首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In any type of groundwater transport problem (contaminant solutes, heat, etc.), knowledge of the location and properties of pathways of increased hydraulic conductivity is essential. However, answering such questions in strongly heterogeneous media, such as fractured rock, can be very difficult and budget-intensive with standard geophysical or hydrogeological field investigations. We present a new testing concept and analysis procedure based on a time sequence of wellbore electric conductivity logs, which provides the exact location and the outflow parameters (transmissivity, formation fluid conductivity) of flowing features (fractures, faults, layers) intercepted by the borehole.Previously the quantitative analysis of this time sequence of electrical conductivity logs was based on a code, called BORE, used to simulate borehole fluid conductivity profiles given these parameters. The present report describes a new direct (not iterative) method for analyzing a short time series of electric conductivity logs which is based on moment quantities of the individual outflow peaks, and applies it to synthetic as well as to field data. The results of the method are promising and are discussed in terms of the method's advantages and limitations. In particular it is shown that the method is capable of reproducing hydraulic properties derived from packer tests well within a factor of three, which is below the range of what is recognized as the accuracy of packer tests themselves. Furthermore the new method is much quicker than the previously used iterative fitting procedure and is even capable of handling transient fracture outflow conditions.  相似文献   

2.
A full 3-D finite element method numerical modeling program is written based on the principle and technical specification of borehole electric image well logging tool. The response of well logging is computed in the formation media model with a single fracture. The effect of changing fracture aperture and resistivity ratio to the logging response is discussed. The identification ability for two parallel fractures is also present. A quantitative evaluation formula of fracture aperture from borehole electric image logging data is set up. A case study of the model well is done to verify the accuracy of the for-mula. The result indicates that the formula is more accurate than the foreign one.  相似文献   

3.
Su GW  Quinn NW  Cook PJ  Shipp W 《Ground water》2006,44(5):754-757
An understanding of the hydraulic properties of the aquifer and the depth distribution of salts is critical for evaluating the potential of ground water for conjunctive water use and for maintaining suitable ground water quality in agricultural regions where ground water is used extensively for irrigation and drinking water. The electrical conductivity profiles recorded in a well using the flowing fluid electric conductivity (FEC) logging method can be analyzed to estimate interval-specific hydraulic conductivity and estimates of the salinity concentration with depth. However, operating irrigation wells commonly allow limited access, and the traditional equipment used for FEC logging cannot fit through the small access pipe intersecting the well. A modified, miniaturized FEC logging technique was developed for use in wells with limited access. In addition, a new method for injecting water over the entire screened interval of the well reduces the time required to perform FEC logging.  相似文献   

4.
Identifying flows into, out of, and across boreholes is important for characterizing aquifers, determining the depth at which water enters boreholes, and determining the locations and rates of outflow. This study demonstrates how Single Borehole Dilution Tests (SBDTs) carried out under natural head conditions provide a simple and cheap method of identifying vertical flow within boreholes and determining the location of in‐flowing, out‐flowing, and cross‐flowing fractures. Computer simulations were used to investigate the patterns in tracer profiles that arise from different combinations of flows. Field tracer tests were carried out using emplacements of a saline tracer throughout the saturated length of boreholes and also point emplacements at specific horizons. Results demonstrated that SBDTs can be used to identify flowing fractures at the top and bottom of sections of vertical flow, where there is a change in vertical flow rate within a borehole, and also where there are consistent decreases in tracer concentration at a particular depth. The technique enables identification of fractures that might be undetected by temperature and electrical conductance logging, and is a simple field test that can be carried out without pumping the borehole.  相似文献   

5.
There is often a need to estimate the variation in water quality and flow rate with depth in an aquifer given access only to an uncased borehole. In such situations, borehole logging techniques can be applied. This paper describes the Reversed Flow Test (RFT), a rarely used borehole logging method. The RFT is intended to provide information on pore water quality and inflow rates along the length of an uncased borehole profile. They are carried out by logging the conductivity of the borehole fluid under two pumping phases. During the first pumping phase the pump intake is located at the top of the borehole, and during the second the intake is located at the base. Provided the pumping rates are low and the system does not have marked lateral heterogeneity, stable conductivity profiles are often achieved within a relatively short time period. The data are interpreted to give estimates of electrical conductivity and inflow at each point in the profile. The test has been successfully carried out on a range of British aquifers, and four case histories are summarized here. In each case, the test was easily accomplished by two people in less than a day.  相似文献   

6.
Tracer tests represent the most appropriate approach for assessing hydrodispersive parameters such as transversal and longitudinal dispersivities or kinematic porosity on an aquifer scale. They are generally carried out by injecting a tracer in a borehole and measuring its concentration over time in neighboring boreholes by extracted volume sampling or downhole measurements. Logging is one of the most suitable methods for evaluating fissured reservoirs. But short circuits between fractures with different hydraulic potential through boreholes induce mixing phenomena that cannot be avoided without packers. This mixing can shift the breakthrough curves deduced from the logs for each producing fracture and distort determination of their location.
The method proposed in this paper aims at measuring the flow rate and the solute breakthrough for hydraulically active fractures, in open boreholes. It involves estimating a velocity profile along the borehole column by the analysis of two successive logs: a shift function according to depth is thus determined by comparison between log portions on each successive one. The velocity gradients reflect the inward or outward flow rates produced by each fracture. On the basis of these flow rates, it is possible to determine the mixing effects inside the borehole and then to plot unbiased breakthrough curves for each producing fracture.
This method was applied at a granitic site in the eastern Pyrenees. In spite of some questionable limitations, the results showed that the method seems adapted to situations with many fractures. The precise hydraulic pattern which is obtained at the borehole scale is discussed in terms of a dual porosity model. Furthermore, interpretation of the breakthrough curves for fractures corrected for mixing effects revealed that Peclet numbers are strongly underestimated if this phenomenon is not considered.  相似文献   

7.
Geophysical well logging has been applied for fracture characterization in crystalline terrains by physical properties measurements and borehole wall imaging. Some of these methods can be applied to monitor pumping tests to identify fractures contributing to groundwater flow and, with this, determine hydraulic conductivity and transmissivity along the well. We present a procedure to identify fractures contributing to groundwater flow using spontaneous potential measurements generated by electrokinetic processes when the borehole water head is lowered and then monitored while recovering. The electrokinetic model for flow through a tabular gap is used to interpret the measured data and determine the water head difference that drives the flow through the fracture. We present preliminary results at a test site in crystalline rocks on the campus of the University of São Paulo.  相似文献   

8.
Characterization of a multilayer aquifer using open well dilution tests   总被引:1,自引:0,他引:1  
West LJ  Odling NE 《Ground water》2007,45(1):74-84
An approach to characterization of multilayer aquifer systems using open well borehole dilution is described. The approach involves measuring observation well flow velocities while a nearby extraction well is pumped by introducing a saline tracer into observation wells and collecting dilution vs. depth profiles. Inspection of tracer profile evolution allows discrete permeable layers within the aquifer to be identified. Dilution profiles for well sections between permeable layers are then converted into vertical borehole flow velocities and their evolution, using an analytic solution to the advection-dispersion equation applied to borehole flow. The dilution approach is potentially able to measure much smaller flow velocities that would be detectable using flowmeters. Vertical flow velocity data from the observation wells are then matched to those generated using a hydraulic model of the aquifer system, "shorted" by the observation wells, to yield the hydraulic properties of the constituent layers. Observation well flow monitoring of pumping tests represents a cost-effective alternative or preliminary approach to pump testing each layer of a multilayer aquifer system separately using straddle packers or screened wells and requires no prior knowledge of permeable layer depths and thicknesses. The modification described here, of using tracer dilution rather than flowmeter logging to obtain well flow velocities, allows the approach to be extended to greater well separations, thus characterizing a larger volume of the aquifer. An example of the application of this approach to a multilayer Chalk Aquifer in Yorkshire, Northeast England, is presented.  相似文献   

9.
A new computer program, FLASH (Flow-Log Analysis of Single Holes), is presented for the analysis of borehole vertical flow logs. The code is based on an analytical solution for steady-state multilayer radial flow to a borehole. The code includes options for (1) discrete fractures and (2) multilayer aquifers. Given vertical flow profiles collected under both ambient and stressed (pumping or injection) conditions, the user can estimate fracture (or layer) transmissivities and far-field hydraulic heads. FLASH is coded in Microsoft Excel(5) with Visual Basic for Applications routines. The code supports manual and automated model calibration.  相似文献   

10.
Ground water flow in karst terranes generally occurs in the solution channels of carbonate aquifers. A hydrogeologist may utilize borehole geophysical methods to identify these solution channels in aquifers. Two specific methods that are applicable in karst terrains are:
1. Natural gamma ray logging
2. Borehole caliper logging.
Gamma ray logging can detect the presence of inter-bedded strata in the main limestone unit, such as shale, which emit high levels of gamma radiation. Gamma ray logging can also detect clay deposits in solution channels that may act to restrict the flow of ground water. The areal extent of these rock strata or clay-filled solution channels can be determined when gamma ray logs are conducted at several borehole locations across the site of investigation.
Borehole caliper logging can be employed to determine the presences of solution channels within the aquifer when penetrated by a borehole. In addition, since shale layers and clay filling are less resistant than the surrounding limestone, the caliper log may detect both the presence and the thickness of shale or clay layers in the aquifer.
Gamma ray logs can be used in conjunction with caliper logs to provide data on the stratigraphic location and thickness of solution channels and clay and shale layers within a limestone aquifer. This information is valuable to the hydrogeologist performing investigations at sites located in limestone terranes because ground water flow preferentially occurs along solution channels.  相似文献   

11.
水平井和大斜度井中的感应测井响应计算   总被引:18,自引:1,他引:18       下载免费PDF全文
感应测井受井斜影响十分严重,在水平井和大斜度井中,感应测井曲线几乎面目全非.水平井和大斜度井中感应测井响应的正演计算是正确认识这种复杂环境中感应测井响应特征的重要手段,是进行井斜环境影响校正的必要准备,是研究用感应测井曲线探测水平井井眼离最近界面距离的基础,同时也是感应测井理论的新发展.本文将论述水平井和大斜度井中感应测井响应正演计算的理论和方法;分析水平井、大斜度井中感应测井的响应特征  相似文献   

12.
Analysis of borehole flow logs is a valuable technique for identifying the presence of fractures in the subsurface and estimating properties such as fracture connectivity, transmissivity and storativity. However, such estimation requires the development of analytical and/or numerical modeling tools that are well adapted to the complexity of the problem. In this paper, we present a new semi-analytical formulation for cross-borehole flow in fractured media that links transient vertical-flow velocities measured in one or a series of observation wells during hydraulic forcing to the transmissivity and storativity of the fractures intersected by these wells. In comparison with existing models, our approach presents major improvements in terms of computational expense and potential adaptation to a variety of fracture and experimental configurations. After derivation of the formulation, we demonstrate its application in the context of sensitivity analysis for a relatively simple two-fracture synthetic problem, as well as for field-data analysis to investigate fracture connectivity and estimate fracture hydraulic properties. These applications provide important insights regarding (i) the strong sensitivity of fracture property estimates to the overall connectivity of the system; and (ii) the non-uniqueness of the corresponding inverse problem for realistic fracture configurations.  相似文献   

13.
In granite aquifers, fractures can provide both storage volume and conduits for groundwater. Characterization of fracture hydraulic conductivity (K) in such aquifers is important for predicting flow rate and calibrating models. Nuclear magnetic resonance (NMR) well logging is a method to quickly obtain near-borehole hydraulic conductivity (i.e., KNMR) at high-vertical resolution. On the other hand, FLUTe flexible liner technology can produce a K profile at comparable resolution but requires a fluid driving force between borehole and formation. For three boreholes completed in a fractured granite, we jointly interpreted logging NMR data and FLUTe K estimates to calibrate an empirical equation for translating borehole NMR data to K estimates. For over 90% of the depth intervals investigated from these boreholes, the estimated KNMR are within one order of magnitude of KFLUTe. The empirical parameters obtained from calibrating the NMR data suggest that “intermediate diffusion” and/or “slow diffusion” during the NMR relaxation time may occur in the flowing fractures when hydraulic aperture are sufficiently large. For each borehole, “intermediate diffusion” dominates the relaxation time, therefore assuming “fast diffusion” in the interpretation of NMR data from fractured rock may lead to inaccurate KNMR estimates. We also compare calibrations using inexpensive slug tests that suggest reliable KNMR estimates for fractured rock may be achieved using limited calibration against borehole hydraulic measurements.  相似文献   

14.
为研究井周裂缝发育特征,本文提出一种新型方位侧向测井方法,利用三维有限元法,模拟裂缝的方位侧向测井响应.结果显示,深浅侧向电阻率幅度差异受裂缝倾角的控制,低角度缝为负差异,高角度缝为正差异;倾斜裂缝张开度的增大使测井响应值减小,方位电阻率差异增大;井周方位电阻率可反映裂缝方位产状,单一缝或裂缝密度较小时,沿裂缝走向的方位电阻率小,沿裂缝倾向的方位电阻率大;裂缝发育地层的测井响应显示宏观各向异性特征,但方位电阻率的差异显示发生反转现象,即沿裂缝走向/层理方向的方位电阻率大,沿裂缝倾向/垂直层理方向的方位电阻率小;对方位电阻率测井响应进行井周成像,直观显示了裂缝的产状和发育特征.  相似文献   

15.
Deep observation boreholes in the vicinity of active production wells in Honolulu, Hawaii, exhibit the anomalous condition that fluid-column electrical conductivity logs and apparent profiles of pore-water electrical conductivity derived from induction conductivity logs are nearly identical if a formation factor of 12.5 is assumed. This condition is documented in three boreholes where fluid-column logs clearly indicate the presence of strong borehole flow induced by withdrawal from partially penetrating water-supply wells. This result appears to contradict the basic principles of conductivity-log interpretation. Flow conditions in one of these boreholes was investigated in detail by obtaining flow profiles under two water production conditions using the electromagnetic flowmeter. The flow-log interpretation demonstrates that the fluid-column log resembles the induction log because the amount of inflow to the borehole increases systematically upward through the transition zone between deeper salt water and shallower fresh water. This condition allows the properties of the fluid column to approximate the properties of water entering the borehole as soon as the upflow stream encounters that producing zone. Because this condition occurs in all three boreholes investigated, the similarity of induction and fluid-column logs is probably not a coincidence, and may relate to aquifer response under the influence of pumping from production wells.  相似文献   

16.
Electrical conductivity (EC) logs were obtained by both open‐borehole logging and passive multilevel sampling (MLS) in an observation borehole penetrating the Coastal Aquifer in Tel Aviv, Israel. Homogeneous vertical velocities for a 70‐m thick subaquifer were approximated from each profile using a steady‐state advection‐diffusion model. The open‐borehole log led to an overestimation of the steady‐state upward advective flux of deep brines (vertical velocity of 0.95 cm/yr as compared to 0.07 cm/yr for the MLS profile). The combination of depth‐dependent data and the suggested simple modeling approach comprises a method for assessing the vertical location of salinity sources and the nature of salt transport from them (i.e., advective vs. diffusive). However, in this case, the easily obtained open‐borehole logs should not be used for collecting depth‐dependent data.  相似文献   

17.
多相管流电磁成像测井方法研究   总被引:20,自引:3,他引:17       下载免费PDF全文
基于油、气与水的导电特性和介电特性差异,提出一种多相管流成像测井方法,可测量并求出油井内多相流体流动的截面图像.通过分析油井内流体中电磁场的特性,提出新的成像测井方法,并用自行研制的环状阵列式测量探头进行实验,验证了方法的可行性.  相似文献   

18.
本文采用有限元方法模拟了电缆地层测试器的双封隔器和谐波脉冲测试方法在井旁裂缝中的压力响应.根据裂缝性储层渗流力学原理,首先模拟了双封隔器压力测试在裂缝与井壁相交和不相交两种情况下的压力响应,模拟结果表明:当裂缝与井壁相交时,压力响应随裂缝导流性质的变化发生显著改变;当裂缝与井壁不相交时,除非裂缝的导流能力非常大或离井壁非常近,否则压力响应随着裂缝导流能力的变化并不明显.说明双封隔器测试方法可以有效评价与井壁相交裂缝的导流能力,而对远离井壁的裂缝并不敏感.谐波脉冲压力测试一直被用来探测地层的各向异性,本文通过数值模拟方法探讨和分析了谐波测试方法探测和评价与井壁不相交裂缝的可行性,数值模拟结果表明谐波的压力幅度和相位延迟对裂缝的导流能力变化敏感,说明该方法可以用来评价井旁裂缝.此外,本文还对脉冲频率和双探针间距对评价效果的影响进行了分析.  相似文献   

19.
基岩油气藏裂缝性储层具有复杂的储集空间和储层非均质性,为了实现对基岩油气藏储层的精细评价,以地层微电阻率扫描成像测井和井周声波成像测井资料为核心,通过岩心资料标定,结合录井、常规测井、试油、地质等实际资料,系统建立了基岩油气藏变质岩储层的成像测井解释模式.根据成像测井模式的识别实现了对基岩油气藏特征的认识、准确的裂缝分析和现今地应力场分析.分析结果表明,研究区基底变质岩地层中基本以基岩内幕油气藏为主;裂缝以中高角度缝、网状裂缝为主,其主要走向与井旁断层走向大致平行,属纵裂缝;裂缝主要发育在东西两侧靠近断层、近源的构造陡坡上;现今最大水平主应力方向主要呈NE-SW和NEE-SWW.成像测井解释结果与地质情况吻合较好.  相似文献   

20.
A new approach to locate transmissive fractures and decipher vertical borehole flow conditions in fractured crystalline bedrock wells is presented, which uses dissolved oxygen (DO) as a benign tracer. The method was tested in two fractured crystalline bedrock wells previously characterized by televiewer and flow meter logging under both ambient and stressed (slug test) conditions. The method entailed elevating wellbore DO concentrations by circulating water through showerheads or injection of compressed air. The DO dilution was used to locate inflowing fractures. Changes in the DO concentration with time were used to ascertain flow within the borehole and to locate outflowing fractures and stagnant zones. Flow rates were also estimated. Fractures detected by the method corresponded to those observed by televiewer logging and for the most part were comparable to flow meter results. Given the effectiveness, time‐efficiency and low cost, the method is a promising alternative to other methods currently in use to characterize transmissive fractures in wells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号