首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 515 毫秒
1.
丘状交错层理作为鉴别风暴沉积重要的标志之一,是最能反映风暴作用的沉积构造。本文基于驻波理论对丘状交错层理成因进行了新的解释,提出了丘状交错层理形成于驻波波节部位,形成丘状交错层理(或驻波)的动能近似恒定的观点。通过理论计算解释了丘状交错层理随水深变浅波长逐渐变长,波高逐渐减小,波长/波高逐渐增大的趋势,解释了徐州地区贾园组风暴沉积序列中丘状交错层理随水深的变化规律,从而验证了理论的可行性,对沉积环境具有一定的指示意义。  相似文献   

2.
徐州地区震旦系贾园组的风暴沉积   总被引:14,自引:4,他引:10       下载免费PDF全文
徐州地区震旦系下部的贾园组具有丰富典型的风暴沉积标志,包括各种冲刷-充填构造、丘状交错层理、碎屑流沉积、粒序层理及卷曲层理等。通过详细的野外观测及室内研究,根据风暴沉积标志的组合可划分出6种风暴沉积序列类型。其中,类型Ⅰ为具粒序层理的薄层含粉砂灰岩,形成于风暴浪基面以下的远源风暴浊流的末梢;类型Ⅱ以渠模与丘状交错层理的组合为特征,出现在风暴浪基面与晴天浪基面之间;类型Ⅲ为风暴流成因的碎屑流沉积内碎屑灰岩与底面的冲刷沟槽、丘状交错层理的组合,是形成于晴天浪基面附近的槽道碎屑流型风暴沉积;类型Ⅳ为具颗粒流沉积特征的内碎屑灰岩与冲刷面构造及丘状交错层理的组合,丘状纹层段中常见卷曲层理,形成于滩前陆棚斜坡的上部;类型Ⅴ为夹于湖相薄层灰岩中的鲕粒砾屑灰岩,为风暴水流冲越鲕滩,在滩后湖近滩一侧的风暴沉积;类型Ⅵ为湖相风暴岩,由冲刷面构造、薄层内碎屑灰岩及丘状交错层理的组合,顶部具晴天沉积。各种序列在垂向上叠置,构成向上变浅序列。风暴沉积的研究对于深化区域古地理及地层对比研究具有重要的理论和现实意义。  相似文献   

3.
波—流相互作用是复杂水动力条件下流体相互作用的主要方式之一,由波—流相互作用形成的复合流沉积是目前沉积学在流体相互作用这一领域研究较多的一种沉积类型。以已有的文献为基础,对波—流相互作用下细砂级颗粒的运动机制进行了综述,预测了波—流相互作用的沉积特征,总结了复合流的沉积构造鉴别标志。取得的主要认识有: (1)波—流相互作用总体上属于衰弱流(waning flow)悬浮沉积,其微观的沉积机制可分为5种: 越过崩落点的喷射沉积(S1)、残余涡动沉积(S2)、未到崩落点的喷射沉积(S3)、背流面的崩落沉积(S4)、垂直降落沉积(S5);(2)波—流相互作用的沉积过程总体上受悬砂量和沉积时间的控制,5种微观沉积机制在不同的悬砂量和沉积时间条件下可形成不同的沉积机制组合,从而导致不同的底床形态;(3)复合流沉积构造鉴别标志主要有: 复合流波痕、复合流层理、爬升型复合流层理、不对称丘状交错层理、准平行层理和频繁交替的不能充分发育的浪成波纹层理与流水层理等6类。上述认识对于复杂水动力条件下的沉积学研究及对深水、浅水沉积环境的识别均具有重要的意义。  相似文献   

4.
湖南桃江半边山先寒武纪马底驿组陆屑风暴岩   总被引:2,自引:1,他引:2  
关尹文  范法明 《沉积学报》1990,8(1):115-121
本区马底驿组陆屑风暴岩的沉积构造非常清晰,其中有丘状交错层理、差异层理、层面构造、袋模、渠模、韵律层理和多种准同时变形构造.剖面可分为由块状层和韵律层组成的八个一级韵律,块状层为含砾泥质粉砂岩,韵律层由一系列二级韵律组成.根据沉积构造特征,自下而上划分为:斜坡带风暴浊流沉积、外陆棚风暴碎屑流沉积和陆棚风暴碎屑流沉积,海水逐渐变浅,为一海退层序。  相似文献   

5.
深水复合流沉积研究近年来尚处于起步阶段,发现新的实例并探讨复合流沉积构造对环境的指示作用具有重要意义。鄂尔多斯盆地西缘北部内蒙古桌子山地区上奥陶统拉什仲组以深水斜坡至盆地环境下浊流沉积为主,兼有等深流沉积和内波、内潮汐沉积,沉积时具有复杂的水动力条件。在详细的野外观察和测量的基础上,结合已有水槽实验和相关实例的研究成果,对拉什仲组有关复合流沉积构造进行了详细研究。在深水沉积环境中发现了典型的复合流沉积构造,包括复合流层理、准平行层理和小型似丘状交错层理。垂向上可归纳为6种沉积构造序列,分别为:(a)正粒序层—浪成波纹层理—复合流层理;(b)准平行层理—正粒序层—复合流层理;(c)正粒序层—准平行层理;(d)准平行层理—双向交错层理—小型似丘状交错层理;(e)黏土岩中的叠置小型似丘状交错层理和(f)黏土岩中的复合流层理。结合拉什仲组沉积环境和沉积类型,复合流沉积可能为深水环境下浊流、等深流和内波流交互作用形成,依据流体与海底地形的作用,可划分为浊流抑制区(序列a和b)、强交互区(序列c)、内波作用区(序列d)和弱交互区(序列e和f)。该研究对于在地层记录中研究内波、内潮汐与海底地形作用和有关沉积相带划分具有重要意义。  相似文献   

6.
鄂东黄石地区下三叠统大冶组风暴沉积   总被引:4,自引:3,他引:1  
鄂东黄石地区下三叠统大冶组灰岩中发育了典型的风暴沉积,风暴岩由砾屑灰岩、颗粒灰岩和泥灰岩组成,其中风暴沉积构造包括丘状交错层理、递变层理、砾屑的撕裂构造及水平层理等,不同层位具有不同的风暴沉积构造类型和组合特征。根据风暴沉积的岩石特征、构造类型、规模、组合特点,并结合沉积背景分析,风暴沉积序列可进一步分为深水远源型、过渡型和浅水近源型。大冶组一段风暴沉积具有深水远源特点,沉积环境为水体较深的外陆棚; 大冶组二段风暴沉积具有过渡型特点,沉积环境为向上变浅的内陆棚; 大冶组三、四段风暴沉积具有浅水近源特点,沉积环境为浅水陆棚至滨岸。大冶组沉积序列具有向上变浅的特点,沉积环境由深水陆棚逐渐向滨岸转变。风暴沉积的识别对重建鄂东黄石地区早三叠世古地理具有重要意义。  相似文献   

7.
青岛灵山岛中生界下白垩统碎屑岩中发育了很好的风暴岩与风暴沉积,其特点是:(1)丘状、洼状构造及丘状、洼状交错层理经常可见;丘状交错层理呈对称或近对称丘状,一般发育在三角洲前缘暗色薄层状砂泥岩互层中,薄层一般厚1~2,cm,有时也可以更厚;砂岩中常有平行层理或低角度交错层理,也可以发育丘状交错层理;细层较厚,多在1~2,cm,甚至3~4,cm;但砂岩多数呈块状;洼状交错层理相对较少,多不完善;洼状构造则相对多见。(2)冲刷侵蚀面非常发育。多波状起伏或凹凸不平,起伏可达20~30,cm,甚至更大;内部的冲刷侵蚀面常不连续,但底部的冲刷侵蚀面连续性很好。(3)中厚层状砂岩内部的冲刷侵蚀面可以分为多个次级层,但常因冲刷面的不连续而上下合并在一起。(4)砂岩中常含有内碎屑,以暗色泥砾为主,小者直径多在1~2,cm,大者可达10,cm以上,形态多变;长轴多顺层分布;有时集中在砂岩的顶部。(5)以中细砂岩为主,没有真正的砾岩;砂岩的分选性可以较好。(6)发育了大量的多尺度、多类型软沉积物的变形构造。(7)有时候含有炭屑。灵山岛风暴岩和风暴沉积的发现,揭示了这套沉积是在一个相对较浅水的湖泊条件下形成的,而非海洋深水;此外,风暴形成的砂岩下移到三角洲前缘相中,使其更加靠近烃源岩,优化了生储关系,有利于油气成藏。  相似文献   

8.
阮伟  黄洁 《沉积学报》2010,28(1):118-127
以位于西班牙东北部的比利牛斯前陆盆地(Pyrenean Foreland Basin)南部的Roda砂岩组三段为对象,研究潮流沙脊、沙波的内部结构特征。主要的沉积结构为大型楔状、板状交错层理,局部发育大型槽状交错层理,平行层理和小型波纹层理等。垂向上,板状交错层理呈向上变粗变厚的趋势。潮汐束厚度周期性变化,复活面众多,双泥层不发育,局部可见鱼骨状交错层理。交错层理底部生物扰动强,内部较弱,贝壳碎屑常见,泥粒在交错层理底部普遍,古水流方向多变但主要以向西方向为主,主流方向与三角洲的前积方向呈锐角至平行关系,指示潮流沙脊和沙波共存。  相似文献   

9.
首次提出在孤南洼陷沙河街组沙三中亚段发育风暴岩沉积。根据岩心观察及分析,发现两处风暴岩沉积分别发育于浅湖和三角洲前缘沉积环境中。本区风暴岩沉积中发育以下相互伴生而具有指相作用的沉积构造,层面构造包括:渠模、截切、风暴形成的冲刷面;层理构造包括:块状层理、丘状交错层理、洼状交错层理、波状层理和浪成砂纹交错层理5种层理构造;以及生物逃逸迹及同生变形构造。本区风暴岩理想的垂向沉积序列可概括为"似鲍马序列",自下而上为:SA,递变层理段;SB,平行层理段;SC,风暴浪振荡作用段;SD,波状层理段;SE,泥岩段。本次风暴沉积的发现,将有助于对孤南洼陷沙三中亚段地层沉积时期滨浅湖范围的界定,增加了新的沉积相类型,为岩石地层的划分提供了新依据;此外,也为寻找良好的油气储集层和生油层提供了新空间。  相似文献   

10.
风暴岩对于古地理和古环境具有良好的指相意义。东海盆地西湖凹陷天台区始新世平湖组发育典型的风暴岩。通过详细的岩心观察,发育的风暴沉积标志主要有冲刷-充填构造、风暴撕扯构造和丘状-洼状交错层理构造等。根据风暴岩垂向上的组合特征及沉积构造差异,识别出了近源和远源两种风暴沉积类型,分别指示了不同的沉积背景:近源风暴岩表现为不完整的风暴岩垂向沉积序列,呈风暴砾屑层段(A)+泥岩段(E)叠加,为潮坪潮下带沉积;远源风暴岩具完整和不完整的风暴岩垂向沉积序列,以粒序段(B)+平行层理段(C)+丘状(洼状)层理段(D)叠加为特征,属浅海陆棚沉积。风暴层序自下而上沉积环境为浅海陆棚→潮坪,风暴岩的分布差异表明形成环境向上变浅的沉积特征。该发现为本区古环境的演变提供了重要依据。  相似文献   

11.
Li Xiang-Dong 《古地理学报》2021,22(6):1065-1080
Hummocky and hummocky-like cross-stratification(HCS and HCS-like)as the identification criteria for sedimentary environments have recently become confused because of the little knowledge on their genetic mechanism based on the following facts: HCS and HCS-like are often associated with storm deposits and turbidity current deposits,respectively; the views on HCS produced in shallow water environments and HCS-like produced in deep-water environments have been abandoned recently. According to the detail reviews on structural and morphologic characteristics and vertical sequence of HCS and HCS-like from literatures,here we found that: (1) the special features of HCS include the sharp or erosional basal contact,the internal truncation surface,close relationship with swaley cross-stratification,and the missing zone or amalgamation of HCS in vertical sequence;(2) the special features of HCS-like often include various thickness of individual lamina,hummocky layer interbedded with parallel bedding or small-scale cross-bedding under continuous deposition,and alternating sedimentary structures of upper and lower flow regime in vertical sequence. According to hydrodynamic theory and flume experiment achievements,these results show that the genetic mechanism of HCS and HCS-like could be divided into two parts,hydrodynamic mechanism and depositional mechanism. The hydrodynamic mechanism of HCS and HCS-like is same and could be interpreted by vertical vortex generated by baroclinic wave in nature. However,depositional mechanism of HCS and HCS-like is very different: HCS and HCS-like could be interpreted by erosion suspending sand mechanism and suspending sand settling mechanism,respectively,and the special features in HCS and HCS-like are due to the different sediment suspension concentration and depositional flow energy. The division for hydrodynamic and depositional mechanism of HCS and HCS-like is very significant in determining sedimentary environments from depositional flow evolution perspective.  相似文献   

12.
There has been a lively debate since the 1980s on distinguishing between paleo-tsunami deposits and paleo-cyclone deposits using sedimentological criteria. Tsunami waves not only cause erosion and deposition during inundation of coastlines in subaerial environments, but also trigger backwash flows in submarine environments. These incoming waves and outgoing flows emplace sediment in a wide range of environments, which include coastal lake, beach, marsh, lagoon, bay, open shelf, slope and basin. Holocene deposits of tsunami-related processes from these environments exhibit a multitude of physical, biological and geochemical features. These features include basal erosional surfaces, anomalously coarse sand layers, imbricated boulders, chaotic bedding, rip-up mud clasts, normal grading, inverse grading, landward-fining trend, horizontal planar laminae, cross-stratification, hummocky cross-stratification, massive sand rich in marine fossils, sand with high K, Mg and Na elemental concentrations and sand injections. These sedimentological features imply extreme variability in processes that include erosion, bed load (traction), lower flow regime currents, upper-flow regime currents, oscillatory flows, combined flows, bidirectional currents, mass emplacement, freezing en masse, settling from suspension and sand injection. The notion that a ??tsunami?? event represents a single (unique) depositional process is a myth. Although many sedimentary features are considered to be reliable criteria for recognizing potential paleo-tsunami deposits, similar features are also common in cyclone-induced deposits. At present, paleo-tsunami deposits cannot be distinguished from paleo-cyclone deposits using sedimentological features alone, without historical information. The future success of distinguishing paleo-tsunami deposits depends on the development of criteria based on systematic synthesis of copious modern examples worldwide and on the precise application of basic principles of process sedimentology.  相似文献   

13.
The hydrodynamic mechanisms responsible for the genesis and facies variability of shallow-marine sandstone storm deposits (tempestites) have been intensely debated, with particular focus on hummocky cross-stratification. Despite being ubiquitously utilized as diagnostic elements of high-energy storm events, the full formative process spectrum of tempestites and hummocky cross-stratification is still to be determined. In this study, detailed sedimentological investigations of more than 950 discrete tempestites within the Lower Cretaceous Rurikfjellet Formation on Spitsbergen, Svalbard, shed new light on the formation and environmental significance of hummocky cross-stratification, and provide a reference for evaluation of tempestite facies models. Three generic types of tempestites are recognized, representing deposition from: (i) relatively steady and (ii) highly unsteady storm-wave-generated oscillatory flows or oscillatory-dominated combined-flows; and (iii) various storm-wave-modified hyperpycnal flows (including waxing–waning flows) generated directly from plunging rivers. A low-gradient ramp physiography enhanced both distally progressive deceleration of the hyperpycnal flows and the spatial extent and relative magnitude of wave-added turbulence. Sandstone beds display a wide range of simple and complex configurations of hummocky cross-stratification. Features include ripple cross-lamination and ‘compound’ stratification, soft-sediment deformation structures, local shifts to quasi-planar lamination, double draping, metre-scale channelized bed architectures, gravel-rich intervals, inverse-to-normal grading, and vertical alternation of sedimentary structures. A polygenetic model is presented to account for the various configurations of hummocky cross-stratification that may commonly be produced during storms by wave oscillations, hyperpycnal flows and downwelling flows. Inherent storm-wave unsteadiness probably facilitates the generation of a wide range of hummocky cross-stratification configurations due to: (i) changes in near-bed oscillatory shear stresses related to passing wave groups or tidal water-level variations; (ii) multidirectional combined-flows related to polymodal and time-varying orientations of wave oscillations; and (iii) syndepositional liquefaction related to cyclic wave stress. Previous proximal–distal tempestite facies models may only be applicable to relatively high-gradient shelves, and new models are necessary for low-gradient settings.  相似文献   

14.
This study proposes a tsunami depositional model based on observations of emerged Holocene tsunami deposits in outcrops located in eastern Japan. The model is also applicable to the identification of other deposits, such as those laid down by storms. The tsunami deposits described were formed in a small bay of 10–20-m water depth, and are mainly composed of sand and gravel. They show various sedimentary structures, including hummocky cross-stratification (HCS) and inverse and normal grading. Although, individually, the sedimentary structures are similar to those commonly found in storm deposits, the combination of vertical stacking in the tsunami deposits makes a unique pattern. This vertical stacking of internal structures is due to the waveform of the source tsunamis, reflecting: 1) extremely long wavelengths and wave period, and 2) temporal changes of wave sizes from the beginning to end of the tsunamis.

The tsunami deposits display many sub-layers with scoured and graded structures. Each sub-layer, especially in sandy facies, is characterized by HCS and inverse and normal grading that are the result of deposition from prolonged high-energy sediment flows. The vertical stack of sub-layers shows incremental deposition from the repeated sediment flows. Mud drapes cover the sub-layers and indicate the existence of flow-velocity stagnant stages between each sediment flow. Current reversals within the sub-layers indicate the repeated occurrence of the up- and return-flows.

The tsunami deposits are vertically divided into four depositional units, Tna to Tnd in ascending order, reflecting the temporal change of wave sizes in the tsunami wave trains. Unit Tna is relatively fine-grained and indicative of small tsunami waves during the early stage of the tsunami. Unit Tnb is a protruding coarse-grained and thickest-stratified division and is the result of a relatively large wave group during the middle stage of the tsunami. Unit Tnc is a fine alternation of thin sand sheets and mud drapes, deposited from waning waves during the later stage of the tsunami. Unit Tnd is deposited during the final stage of the tsunami and is composed mainly of suspension fallout. Cyclic build up of these sub-layers and depositional units cannot be explained by storm waves with short wave periods of several to ten seconds common in small bays.  相似文献   


15.
Herring-bone cross-stratification occurs in tributary mouth bar sediments less than 150 yr old in Warrena Creek near its confluence with the Castlereagh River some 2000 river kilometres from the sea in northern New South Wales. These streams have low gradients, with straight to anastomosing channels which become sinuous and distributive downstream. Channel beds are sand but banks are almost exclusively mud which is burrowed and extensively penetrated by roots. Herring-bone cross-stratification results from flow reversals in Warrena Creek during flood events. Flow direction depends upon discharge and stage in the creek relative to that in the adjacent river. The lithofacies resemble inter-tidal deposits and could easily be misidentified on the basis of herring-bone cross-stratification in an ancient sedimentary sequence. Herringbone cross-stratification should be regarded as diagnostic of depositional environments in which current directions are principally determined by reversals of water surface gradient, rather than by regional slope. Flow reversal phenomena may be a characteristic of very low gradient fluvial systems.  相似文献   

16.
鄂尔多斯盆地东胜地区沉积体系与砂岩型铀成矿   总被引:7,自引:0,他引:7  
赵宏刚  欧光习 《铀矿地质》2006,22(3):136-142,189
沉积体系分析在可地浸砂岩型铀矿床的研究中起着非常重要的作用.本文以沉积体系分析和层序地层学为依据,对鄂尔多斯盆地东胜地区中侏罗统直罗组沉积体系特征、沉积相的空间展布、沉积环境的演化和层序地层学等方面进行了研究,认为:(1)沉积相的平面分布控制着砂体的空间展布,进而影响着赋铀砂体的空间分布;(2)沉积相和沉积环境的演化创造了良好的岩相及岩性组合条件,有利于层间氧化作用的进行;(3)沉积层序控制了3层结构的岩性空间组合.  相似文献   

17.
通过对青海通天河盆地古、新近纪地层层序、沉积特征、物源区及沉积环境分析,建立其垂向相序,总结出该区具冲积扇相、三角洲相、湖泊相的特点,并得出通天河盆地古、新近纪物源区主要为北部开心岭隆起区的结论。根据石膏、灰岩夹层及粒度特征等环境标志推测:中始新世气候炎热湿润,晚始新世气候炎热干燥,渐新世气候炎热湿润,中中新世气候温暖潮湿;青藏高原的隆升具有阶段性。  相似文献   

18.
Hummocky cross-stratification is a sedimentary structure which is widely interpreted as the sedimentary record of an oscillatory current generated by energetic storm waves remobilizing surface sediment on the continental shelf. Sedimentary structures named hummocky cross-stratification-like structures, similar to true hummocky cross-stratification, have been observed in the Turonian–Senonian Basque Flysch Basin (south-west France). The bathymetry (1000 to 1500 m) suggests that the observed sedimentary structures do not result from a hydrodynamic process similar to those acting on a continental shelf. The morphology of these three-dimensional structures shares similarities with the morphology of hummocky cross-stratification despite a smaller size. The lateral extent of these structures ranges from a few decimetres to many decimetres; they consist of convex-up domes (hummock) and concave-up swales with a non-erosive base. Four types of hummocky cross-stratification-like geometries are described; they occur in association with structures such as climbing current ripple lamination and synsedimentary deformations. In the Basque Flysch, hummocky cross-stratification-like structures are only found in the Tc interval of the Bouma sequence. Hummocky cross-stratification-like structures are sporadic in the stratigraphic series and observed only in few turbidite beds or bed packages. This observation suggests that hummocky cross-stratification-like structures are linked genetically to the turbidity current but form under a very restricted range of parameters. These structures sometimes show an up-current (upslope) migration trend (antidunes). In the described examples, they could result from standing waves forming at the upper flow interface because of Kelvin–Helmholtz instability.  相似文献   

19.
通过对四川盆地龙门山区甘溪石沟里剖面实测,建立了石沟里剖面泥盆系养马坝组风暴沉积的识别标志,进而对其风暴岩进行了系统研究。石沟里养马坝组风暴沉积的重要标志包括冲刷面、渠模等风暴侵蚀构造和粒序层理、平行层理、丘状交错层理等风暴浪构造。该区养马坝组发育了6种类型的风暴沉积单元组成序列,据此建立了完整的风暴序列模式,由粒序层理段(Sa)、平行层理段(Sb)、丘状交错层理段(Sc)、波状层理段(Sd)和泥岩段(Se)组成,底部常发育冲刷面和渠模构造。龙门山区甘溪石沟里养马坝组风暴沉积可分为近源风暴和远源风暴2种类型,依据风暴沉积的剖面结构类型和沉积构造特点,建立了该区风暴沉积序列的分布模式。龙门山区甘溪石沟里养马坝组发育的风暴沉积是该区混合沉积发育、抑制生物礁发育的重要控制因素,对于该区古地理重建具有重要的指示意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号