首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
Using a sample of 14 BeppoSAX and 74 Swift GRBs with measured redshift we tested the correlation between the intrinsic peak energy of the time-integrated spectrum,   E p, i   , the isotropic-equivalent peak luminosity,   L p,iso  , and the duration of the most intense parts of the GRB computed as T 0.45 ('Firmani correlation'). For 41 out of 88 GRBs we could estimate all of the three required properties. Apart from 980425, which appears to be a definite outlier and notoriously peculiar in many respects, we used 40 GRBs to fit the correlation with the maximum likelihood method discussed by D'Agostini, suitable to account for the extrinsic scatter in addition to the intrinsic uncertainties affecting every single GRB. We confirm the correlation. However, unlike the results by Firmani et al., we found that the correlation does have a logarithmic scatter comparable with that of the   E p, i – E iso  ('Amati') correlation. We also find that the slope of the product   L p,iso  T 0.45  is equal to ∼0.5, which is consistent with the hypothesis that the   E p, i – L p,iso– T 0.45  correlation is equivalent to the   E p, i – E iso  correlation (slope ∼0.5). We conclude that, based on presently available data, there is no clear evidence that the   E p, i – L p,iso– T 0.45  correlation is different (both in terms of slope and dispersion) from the   E p, i – E iso  correlation.  相似文献   

3.
4.
5.
The proposed correlations between the energetics of gamma-ray bursts (GRBs) and their spectral properties, namely the peak energy of their prompt emission, can broadly account for the observed fluence distribution of all 'bright' BATSE GRBs, under the hypothesis that the GRB rate is proportional to the star formation rate and that the observed distribution in peak energy is independent of redshift. The correlations can also be broadly consistent with the properties of the whole BATSE long GRB population for a peak energy distribution smoothly extending towards lower energies, and in agreement with the properties of a sample at 'intermediate' fluences and with the luminosity functions inferred from the GRB number counts. We discuss the constraints that this analysis imposes on the shape of such peak energy distribution, the opening angle distribution and the tightness of the proposed correlations.  相似文献   

6.
An analysis of prompt gamma-rays of X-ray flashes (XRFs) observed with the Swift/BAT has been presented. Our sample includes 235 bursts. It is found that the BAT detection ratio of XRFs to typical Gamma-ray bursts (GRBs) is 42:193, for division at Γ=2 (roughly corresponding Ep~50 keV), Γ being the power law index of the BAT spectrum and Ep, the peak energy (Ep) of the νfν spectrum. This is consistent with the HETE-2 observations. For both XRFS and GRBs Γ are almost normally distributed in the range of 1 to 2.8, similar that observed with HETE-2. The distribution of Γ for the entire set of GRBs/XRFs is not available due to poor statistics on the peak at Γ>2.3. This result probably indicates that the BAT spectrum of a typical XRF could have a Γ of roughly 2.3, if they indeed are a distinct soft component of the GRB population. By comparing the fluence and the peak flux in different energy bands, it is found that the XRFs are ordinarily softer than the GRBs, but during the peak time the spectra of both GRBs and XRF are similar, showing that the dominant radiation mechanisms of both GRBs and XRFs are similar.  相似文献   

7.
8.
9.
We continue the study of the properties of non-radial pulsations of strange dwarfs. These stars are essentially white dwarfs with a strange quark matter (SQM) core. We have previously shown that the spectrum of oscillations should be formed by several, well-detached clusters of modes inside which the modes are almost evenly spaced. Here, we study the relation between the characteristics of these clusters and the size of the SQM core. We do so assuming that, for a given cluster, the kinetic energy of the modes is constant. For a constant amplitude of the oscillation at the stellar surface, we find that the kinetic energy of the modes is very similar for the cases of models with Log Q SQM=−2, −3 and −4, while it is somewhat lower for  Log Q SQM=−5  (here   Q SQM≡ M SQM/ M ; M SQM  and M are the masses of the SQM core and the star, respectively). Remarkably, the shape (amplitude of the modes versus period of oscillation) of the clusters of periods is very similar. However, the number of modes inside each cluster is strongly (and non-monotonously) dependent upon the size of the SQM core.
The characteristics of the spectrum of oscillations of strange dwarf stars are very different from the ones corresponding to normal white dwarfs and should be, in principle, observable. Consequently, the stars usually considered as white dwarfs may indeed provide an interesting and affordable way to detect SQM in an astrophysical environment.  相似文献   

10.
Recent observations suggest that long-duration γ -ray bursts and their afterglows are produced by highly relativistic jets emitted in core-collapse explosions. As the jet makes its way out of the stellar mantle, a bow shock runs ahead and a strong thermal precursor is produced as the shock breaks out. Such erupting fireballs produce a very bright γ -ray precursor as they interact with the thermal break-out emission. The prompt γ -ray emission propagates ahead of the fireball before it becomes optically thin, leading to e± pair loading and radiative acceleration of the external medium. The detection of such precursors would offer the possibility of diagnosing not only the radius of the stellar progenitor and the initial Lorentz factor of the collimated fireball, but also the density of the external environment.  相似文献   

11.
12.
13.
Although more than 2000 astronomical gamma-ray bursts (GRBs) have been detected, the precise progenitor responsible for these events is unknown. The temporal phenomenology observed in GRBs can significantly constrain the different models. Here we analyse the time histories of a sample of bright, long GRBs, searching for the ones exhibiting relatively long (more than 5 per cent of the total burst duration) 'quiescent times', defined as the intervals between adjacent episodes of emission during which the gamma-ray count rate drops to the background level. We find a quantitative relation between the duration of an emission episode and the quiescent time elapsed since the previous episode. We suggest here that the mechanism responsible for the extraction and the dissipation of energy has to take place in a metastable configuration, such that the longer the accumulation period, the higher the stored energy available for the next emission episode.  相似文献   

14.
15.
16.
We discuss the formation of spectral features in the decelerating ejecta of gamma-ray bursts, including the possible effect of inhomogeneities. These should lead to blueshifted and broadened absorption edges and resonant features, especially from H and He. An external neutral ISM could produce detectable H and He, as well as Fe X-ray absorption edges and lines. Hypernova scenarios may be diagnosed by Fe Kα and H Lyα emission lines.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号