了轨道扰动微分方程组,构建了扰动位系数与轨道和星间距变率的观测方程,并分别引入非线性改正项.通过惯性坐标系与运动坐标系的转换求解状态转移方程组,分析了观测方程的低频误差特征,导出了目前常用的消除剩余星间距变率低频误差的五参数或七参数经验公式.此外,根据非惯性力模型误差是分段标定的特点,提出利用三次样条函数来处理低频误差,通过模拟计算表明三次样条函数处理低频误差略优于七参数.最后,处理实际的GRAEC Level-1b数据,解算了2006年1月至2009年12月期间的月时变重力场模型UCAS_Grace01,通过在不同区域进行比较可以得出本文计算的时变重力场模型与国际官方机构精度基本是一致的结论.  相似文献   

13.
Summary A new method for computing the potential coefficients of the Earth's external gravity field is presented. The gravimetric boundary-value problem with a free boundary is reduced to the problem with a fixed known telluroid. The main idea of the derivation consists in a continuation of the quantities from the physical surface to the telluroid by means of Taylor's series expansion in such a way that the terms whose magnitudes are comparable with the accuracy of today's gravity measurements are retained. Thus not only linear, but also non-linear terms are taken into account. Explicitly, the terms up to the order of the third power of the Earth's flattening are retained. The non-linear boundary-value problem on the telluroid is solved by an iteration procedure with successive approximations. In each iteration step the solution of the non-linear problem is estimated by the solutions of two linear problems utilizing the fact that the non-linear boundary condition may be split into two parts; the linear spherical approximation of the gravity anomaly whose magnitude is significantly greater than the others and the non-linear ellipsoidal corrections. Finally, in order to solve the problem in terms of spherical harmonics, the transform method composed of the fast Fourier transform and Gauss Legendre quadrature is theoretically outlined. Immediate data processing of gravity data measured on the physical Earth's surface without any continuation of gravity measurements to a reference level surface belongs to the main advantage of the presented method. This implies that no preliminary data handling is needed and that the error data propagation is, consequently, maximally suppressed.  相似文献   

14.
Gravity data inversion can provide valuable information on the structure of the underlying distribution of mass. The solution of the inversion of gravity data is an ill-posed problem, and many methods have been proposed for solving it using various systematic techniques. The method proposed here is a new approach based on the collocation principle, derived from the Wiener filtering and prediction theory. The natural multiplicity of the solution of the inverse gravimetric problem can be overcome only by assuming a substantially simplified model, in this case a two-layer model, i.e. with one separation surface and one density contrast only. The presence of gravity disturbance and/or outliers in the upper layer is also taken into account. The basic idea of the method is to propagate the covariance structure of the depth function of the separation surface to the covariance structure of the gravity field measured on a reference plane. This can be done since the gravity field produced by the layers is a functional (linearized) of the depth. Furthermore, in this approach, it is possible to obtain the variance of the estimation error which indicates the precision of the computed solution. The method has proved to be effective on simulated data, fulfilling the a priori hypotheses. In real cases which display the required statistical homogeneity, good preliminary solutions, useful for a further quantitative interpretation, have also been derived. A case study is discussed.  相似文献   

15.
重力异常分离的小波域优化位变滤波方法   总被引:1,自引:1,他引:0       下载免费PDF全文
在重力异常分离中,频率域滤波分离方法是以全局数据频谱特征设计针对性的滤波器实现的.滤波器参数与空间位置无关,因此无法针对局部数据频谱特征动态调整滤波器参数.针对该局限性,在小波域滤波理论和优化滤波方法的基础上,本文研究提出了小波域优化位变滤波法,该方法具有空间变化滤波能力,在不同空间位置实现不同的滤波器特性,从而能实现局部数据频谱与全局数据频谱存在较大差异的重力异常分离问题.理论模型数据分离实验结果表明,在局部数据频谱与全局数据频谱差异较大的情况下,该方法相对于Butterworth滤波和优化滤波等方法具有优势.最后,用一个实例进行检验计算,体现了所提方法技术的效果和应用前景.  相似文献   

16.
For more than 150 years gravity anomalies have been used for the determination of geoidal heights, height anomalies and the external gravity field. Due to the fact that precise ellipsoidal heights could not be observed directly, traditionally a free geodetic boundary-value problem (GBVP) had to be formulated which after linearisation is related to gravity anomalies. Since nowadays the three-dimensional positions of gravity points can be determined by global navigation satellite systems very precisely, the modern formulation of the GBVP can be based on gravity disturbances which are related to a fixed GBVP using the known topographical surface of the Earth as boundary surface. The paper discusses various approaches into the solution of the fixed GBVP which after linearization corresponds to an oblique-derivative boundary-value problem for the Laplace equation. Among the analytical solution approaches a Brovar-type solution is worked out in detail, showing many similarities with respect to the classical solution of the scalar free GBVP.  相似文献   

17.
The two-dimensional surface deformation, gravity field and geoid are calculated from the temperature fields of a number of numerical models of constant viscosity three-dimensional convective flows, heated from within and from below, using the appropriate Green's functions. The admittance is positive, with positive gravity anomalies above hot rising regions, except for large aspect ratio circulations with undeformable lower boundaries. The surface deformation and the geoid are insensitive to the short wavelength features of the temperature variation. The gravity field is less smooth, though still does not clearly indicate the narrowness of the upwelling and downwelling regions at large Rayleigh numbers. When the lower boundary of the convecting region is deformable, the gravity field is dominated by lateral temperature variations within the upper thermal boundary layer, even when their contribution to the overall circulation is small. The variation of surface deformation with Rayleigh number agrees well with that expected from simple boundary layer arguments when the circulation is driven by heating from below, but less well when the heating is internal. These results suggest that the convective upwelling beneath regions showing positive geoid and residual depth anomalies is more localized than the horizontal extent of these features would suggest.  相似文献   

18.
Nonhydrostatic Atmospheric Normal Modes on Beta-Planes   总被引:1,自引:0,他引:1  
--To facilitate the understanding of nonhydrostatic effect in global and regional nonhydrostatic models, the normal modes of a nonhydrostatic, stratified, and compressible atmosphere are studied using Cartesian coordinates on midlatitude and equatorial #-planes. The dynamical equations without forcing and dissipation are linearized around the basic state at rest, and solved by using the method of separation of variables. An eigenvalue-eigenfunction problem is formulated, consisting of the horizontal and vertical structure equations with suitable boundary conditions. The wave frequency and the separation parameter, referred to as "equivalent height," appear in both the horizontal and vertical characteristic equations as a coupled problem, unlike the hydrostatic case. Therefore, the nonhydrostatic equivalent height depends not only on the vertical modal scale, as in the hydrostatic case, but also on the zonal and meridional modal scales. Numerical resu lts on the dispersion relations are presented for an isothermal atmosphere. Three kinds of normal modes, namely acoustic, gravity, and Rossby modes, are solved and compared with the corresponding global solutions. Nonhydrostatic effects are studied in terms of normal modes in a wide range of wavelengths from small to planetary scales. It is demonstrated that Rossby modes are hardly affected by nonhydrostatic effects regardless of wavelengths. However, nonhydrostatic effects on gravity modes become significant for smaller horizontal and deeper vertical scales of motion. The equivalent height plays a particularly important role in evaluating nonhydrostatic effects of normal modes on the equatorial #-plane, because the equivalent height appears in the scaling of meridional distance variable of the eigenfunctions. The implementation of nonhydrostatic normal mode analysis on high-resolution numerical modeling is also discussed.  相似文献   

19.
以鄂尔多斯南缘地区布格重力异常数据及2014—2017年相对重力观测数据为基础,采用欧拉反褶积方法,对引起重力变化的场源深度进行反演,并对空间分布规律予以解释.通过构建理论模型,反演得到最优模型参数,并对实际数据进行计算和分析.为了减弱和消除欧拉解的发散性,利用水平梯度滤波法优化反演结果.结果表明:①构造指数为1时,适...  相似文献   

20.
用传输函数构建的大气重力波传播理论模式   总被引:2,自引:0,他引:2       下载免费PDF全文
本文根据考虑大气热传导和黏滞的重力波复色散关系,采用传输函数的概念,基于重力波的线性理论,构建了用于研究对流层内重力波激发源与电离层响应之间的传输函数数值模式.在相空间中讨论了传输函数振幅的分布特性,并以地面单位脉冲源为例,分析了从地面到300 km高空的响应,得到了物理量的时空分布特征.结果表明:(1)对内重力波的传播而言,大气相当于一个滤波器,只有波动周期在15~30 min,水平波长在200~450 km之间的重力波扰动才最容易到达300 km电离层高度;(2)电离层的响应主要在与地面的激发源之间相隔较远的水平距离上发生;(3)黏滞和热传导系数在低层对上传重力波的影响较小,随着高度的增加它们对重力波的影响越来越大;(4)在低层计算的波动频率与Row理论的计算结果比较一致,然而到了高层却相差较大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号