首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The geochemical partitioning of ten elements in stratified Holocene sediments from Loch Dee, southwest Scotland, has been established by use of a five-stage sequential extraction procedure. Samples from below 15 cm sediment depth show minimal evidence of modification by anthropogenic contamination or active diagenesis and hold Fe, Mg, Cu, Cd, Co, Pb, and Ni primarily in detrital silicates or organic complexes, while Mn, Ca, and Zn reside largely in adsorbed and reducible oxide phases. In the uppermost ca 15 cm of sediment, enhanced total concentrations of Zn, Cu, and Pb reflect increased atmospheric deposition during the postindustrial period. Of these metals, only Pb displays any notable adjustment of partitioning in the enriched zone, showing disproportionate accumulation in labile oxides and organic-Pb phases. The lack of Pb and Zn carbonates in the contaminated horizon may reflect inherent thermodynamic instability under the acid surface and pore-water conditions of Loch Dee. Increments to total Mn and Co in the surficial ca 5 cm of sediment are attributable to the accumulation of secondary oxides and adsorbed species, consistent with precipitation from the interstitial pore-waters across a sedimentary redox front. The presence of metals such as Zn and Cd in soluble or acid-volatile phases in the interfacial sediment has implications for the future management of the Loch Dee basin, with leaching into the overlying waters likely, given the continuation of current trends of lake acidification.  相似文献   

2.
The behaviour of arsenic in muddy sediments of the Bay of Biscay (France)   总被引:1,自引:0,他引:1  
We have studied particulate and dissolved arsenic species in sediment and porewaters at sites in the Bay of Biscay, France, ranging in depths from 150 to 2,800 m. At all stations, major redox species (oxygen, nitrate, ammonia, total and reactive iron and manganese, sulphate and sulphur) reflect early diagenetic depth sequences of redox reactions comparable to other marine environments. Vertical distributions of dissolved and particulate As species and major redox species are related to changes in redox conditions and their major carrier phases, such as Fe and Mn-oxides. Arsenic diagenesis appears strongly dependent on Fe cycling. A subsurface maximum of dissolved As and surface enrichment of particulate As correspond to dissolution and precipitation of Fe (III) phases. Except for the shallowest and most bioturbated site, flux calculations show three different vertical diffusive As fluxes: two upwards and one downwards. Phase changes of recycled As result in local accumulations of reactive As at different redox fronts. Mass-balance calculations indicate that the upward As flux toward the oxidized layer can explain the enrichment of HCl extractable particulate As in this layer. A portion of the upward diffusing As can escape the sediment and may be fixed onto settling Fe-oxides by adsorption or co-precipitation and contribute to reactive particulate As input (i.e., As is recycled across the water sediment interface).  相似文献   

3.
At burial depths of 800-1000 m, within the epicontinental Queensland Trough of north-east Australia (ODP Site 823), microcrystalline inter- and intraskeletal mosaics of anhedral (loaf-shaped, rounded) calcite have Sr2+ values ranging from below microprobe detection limits (<150 ppm) to 8100 ppm. Host rocks are well lithified, fine-grained mixed sediment to clayey wackestone and packstone of Middle and Late Miocene age. Petrography demonstrates that calcite precipitation has spanned shallow to deep burial, overlapping formation of framboidal pyrite in the upper 50 m; shallow-burial dolomitization (<300 m); and dedolomitization during sediment consolidation and incipient chemical compaction at greater (>400–500 m) depths. Petrographic observations illustrate that the calcite microfabric formed through coalescing crystal growth resulting from one or a combination of displacive growth in clay, porphyroid neomorphism of aragonite/vaterite, and clay replacement by calcite. Sr2+ mean concentrations in calcite between depths of 800 and 1000 m are similar to an expected equilibrium pore-water concentration, using a Dsr of 0.06, and may indicate active calcite precipitation. However, Sr2+ variation (2000–5000 ppm) within and among crystals, and concentrations that range well above predicted equilibrium values for a given depth, illustrate either variable Sr2+ retention during recrystallization of shelf-derived aragonite (and authigenic local vaterite) or relative uptake of Sr2+ during calcite precipitation with burial. Within the context of calcite formation during burial to 1 km, diagenetic attributes that affect the latter process include increased concentrations of pore-water Sr2+ with depth associated with aragonite recrystallization/dissolution; upward migration of Sr-rich pore water; and increased DSr related to local variation in precipitation/recrystallization rates, differential crystal sector growth rates and/or microvariation in aragonite distribution.  相似文献   

4.
Measured pore-water concentrations of iron in interbedded pelagic and turbiditic sediments from the Nares Abyssal Plain are in excellent agreement with sediment colour and measured redox potential. The organic carbon content of these sediments appears to define the redox conditions and consequently the porewater and solid-phase concentration of constituents that are involved in early diagenetic reactions. In the turbiditic sediments the concentration of NO3 generally goes to zero within a sediment depth of 1 m, whereas at 8 m in a pelagic core from the same area the concentration of NO3 is still higher than it is in the bottom water. The pore-water concentration of Mn2+ in the turbiditic sediments increases sharply down to a depth of approximately 3 m and from thereon remains nearly constant due to saturation with respect to Mn, Ca-CO3. The pore water of the turbiditic sediments is also saturated with respect to calcite. The few “diagenetic spikes” in the pore-water concentration of NO3 and Mn2+ and the concentration/depth profile of dissolved iron, H4SiO4 and phosphate all clearly demonstrate the inhomogeneous nature of interbedded pelagic and turbiditic sediments. The simultaneous occurrence of peaks of dissolved iron/silica and of sediment intervals with a relatively high organic carbon content is attributed to enhanced early diagenetic reactions associated with the decomposition of organic matter in these specific intervals. Linked with these reactions is the irregular pore-water concentration of phosphate, which is shown to originate partly from the oxidation of organic matter, but mainly from the desorption of phosphate from iron oxide. Potential concentrations of phosphate are calculated from the stoichiometric early diagenetic reactions and compared with measured concentrations. Due to the unique combination of low porosity and relatively high sedimentation rates, the sediments from the Nares Abyssal Plain are an ideal basis for the study of such interbedded sequences of pelagic and turbiditic deposits.  相似文献   

5.
The adsorption of phosphorus on natural diagenetic iron (Feox) and manganese (Mnox) oxyhydroxides was studied in deep and littoral zone sediments of mesotrophic Lac Saint-Charles (46°56 N, 71°23 W), using a Teflon sheet technique for collecting diagenetically produced metal oxyhydroxides. Collected metal oxide amounts were greater at the deep-water station, relative to littoral zone stations reflecting sediment and local diagenetic differences. Two-layer surface complexation modeling on iron oxyhydroxide was consistent with the measured total P/Fe molar ratios except for the upper mixed Mn–Fe oxide layer from the littoral stations, where measured phosphorus exceeded the modeled phosphorus by more than fivefold. Soluble reactive phosphorus (SRP) exchange between oxyhydroxide samples and natural lake water in the laboratory revealed a labile phosphorus pool. Phosphorus determined on the Teflon sheets from the littoral zone stations appears to be related to a distinct non-humic organic carbon pool that readily exchanges SRP, while little exchange was observed from material collected from the deep-water station. We suggest that the enhanced SRP release from littoral zone sediments is due to an organic carbon and/or metal oxide-impoverished sediment matrix, limiting microbial oxide reduction and allowing phosphorus to be rapidly recycled at the sediment–water interface, instead of being slowly incorporated into humic material. The SRP fluxes revealed in our study, which originate from the solid phase at the sediment–water interface, would be difficult to resolve using interstitial pore-water samplers and might be a quantitatively important source of inorganic phosphorus in Shield lakes.  相似文献   

6.
Bulk chemical, mineralogical and selective leach analyses have been made on a suite of abyssal ferromanganese nodules and associated sediments from the S.W. equatorial Pacific Ocean. Compositional relations between nodules, sediment oxyhydroxides and nearby ferromanganese encrustations are drawn assuming that the crusts represent purely hydrogenetic ferromanganese material. Crusts, δMnO2-rich nodules and sediment oxyhydroxides are compositionally similar and distinct from diagenetic todorokitebearing nodules. Compared to Fe-Mn crusts, sediment oxyhydroxides are however slightly enriched, relative to Mn and Ni, in Fe, Cu, Zn, Ti and Al, and depleted in Co and Pb, reflecting processes of non-hydrogenous element supply and diagenesis. δMnO2 nodules exhibit compositions intermediate between Fe-Mn crusts and sediment oxyhydroxides and thus are considered to accrete oxides from both the water column and associated sediments.Deep ocean vertical element fluxes associated with large organic aggregates, biogenic calcite, silica and soft parts have been calculated for the study area. Fluxes associated with organic aggregates are one to three orders of magnitude greater than those associated with the other phases considered, are in good agreement with element accumulation rates in sediments, and are up to four orders of magnitude greater than element accumulation rates in nodules. Metal release from labile biogenic material in surface sediments can qualitatively explain the differences between the composition of Fe-Mn crusts and sediment oxyhydroxides.Todorokite-rich diagenetic nodules are confined to an eastwards widening equatorial wedge. It is proposed that todorokite precipitates directly from interstitial waters. Since the transition metal chemistry of interstitial waters is controlled dominantly by reactions involving the breakdown of organic carbon, the supply and degradation rate of organic material is a critical factor in the formation of diagenetic nodules. The wide range of (trace metal/Mn) ratios observed in marine todorokite reflects a balance between the release of trace metals from labile biogenic phases and the reductive remobilisation of Mn oxide, both of which are related to the breakdown of organic carbon.  相似文献   

7.
Pore water studies enable (1) the detection of diagenetic reactions actively occurring in the sediment at the time of sampling,(2) the distinction between principal modes of solute transport, i.e., between advection (convection) and diffusion, and (3) the assessment of mineral-solution equilibria, Pore waters are, therefore, preferred diagnostic objects in the study of diagenesis, particularly early diagenesis. The single most important factor for pore-fluid evolution in modern offshore basins is sedimentation rate which is closely correlated with organtic matter content of the sediment. Organic matter represents the most reactive sediment constituent which, through bacterial decomposition, provides some of the main solutes involved in early diagenetic mineralization reactions. On the basis of sedimentation rate and organic matter content, it is convenient to distinguish two end-members of basins (environments) with respect to early diagenesis: I. Low to intermediate-sedimentation rate basins with convection or diffusion-controlled pore-water profiles and II. high-sedimentation rate basins with reaction-controlled pore-water profiles. The first group of basins or environments, which is the subject of this paper, is typically represented by pelagic sediments. Three principally different trends of pore-water evolution occur: 1. convection-controlled profiles with no pronounced vertical gradients for the dissolved species; 2. diffusion-controlled profiles with vertical gradients but linear correlations between major ions, especially Ca and Mg, and 3. profiles with gradients but no linear correlation between the major ions. The later are transitional to the trends seen in high-sedimentation rate basins. With respect to redox-potentials, the diagenetic environments of low-sedimentation rate basins are generally oxic to suboxic.  相似文献   

8.
Increased offshore development in the Alaskan Arctic has stimulated interest in assessing potential impacts to the environment before the onset of any adverse effects. Concentrations of trace metals in sediments are used in this paper to provide one sensitive indicator of anthropogenic inputs from offshore activity over the past several decades. Sediments in coastal waters of the western Beaufort Sea are patchy with respect to sediment granulometry, organic carbon content, and concentrations of trace metals. However, results for surface sediments and age-dated cores show that nearly all samples contain natural concentrations of Ag, Ba, Be, Co, Cr, Cu, Hg, Ni, Pb, Sb, Tl, V and Zn, with metal/Al ratios that have been constant for many decades. Metal concentrations for incoming river-suspended matter compare well with sediment metal values and, along with vertical distributions in sediments, show no discernible diagenetic impacts that distort the sedimentary record for metals, except for Mn, As and possibly Cd. Slightly elevated concentrations of Ba, Hg, Ag, Sb and Zn were observed in a total of eight instances or in only 0.7% of the 1,222 data points for metals in surface sediments.  相似文献   

9.
The major and minor element composition of ferromanganese nodules from DOMES Site A has been determined by X-ray fluorescence methods. Three phases appear to control the bulk compositions: Mn and Fe oxyhydroxides and aluminosilicates. Relatively wide compositional variations are evident throughout the area. Nodules with high Mn/Fe ratios, high Cu, Mg, Mo, Ni and Zn concentrations and high todorokite/δ-MnO2 ratios have granular surface textures and are confined to an east-west trending depression with thin Quaternary sediment cover. Nodules with low Mn/Fe ratios, high concentrations of As, Ca, Ce, Co, La, P, Sr, Ti, V, Y and Zr and low todorokite/δ-MnO2 ratios have smooth surfaces and are confined to shallower areas with relatively thick Quaternary sediment to the north and south of the depression.All nodules in the area have compositions which are influenced by diagenesis, but those with the most marked diagenetic signature (high Mn/Fe and Cu/Ni ratios, low Ce/La ratios and more todorokite) are found in areas of very slow or non-existent sedimentation; many of these nodules are actually in contact with outcropping Tertiary sediment. This paradox may be resolved by postulating, by analogy with some shallow-water occurrences, that the nodules accrete from bottom waters which have enhanced particulate and dissolved metal contents derived from diagenetic reaction in areas remote from the site of nodule formation. The metals are supplied in a bottom flow (probably Antarctic Bottom Water) which also erodes, or prevents modern sedimentation in, the depression. Nodules on the flanks of the depression are not evidently affected by this flow and derive at least pan of their constituent metals from diagenetic reaction in the underlying Quaternary sediment.Apparently, abyssal diagenetic nodules can have an immediate and a remote diagenetic metal source. Metal fluxes derived from pore water dissolved metal gradients may not be relevant to particular accreting nodules if a significant fraction of their metals is derived from outside the area in which they form.  相似文献   

10.
Studies of modern cyanobacterial mats and biofilms show that they can precipitate minerals as a consequence of metabolic and degradational activities paired with ambient hydrochemical conditions. This study looked at modern microbial mats forming giant, tower‐like, groundwater‐fed, calcareous microbialites in the world's largest, highly alkaline lake; Van Gölü (Lake Van), East Turkey. Results show that microbial systems play a role not only in carbonate precipitation but also in the formation of siliceous mineral phases. Transmitted light microscopy, scanning electron microscopy and spectral observations revealed that, within the extracellular polymeric substances excreted by the mats abundant minute aragonite grains precipitated first in vivo. These minute grains were quickly succeeded and/or supplemented in the dead biomass of the cyanobacterial mat by authigenic Al–Mg–Fe siliceous phases. Silicon dioxide is available in large concentrations in the highly alkaline water of Lake Van. Divalent cations (Ca and Mg) are delivered to the microbialites mostly by groundwater springs. The precipitation of the fine‐grained siliceous phases is probably mediated by bacteria degrading the cyanobacterial biomass and complexing the excessive cations with their extracellular polymeric envelopes. The bacteria serve as nucleation centres for the subsequent precipitation of siliceous mineral phases. Generally, the biphasic (calcareous and siliceous) mineralization – characterizing Lake Van microbialites – is controlled by their interior highly dynamic hydrogeochemical situation. There, the dramatically different alkaline lake water and the Ca–Mg‐charged groundwater mix at various rates. The early diagenetic replacement of the in vivo aragonite by authigenic siliceous phases significantly increases the fossilization potential of the mat‐forming cyanobacteria. Lake Van and its giant microbialite tufa towers act as a model explaining the transformation of early diagenetic mineral phases observed in many modern and ancient carbonate marine deposits, particularly those influenced by diffusion of silica‐enriched and metal‐enriched pore waters from below the water–sediment interface.  相似文献   

11.
The accumulation and mobility of Fe, Mn, Al, Cu, Ni and Pb in the sediments of two lakes (Clearwater, pH 4.5; and McFarlane, pH 7.5) near Sudbury, Ontario have been investigated. The Al, Cu and Ni concentrations are expectedly relatively high in the overlying waters of Clearwater Lake and much lower for Al and Cu in McFarlane Lake. The low trace metal concentrations found in the anoxic porewaters of Clearwater Lake could be explained by a sharp increase in porewater pH concomitant with SO42 reduction and H2S production within the first 1–2 cm of the sediments, which has conceivably led to the precipitation of mineral phases such as AL(OH)3, NiS, and CuS. In both lakes, Fe concentrations in anoxic porewaters appear to be controlled by FeS and/or FeCO3 formation. Solubility calculations also indicate MnCO3 precipitation in McFarlane Lake. In Clearwater Lake, however, both porewater and total Mn were relatively low, a possible result of the continuous loss of Mn(II) through the acidic interface. It is suggested that upwardly decreasing total Mn profiles resulting from the removal of Mn from the top sediment layers under acidic conditions may constitute a reliable symptom of recent lake acidification.The downward diffusion of AI, Cu and Ni from the overlying water to the sediments has been estimated from their concentration gradients at the interface and compared to their total accumulation rates in the sediments. In both lakes the diffusion of Al is negligible compared to its accumulation rate. However, diffusion accounts for 24–52% of the accumulation of Cu in the sediments of Clearwater Lake, but appears negligible in McFarlane Lake. The downward diffusive flux of Ni is important and may explain 76–161% of the estimated Ni accumulation rate in Clearwater Lake, and 59% in McFarlane Lake. The porewater Cu and Ni profiles suggest that the subsurface sedimentary trace metal peaks observed in Clearwater Lake (as in other acid lakes) may not be caused by sediment leaching or by a recent reduction in sedimentation but may have a diagenetic origin instead. Diffusion to the sediments thus appears to be an important and previously overlooked trace metal deposition mechanism, particularly in acid lakes.  相似文献   

12.
Marine sediments typically exhibit steep porosity gradients in their uppermost centimeters. Although the decrease in porosity with depth below the sediment-water interface is primarily due to compression arising from the accumulation of overlying sediment, early diagenetic mineral dissolution and precipitation reactions may potentially also affect the porosity gradient. Here, we present a steady state compaction model, based on the mass and momentum conservation of total fluid and solid phases, in order to quantify the relative contributions of mineral reactions and physical compaction on porosity changes. The compaction model is applied to estimate hydraulic conductivity and compressive response coefficients of deep-sea sediments from measured porosity depth profiles. The results suggest an inverse relation between the compressive response coefficient and the lithogenic content of marine sediments. For deep-sea sediments exhibiting high rates of dissolution of siliceous shell fragments, the compaction model ignoring mineral reactions overestimates the hydraulic conductivity and compressive response coefficients. In contrast to non-compacting porous media, mineral dissolution in surficial sediments can lead to lower porosity. However, as illustrated for a deep-sea sediment in the equatorial Atlantic characterized by extensive dissolution of calcareous shell fragments, the effect of mineral dissolution and precipitation reactions on porosity gradients is, in most cases, negligible.  相似文献   

13.
The Mn distribution in Panama Basin area sediments and interstitial waters is discussed. Striking surficial Mn enrichments produced by a well-known diagenetic recycling process characterize the sediments of the region. Thermodynamic solubility calculations indicate that in at least one core interstitial waters approach saturation with respect to MnCO3. A mixed carbonate phase of composition (Mn48 Ca47 Mg5)CO3 was recovered from an ash band in the same core. The association of this material with the coarse volcaniclastic debris is thought to result from facile manganous carbonate precipitation in sediment horizons of coarser mean grain size. Since sulphate reduction in the upper two metres of Panama Basin sediments is fairly minor, little increase in alkalinity is observed, and it is postulated that significant production of carbonate alkalinity is not a prerequisite for manganous carbonate generation in hemipelagic sediments. A more important factor appears to be the availability of Mn oxides for solution during early diagenesis. Stable C isotopic analyses indicate that little C of organic origin is used in the precipitation reaction in either Panama Basin or Loch Fyne (Scotland) sediments.  相似文献   

14.
The degree of metal contamination (Zn, Pb, Cu, Ni, Cd) has been investigated in the vicinity of an old unmonitored municipal landfill in Prague, Czech Republic, where the leachate is directly drained into a surface stream. The water chemistry was coupled with investigation of the stream sediment (aqua regia extract, sequential extraction, voltammetry of microparticles) and newly formed products (SEM/EDS, XRD). The MINTEQA2 speciation-solubility calculation showed that the metals (Zn, Pb, Cu, Ni) are mainly present as carbonate complexes in leachate-polluted surface waters. These waters were oversaturated with respect to Fe(III) oxyhydroxides, calcite (CaCO3) and other carbonate phases. Three metal attenuation mechanisms were identified in leachate-polluted surface waters: (i) spontaneous precipitation of metal-bearing calcite exhibiting significant concentrations of trace elements (Fe, Mn, Mg, Sr, Ba, Pb, Zn, Ni); (ii) binding to Fe(III) oxyhydroxides (mainly goethite, FeOOH) (Pb, Zn, Cu, Ni); and (iii) preferential bonding to sediment organic matter (Cu). These processes act as the key scavenging mechanisms and significantly decrease the metal concentrations in leachate-polluted water within 200 m from the direct leachate outflow into the stream. Under the near-neutral conditions governing the sediment/water interface in the landfill environment, metals are strongly bound in the stream sediment and remain relatively immobile.  相似文献   

15.
Datangpo-type sedimentary manganese deposits, which are located in northeastern Guizhou province and its adjacent areas, are Mn carbonate-type deposits hosted in black carbonaceous shale that represent a series of medium to large deposits containing a huge tonnage of reserves. PAAS-normalized rare earth element distribution patterns of manganese ores record “hat-shaped” REY (REE + Y) plots characterized by pronounced middle rare earth element enrichment, evident positive Ce anomalies, weak to strong positive Eu anomalies and negligible negative Y anomalies. These REY geochemical characteristics are different from those of country rocks and record the processes and features of sedimentation and diagenesis. Manganese was precipitated as Mn-oxyhydroxide particles in oxidized water columns with the sorption of a certain amount of rare earth elements, subsequently transforming from Mn-oxyhydroxides to rhodochrosite and redistributing REY in reducing alkaline pore-water during early diagenesis. A number of similarities can be observed through a comparison of Datangpo-type manganese ores and modern marine ferromanganese oxyhydroxide precipitates based on their rare earth elements. The precipitation of Datangpo-type manganese ores is similar to that of hydrogenetic crusts and nodules based on their positive Ce anomalies and relatively higher total REY concentrations. However, several differences also exist. Compared to hydrogenetic crusts and nodules, Datangpo-type manganese ores record smaller positive Ce anomalies, lower total REY concentrations, unobvious fractionation between Y and Ho, and weak to strong positive Eu anomalies. These were caused by quicker sedimentary rates in the oxic water columns of the shallower basin, after which pore water became strongly reducing and alkaline due to the degradation of organic matter in the early diagenetic stage. In addition, compared to typical deposits in the world, Datangpo-type manganese ores are similar to hydrogenetic deposits and different than hydrothermal deposits. All of these characteristics of manganese ores indicate that Datangpo-type manganese ores, the principal metallogenic factors of which include oxidation conditions during deposition and reducing conditions during early diagenetic stages, represent hydrogenetic deposits.  相似文献   

16.
Three silicified limestone horizons of D1 age from the Visean of the Isle of Man contain calcitic concretions with peripheral silica crusts, occasionally surrounded by a further calcitic layer. Components of the original sediment include carbonate skeletons, carbonaceous grains, sponge spicules and muscovite. Diagenetic products include calcite, dolomite, pyrite, sphalerite, clays, feldspar and quartz. The concretions are composed of neomorphic calcite. The time of recrystallization and the identity of the neomorphic precurosor are both unknown. Displacive, fibrous calcite is chemically similar to neomorphic calcite and both are of early diagenetic age. Granular and rhombic ferroan calcites are of late diagenetic age and were precipitated from pore-waters with Sr/Ca, Mg/Ca and Fe/Ca ratios unlike those of seawater. The difference between early silicification which produced silica crusts and later diffuse silicification of the host sediment is related to a change in sediment transmissivity between the two silicification periods. A four-fold scheme of concretionary growth is proposed. The supply of silica is from sponge spicules and that of carbonate from seawater via porewater. The distribution of organic matter, either as sporadic large carcasses or as small carcasses concentrated in particular horizons, is believed to be vital for carbonate precipitation and controls the distribution of concretions. Awareness of the multiplicity of diagenetic changes is essential in interpretation of early porewater systems and in the origin of products which are often metastable and destined to subsequent changes. No single model is an explanation for all types of concretionary growth.  相似文献   

17.
Studies of heavy metal concentrations in porewaters and in sediments from the Weser Estuary, Germany, indicate that the depth distribution of Mn, Cd, and Cu in the solid phase is predominantly influenced by the subsurface redox regime, while Ni shows only moderate alteration. Based on solid-phase heavy metal data from eight locations in the study area, linear regressions of Fe, Mn, Cu, Ni, and Cd on Al allowed differences between the initial metal concentration and the concentration preserved in the sediments to be predicted. We calculate that, due to early diagenetic processes, Mn is enriched to 145 percent, while Cu and Cd are depleted to 71 percent and 46 percent, respectively, of the initial metal concentration in the near-surface sediment. Maximum depletion of Cd (84 percent), Cu (68 percent), Mn (54 percent), and Ni (24 percent) concentrations in the sediment, observed at a restricted area downcore, indicate the importance of post-depositional processes to metal preservation in the sediment. Without knowledge of the quantitative effects of diagenetic reactions on the preservation of metal concentrations in sediments, the depth distribution of metals in sediment cores may be misinterpreted as the effect of human activities.  相似文献   

18.
Iron and manganese redox cycling in the sediment — water interface region in the Kalix River estuary was investigated by using sediment trap data, pore-water and solid-phase sediment data. Nondetrital phases (presumably reactive Fe and Mn oxides) form substantial fractions of the total settling flux of Fe and Mn (51% of Fetotal and 84% of Mntotal). A steady-state box model reveals that nondetrital Fe and Mn differ considerably in reactivity during post-depositional redox cycling in the sediment. The production rate of dissolved Mn (1.6 mmol m–2 d–1) exceeded the depositional flux of nondetrital Mn (0.27 mmol m–2 d–1) by a factor of about 6. In contrast, the production rate of upwardly diffusing pore-water Fe (0.77 mmol m–2 d–1) amounted to only 22% of the depositional flux of nondetrital Fe (3.5 mmol m–2 d–1). Upwardly diffusing pore-water Fe and Mn are effectively oxidized and trapped in the oxic surface layer of the sediment, resulting in negligible benthic effluxes of Fe and Mn. Consequently, the concentrations of nondetrital Fe and Mn in permanently deposited, anoxic sediment are similar to those in the settling material. Reactive Fe oxides appear to form a substantial fraction of this buried, non-detrital Fe. The in-situ oxidation rates of Fe and Mn are tentatively estimated to be 0.51 and 0.16–1.7 mol cm–3 d–1, respectively.  相似文献   

19.
Sediment cores from the middle to lower slope of the southern continental margin of Australia between the Great Australian Bight and western Tasmania are compared in terms of marine and terrigenous input signals during the Holocene. The mass accumulation rates of carbonate, organic carbon, biogenic Ba, and Al are corrected for lateral sediment input (focusing), using the inventory of excess 230Th in the sediment normalised to its known production rate in the water column above each site. The biogenic signal is generally higher in the eastern part of the southern margin probably due to enhanced productivity associated with seasonal upwelling off southeastern South Australia and the proximity of the Subtropical Front, which passes just south of Tasmania. The input of Al, representing the terrigenous signal, is also higher in this region reflecting the close proximity of river runoff from the mountainous catchment of southeastern Australia. The distribution pattern of Mn and authigenic U, together with pore‐water profiles of Mn++, indicate diagenetic reactions driven by the oxidation of buried organic carbon in an oxic to suboxic environment. Whereas Mn is reduced at depth and diffuses upwards to become immobilised in a Mn‐rich surface layer, U is derived from seawater and diffuses downward into the sediment, driven by reduction and precipitation at a depth below the reduction zone of Mn. The estimated removal rate of U from seawater by this process is within the range of U removal measured in hemipelagic sediments from other areas, and supports the proposition that hemipelagic sediments are a major sink of U in the global ocean. Unlike Mn, the depth profile of sedimentary Fe appears to be little affected by diagenesis, suggesting that little of the total Fe inventory in the sediment is remobilised and redistributed as soluble Fe.  相似文献   

20.
The properties of carbonate rocks are often the result of multiple, diagenetic events that involve phases of cementation (porosity occlusion) and dissolution (porosity enhancement). This study tests the hypothesis that the order of these events is a major control on final porosity and permeability. A three-dimensional synthetic model of grainstone is used to quantify trends that show the effect of early cementation, non-fabric selective dissolution, and then a second-generation of (post-dissolution) cement. Models are 3 mm3 with a resolution of 10 μm. Six simple paragenetic sequences are modelled from an identical starting sediment (without accounting for compaction) where the same diagenetic events are placed in different sequences, allowing for quantification of relative changes in the resultant porosity and permeability for each diagenetic event, the trajectory through time, as well as for each final rock. All modelled paragenetic sequences result in reductions in porosity and permeability, but the order of diagenetic events controls the trajectory and final rock properties. Differences in the order of early cement precipitation alone produce variable final values, but all follow the porosity–permeability relationship as expressed by the Kozeny-Carman equation. However, final values for the sequences which include a phase of dissolution fall on a new curve, which departs from that predicted by the Kozeny-Carman relationship. This allows an alternative form of porosity–permeability relationship to be proposed: κ = 2280ϕ–30,400, where ϕ is porosity (%) and κ is permeability (mD). Hence while the Kozeny-Carman relationship predicts porosity–permeability changes that occur with cementation, it is unable to capture accurately changes within the pore network as a result of dissolution. Although the results may be dependent on the properties of the initial carbonate sediment and simplified diagenetic scenarios, it is suggested that this new porosity–permeability relationship may capture some generalized behaviour, which can be tested by modelling further sediment types and diagenetic scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号