首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
吕伟才  高井祥  刘天骏 《测绘科学》2019,44(11):195-204
针对提高多频模糊度固定解的GNSS精密单点定位的可靠性与稳定性的问题,该文基于实时非组合相位偏差产品,对三频非差非组合GPS/Galileo PPP的浮点解、固定解模型进行深入研究,并设计了3种定位策略,选取了17个MGEX跟踪站7d的实测数据,分析了三频非差模糊度固定解对静态、仿动态PPP定位精度与滤波收敛时间的影响。结果表明,滤波收敛后,与浮点解策略相比较,固定三频模糊度对高程、水平方向定位精度均有提高,在静态定位模式中提升幅度分别约为20.45%和37.50%,在仿动态定位模式中提升幅度分别约为22.41%和33.33%。在滤波收敛时间方面,相较于浮点解策略的收敛时间,静态与仿动态定位中模糊度固定策略的收敛时间分别提升了约12.57%和6.41%。  相似文献   

2.
PPP/PPP-RTK新进展与北斗/GNSS PPP定位性能比较   总被引:9,自引:7,他引:9  
张小红  胡家欢  任晓东 《测绘学报》1957,49(9):1084-1100
首先简要回顾了精密单点定位(PPP)技术在最近几年的发展现状,重点总结了高采样率钟差实时快速估计、多系统组合PPP模糊度固定、多频GNSS PPP模型及其模糊度固定、PPP快速初始化、PPP-RTK等若干热点方向的最新研究进展。在此基础上,利用目前四大卫星导航系统(GPS、GLONASS、Galileo、北斗)最新的实际观测数据,全面比较分析了各系统及多系统组合PPP定位性能,重点给出了北斗二号+北斗三号PPP浮点解和固定解的定位精度、收敛时间和首次固定时间。结果表明:我国北斗导航卫星系统已经可以实现与其他导航卫星系统基本相当的PPP定位性能。北斗二号+北斗三号组合PPP的收敛时间/首次固定时间20~30 min;静态解的东、北、天方向定位精度在毫米到厘米级;动态解水平方向约5 cm,高程方向约7 cm;多系统组合可显著提高PPP定位精度、收敛时间和首次固定时间:固定解定位精度比浮点解在东、北、天方向分别提升了14.8%、12.0%和12.8%;相比单GPS,多系统组合PPP浮点解的收敛时间和固定解首次固定时间分别缩短了36.5%和40.4%。  相似文献   

3.
非差模糊度固定能够有效提高精密单点定位(PPP)的定位精度和收敛速度,是国内外卫星导航定位领域的研究热点。基于整数钟实现了PPP非差模糊度固定,在非差模糊度逐级固定中分别估计接收机宽巷偏差和窄巷偏差;对宽巷和窄巷模糊度进行改正,从而消除了接收机硬件延迟对模糊度的影响;同时采用取整成功率检验和ratio值检验,保证模糊度固定的可靠性。将以上方法应用到动态精密单点定位中,实验结果表明:仿动态条件下,模糊度正确固定后,东、北向定位精度达到mm级、天向定位精度优于5 cm;动态解算条件下,采用1 s采样间隔数据16 min左右即可实现模糊度的首次固定。PPP固定解在东、北、天3个方向的定位精度分别为1.5、2.7和1.3 cm,相比于浮点解分别提升了61%、40%和38%。  相似文献   

4.
整数相位钟法精密单点定位模糊度固定模型及效果分析   总被引:1,自引:1,他引:0  
刘帅  孙付平  郝万亮  刘婧  李海峰 《测绘学报》2014,43(12):1230-1237
精密单点定位(PPP)模糊度固定方法有3种:星间单差法、整数相位钟法和钟差解耦法,但目前仅法国CNES公开发布用于整数相位钟法PPP模糊度固定的产品,因此研究基于整数相位钟法的用户端PPP模糊度固定模型很有必要.本文分析了整数相位钟法PPP模糊度固定模型,着重指出该模型与传统浮点解PPP模型的区别;提出一种顾及质量控制的逐级模糊度固定策略用于具体实施PPP模糊度固定.大量动态PPP解算试验表明:与浮点解PPP相比,固定解PPP具有更快的收敛速度且定位精度和稳定性更好.  相似文献   

5.
星间单差精密单点定位部分模糊度固定方法   总被引:1,自引:0,他引:1  
针对传统的精密单点定位(PPP)技术由于收敛速度慢、获取高精度位置信息所需时间较长而无法满足用户对于快速高精度定位的需求的问题,该文采用了单差小数周偏差(FCB)产品固定模糊度的方法,以及部分模糊度固定的固定策略,来达到最优化使用固定解的PPP.通过对测站的数据的静态和仿动态实验分析验证,结果表明,进行部分模糊度固定的固定解定位精度要优于使用模糊度浮点解进行PPP得到的实数解的定位精度,收敛速度也有提升;而且相比于全模糊度固定策略,部分模糊度固定策略可以提升模糊度的历元固定率,使更多的固定模糊度的卫星可以参与定位,提升了定位的精度和收敛速度.  相似文献   

6.
模糊度固定能够显著提高精密单点定位(PPP)的精度和收敛速度,是国内外卫星导航定位领域的研究热点.本文通过最小二乘法分离接收机端和卫星端小数周偏差(FCB),恢复非差模糊度的整数特性,将得到的卫星端FCB提供给用户,能够实现非差模糊度固定的PPP.采用全球IGS跟踪站的观测数据进行非差FCB解算,实验结果表明,宽巷FCB的稳定性较好,一周内变化小于0.1周,而窄巷FCB一天内变化较大.将获得的FCB用于模糊度固定PPP实验,E、N、U三个方向的定位精度分别为0.7 cm、0.8 cm和2.1 cm,与浮点解PPP相比,分别提高68%、51%和37%,验证了本文估计的FCB用于模糊度固定PPP的定位性能   相似文献   

7.
与模糊度为浮点解的精密单点定位(precise point positioning,PPP)相比,PPP模糊度固定技术具有更快的收敛速度和更好的定位精度。但当GPS卫星数目少或几何构形不好时,需要较长时间实现GPS PPP模糊度的首次固定,通过加入GLONASS卫星可以有效缩短首次固定时间。推导了基于整数相位钟法的GPS/GLONASS组合PPP模型并进行了大量实验解算。40组静态模拟动态实验表明,GPS PPP模糊度首次固定平均需要50.2min,但在GLONASS辅助下只需25.7min,减少了48.8%,而且定位精度也有提高。车载动态实验表明,由于受观测条件限制,GPS PPP模糊度难以固定,但在GLONASS辅助下仍能实现GPS PPP模糊度固定。  相似文献   

8.
在精密单点定位(precise point positioning,PPP)技术中,模糊度固定错误将导致严重的定位偏差,为保证PPP模糊度实现更可靠的固定,需对模糊度子集的选取方式进行优化。提出了一种将质量控制与施密特正交化相结合的PPP部分模糊度固定方法。在全球导航卫星系统(global navigation satellite system,GNSS)多系统融合条件下, 选取多模GNSS实验数据,在非差非组合PPP模型中对比分析施密特正交化方法与高度角选星方法,并进行模糊度固定及定位性能验证。结果表明,施密特正交化方法相比高度角选星方法,各天与各站平均历元固定率在静态模式下分别提高了7.74%与11.46%,在仿动态模式下分别提高了7.90%与7.78%;各天与各站的首次固定时间在静态模式下分别提高了22.30%与25.42%,在仿动态模式下分别提高了20.44%与19.65%。在PPP模糊度固定和定位精度方面,多系统融合相比单BDS(BeiDou navigation satellite system)提升效果明显,在95%分位数条件下,水平和高程方向收敛时间分别平均减少20.00 min和19.00 min,水平和高程方向定位精度分别平均改善了1.50 cm和1.12 cm。在非差非组合PPP模型中,采用施密特正交化PPP部分模糊度固定方法可以显著提升模糊度固定性能,改善定位精度。  相似文献   

9.
采用MGEX网提供的GPS、GLONASS、BDS、GALILEO四系统双频观测数据,以CODE、GBM、WUM、GRG精密产品进行了静/准动态模式下多系统组合无电离层延迟PPP浮点解与整数钟法固定解实验。结果表明多系统的组合提升了定位精度,尤其是GLONASS的加入效果最明显,CODE与GBM产品的解算精度优于WUM、GRG产品。部分模糊度固定相比全模糊度固定的效果显著,模糊度固定明显缩短了PPP收敛时间,在静态模式下相对浮点解精度提升10%以内,动态模式下E方向与U方向精度提升效果最好。  相似文献   

10.
针对BDS单系统未校准相位延迟(UPD)估计以及不同时长精密单点定位(PPP)模糊度固定对定位精度影响的问题,该文选取56个测站估计UPD,利用未参与UPD计算的8个测站进行不同时长BDS静态PPP模糊度固定实验。结果表明:BDS星间单差宽巷和窄巷UPD在连续时段内具有一定的稳定性,其估计精度满足用于PPP模糊度固定要求。时长越短模糊度固定率越低。以IGS周解为参考值,不同时长模糊度固定解较浮点解三维定位精度均提高12%以上,时长越短模糊度固定解精度提高越显著。因此,模糊度固定是提高BDSPPP定位精度的重要手段。  相似文献   

11.
基于部分整周模糊度固定的非差GPS精密单点定位方法   总被引:2,自引:2,他引:0  
潘宗鹏  柴洪洲  刘军  董冰全  刘鸣  王华润 《测绘学报》2015,44(11):1210-1218
近年来,精密单点定位(PPP)模糊度固定技术不断发展,模糊度正确固定后可以提高短时间的定位精度。然而固定错误的模糊度,将引起严重的定位偏差,因此对PPP模糊度固定的成功率和可靠性进行研究很有必要。本文探讨了采用非差小数偏差(FCBs)改正的PPP模糊度固定方法;同时提出了一种分步质量控制的PPP部分模糊度固定(PAR)策略。通过欧洲CORS数据对该方法进行验证,结果表明:PPP模糊度固定可以提高小时解静态PPP定位精度。同时,采用部分模糊度固定策略,能够有效控制未收敛模糊度影响,提高用户端PPP模糊度固定成功率。  相似文献   

12.
Ambiguity resolved precise point positioning with GPS and BeiDou   总被引:2,自引:1,他引:1  
This paper focuses on the contribution of the global positioning system (GPS) and BeiDou navigation satellite system (BDS) observations to precise point positioning (PPP) ambiguity resolution (AR). A GPS + BDS fractional cycle bias (FCB) estimation method and a PPP AR model were developed using integrated GPS and BDS observations. For FCB estimation, the GPS + BDS combined PPP float solutions of the globally distributed IGS MGEX were first performed. When integrating GPS observations, the BDS ambiguities can be precisely estimated with less than four tracked BDS satellites. The FCBs of both GPS and BDS satellites can then be estimated from these precise ambiguities. For the GPS + BDS combined AR, one GPS and one BDS IGSO or MEO satellite were first chosen as the reference satellite for GPS and BDS, respectively, to form inner-system single-differenced ambiguities. The single-differenced GPS and BDS ambiguities were then fused by partial ambiguity resolution to increase the possibility of fixing a subset of decorrelated ambiguities with high confidence. To verify the correctness of the FCB estimation and the effectiveness of the GPS + BDS PPP AR, data recorded from about 75 IGS MGEX stations during the period of DOY 123-151 (May 3 to May 31) in 2015 were used for validation. Data were processed with three strategies: BDS-only AR, GPS-only AR and GPS + BDS AR. Numerous experimental results show that the time to first fix (TTFF) is longer than 6 h for the BDS AR in general and that the fixing rate is usually less than 35 % for both static and kinematic PPP. An average TTFF of 21.7 min and 33.6 min together with a fixing rate of 98.6 and 97.0 % in static and kinematic PPP, respectively, can be achieved for GPS-only ambiguity fixing. For the combined GPS + BDS AR, the average TTFF can be shortened to 16.9 min and 24.6 min and the fixing rate can be increased to 99.5 and 99.0 % in static and kinematic PPP, respectively. Results also show that GPS + BDS PPP AR outperforms single-system PPP AR in terms of convergence time and position accuracy.  相似文献   

13.
The main challenge of dual-frequency precise point positioning (PPP) is that it requires about 30 min to obtain centimeter-level accuracy or to succeed in the first ambiguity-fixing. Currently, PPP is generally conducted with GPS only using the ionosphere-free combination. We adopt a single-differenced (SD) between-satellite PPP model to combine the GPS and GLONASS raw dual-frequency carrier phase measurements, in which the GPS satellite with the highest elevation is selected as the reference satellite to form the SD between-satellite measurements. We use a 7-day data set from 178 IGS stations to investigate the contribution of GLONASS observations to both ambiguity-float and ambiguity-fixed SD PPP solutions, in both kinematic and static modes. In ambiguity-fixed PPP, we only attempt to fix GPS integer ambiguities, leaving GLONASS ambiguities as float values. Numerous experimental results show that PPP with GLONASS and GPS requires much less convergence time than that of PPP with GPS alone. For ambiguity-float PPP, the average convergence time can be reduced by 45.9 % from 22.9 to 12.4 min in static mode and by 57.9 % from 40.6 to 17.7 min in kinematic mode, respectively. For ambiguity-fixed PPP, the average time to the first-fixed solution can be reduced by 27.4 % from 21.6 to 15.7 min in static mode and by 42.0 % from 34.4 to 20.0 min in kinematic mode, respectively. Experimental results also show that the less the GPS satellites are used in float PPP, the more significant is the reduction in convergence time when adding GLONASS observations. In addition, on average, more than 4 GLONASS satellites can be observed for most 2-h observation sessions. Nearly, the same improvement in convergence time reduction is achieved for those observations.  相似文献   

14.
Although integer ambiguity resolution (IAR) can improve positioning accuracy considerably and shorten the convergence time of precise point positioning (PPP), it requires an initialization time of over 30 min. With the full operation of GLONASS globally and BDS in the Asia–Pacific region, it is necessary to assess the PPP–IAR performance by simultaneous fixing of GPS, GLONASS, and BDS ambiguities. This study proposed a GPS + GLONASS + BDS combined PPP–IAR strategy and processed PPP–IAR kinematically and statically using one week of data collected at 20 static stations. The undifferenced wide- and narrow-lane fractional cycle biases for GPS, GLONASS, and BDS were estimated using a regional network, and undifferenced PPP ambiguity resolution was performed to assess the contribution of multi-GNSSs. Generally, over 99% of a posteriori residuals of wide-lane ambiguities were within ±0.25 cycles for both GPS and BDS, while the value was 91.5% for GLONASS. Over 96% of narrow-lane residuals were within ±0.15 cycles for GPS, GLONASS, and BDS. For kinematic PPP with a 10-min observation time, only 16.2% of all cases could be fixed with GPS alone. However, adding GLONASS improved the percentage considerably to 75.9%, and it reached 90.0% when using GPS + GLONASS + BDS. Not all epochs could be fixed with a correct set of ambiguities; therefore, we defined the ratio of the number of epochs with correctly fixed ambiguities to the number of all fixed epochs as the correct fixing rate (CFR). Because partial ambiguity fixing was used, when more than five ambiguities were fixed correctly, we considered the epoch correctly fixed. For the small ratio criteria of 2.0, the CFR improved considerably from 51.7% for GPS alone, to 98.3% when using GPS + GLONASS + BDS combined solutions.  相似文献   

15.
GLONASS frequency division multiple access signals render ambiguity resolution (AR) rather difficult because: (1) Different wavelengths are used by different satellites, and (2) pseudorange inter-frequency biases (IFBs) cannot be precisely modeled by means of a simple function. In this study, an AR approach based on the ionospheric-free combination with a wavelength of about 5.3 cm is assessed for GLONASS precise point positioning (PPP). This approach simplifies GLONASS AR because pseudorange IFBs do not matter, and PPP-AR can be enabled across inhomogeneous receivers. One month of GLONASS data from 165 European stations were processed for different network size and different durations of observation periods. We find that 89.9% of the fractional parts of ionospheric-free ambiguities agree well within ± 0.15 cycles for a small network (radius = 500 km), while 77.6% for a large network (radius = 2000 km). In case of the 3-hourly GLONASS-only static PPP solutions for the small network, reliable AR can be achieved where the number of fixed GLONASS ambiguities account for 97.6% within all candidate ambiguities. Meanwhile, the RMS of the east, north and up components with respect to daily solutions is improved from 1.0, 0.6, 1.2 cm to 0.4, 0.4, 1.1 cm, respectively. When GPS PPP-AR is carried out simultaneously, the positioning performance can be improved significantly such that the GLONASS ambiguity fixing rate rises from 74.4 to 95.4% in case of hourly solutions. Finally, we introduce ambiguity-fixed GLONASS orbits to re-attempt GLONASS PPP-AR in contrast to the above solutions with ambiguity-float orbits. We find that ambiguity-fixed orbits lead to clearly better agreement among ionospheric-free ambiguity fractional parts in case of the large network, that is 80.5% of fractional parts fall in ± 0.15 cycles in contrast to 74.6% for the ambiguity-float orbits. We conclude that highly efficient GLONASS ionospheric-free PPP-AR is achievable in case of a few hours of data when GPS PPP-AR is also accomplished, and ambiguity-fixed GLONASS orbits will contribute significantly to PPP-AR over wide areas.  相似文献   

16.
Integer ambiguity resolution at a single receiver can be achieved if the fractional-cycle biases are separated from the ambiguity estimates in precise point positioning (PPP). Despite the improved positioning accuracy by such integer resolution, the convergence to an ambiguity-fixed solution normally requires a few tens of minutes. Even worse, these convergences can repeatedly occur on the occasion of loss of tracking locks for many satellites if an open sky-view is not constantly available, consequently totally destroying the practicability of real-time PPP. In this study, in case of such re-convergences, we develop a method in which ionospheric delays are precisely predicted to significantly accelerate the integer ambiguity resolution. The effectiveness of this method consists in two aspects: first, wide-lane ambiguities can be rapidly resolved using the ionosphere-corrected wide-lane measurements, instead of the noisy Melbourne–Wübbena combination measurements; second, narrow-lane ambiguity resolution can be accelerated under the tight constraints derived from the ionosphere-corrected unambiguous wide-lane measurements. In the test at 90 static stations suffering from simulated total loss of tracking locks, 93.3 and 95.0% of re-convergences to wide-lane and narrow-lane ambiguity resolutions can be achieved within five epochs of 1-Hz measurements, respectively, even though the time latency for the predicted ionospheric delays is up to 180 s. In the test at a mobile van moving in a GPS-adverse environment where satellite number significantly decreases and cycle slips frequently occur, only when the predicted ionospheric delays are applied can the rate of ambiguity-fixed epochs be dramatically improved from 7.7 to 93.6% of all epochs. Therefore, this method can potentially relieve the unrealistic requirement of a continuous open sky-view by most PPP applications and improve the practicability of real-time PPP.  相似文献   

17.
At present, reliable ambiguity resolution in real-time GPS precise point positioning (PPP) can only be achieved after an initial observation period of a few tens of minutes. In this study, we propose a method where the incoming triple-frequency GPS signals are exploited to enable rapid convergences to ambiguity-fixed solutions in real-time PPP. Specifically, extra-wide-lane ambiguity resolution can be first achieved almost instantaneously with the Melbourne-Wübbena combination observable on L2 and L5. Then the resultant unambiguous extra-wide-lane carrier-phase is combined with the wide-lane carrier-phase on L1 and L2 to form an ionosphere-free observable with a wavelength of about 3.4 m. Although the noise of this observable is around 100 times the raw carrier-phase noise, its wide-lane ambiguity can still be resolved very efficiently, and the resultant ambiguity-fixed observable can assist much better than pseudorange in speeding up succeeding narrow-lane ambiguity resolution. To validate this method, we use an advanced hardware simulator to generate triple-frequency signals and a high-grade receiver to collect 1-Hz data. When the carrier-phase precisions on L1, L2 and L5 are as poor as 1.5, 6.3 and 1.5 mm, respectively, wide-lane ambiguity resolution can still reach a correctness rate of over 99 % within 20 s. As a result, the correctness rate of narrow-lane ambiguity resolution achieves 99 % within 65 s, in contrast to only 64 % within 150 s in dual-frequency PPP. In addition, we also simulate a multipath-contaminated data set and introduce new ambiguities for all satellites every 120 s. We find that when multipath effects are strong, ambiguity-fixed solutions are achieved at 78 % of all epochs in triple-frequency PPP whilst almost no ambiguities are resolved in dual-frequency PPP. Therefore, we demonstrate that triple-frequency PPP has the potential to achieve ambiguity-fixed solutions within a few minutes, or even shorter if raw carrier-phase precisions are around 1 mm. In either case, we conclude that the efficiency of ambiguity resolution in triple-frequency PPP is much higher than that in dual-frequency PPP.  相似文献   

18.
Ambiguity resolution (AR) for a single receiver has been a popular topic in Global Positioning System (GPS) recently. Ambiguity-resolution methods for precise point positioning (PPP) have been well documented in recent years, demonstrating that it can improve the accuracy of PPP. However, users are often concerned about the reliability of ambiguity-fixed PPP solution in practical applications. If ambiguities are fixed to wrong integers, large errors would be introduced into position estimates. In this paper, we aim to assess the correct fixing rate (CFR), i.e., number of ambiguities correctly fixing to the total number of ambiguities correctly and incorrectly fixing, for PPP user ambiguity resolution on a global scale. A practical procedure is presented to evaluate the CFR of PPP user ambiguity resolution. GPS data of the first 3 days in each month of 2010 from about 390 IGS stations are used for experiments. Firstly, we use GPS data collected from about 320 IGS stations to estimate global single-differenced (SD) wide-lane and narrow-lane satellite uncalibrated phase delays (UPDs). The quality of UPDs is evaluated. We found that wide-lane UPD estimates have a rather small standard deviation (Std) between 0.003 and 0.004 cycles while most of Std of narrow-lane estimates are from 0.01 to 0.02 cycles. Secondly, many experiments have been conducted to investigate the CFR of integer ambiguity resolution we can achieve under different conditions, including reference station density, observation session length and the ionospheric activity. The results show that the CFR of PPP can exceed 98.0 % with only 1 h of observations for most user stations. No obvious correlation between the CFR and the reference station density is found. Therefore, nearly homogeneous CFR can be achieved in PPP AR for global users. At user end, higher CFR could be achieved with longer observations. The average CFR for 30-min, 1-h, 2-h and 4-h observation is 92.3, 98.2, 99.5 and 99.7 %, respectively. In order to get acceptable CFR, 1 h is a recommended minimum observation time. Furthermore, the CFR of PPP can be affected by diurnal variation and geomagnetic latitude variation in the ionosphere. During one day at the hours when rapid ionospheric variations occur or in low geomagnetic latitude regions where equatorial electron density irregularities are produced relatively frequently, a significant degradation of the CFR is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号