共查询到20条相似文献,搜索用时 46 毫秒
1.
利用自动站资料、探空资料、NCEP再分析资料以及雷达资料,对2016年6月26日浙西地区一次暴雨过程的列车效应特征、物理量特征以及中尺度特征进行诊断分析。结果表明:暴雨产生于中低层暖切及地面低压倒槽的背景场中。强降水时段内回波在江西地区生成并沿同一路径东移影响浙西地区,产生列车效应,同时雷达速度场的低层辐合区有利于列车效应中东移回波增强并产生强烈降水。中低层湿度增加、垂直上升速度增大以及暖式切变线的加强有利于水汽辐合抬升的加强,使得列车效应增强,有利于降水的增大。26日11时以后衢州中北部地区列车效应的产生与维持与中低层正涡度和水汽通量辐合在这个区域的持续作用密不可分。Barnes滤波显示中尺度辐合线的维持和移动与列车效应的维持和生消有较好地对应关系,同时地面加密风场中稳定的低压环流有利于列车效应回波源地的维持,实际业务中应加强对地面加密风场和低层中尺度辐合线的分析。 相似文献
2.
华北一次暖区暴雨雷暴触发及传播机制研究 总被引:1,自引:2,他引:1
2016年7月24日午后河北中东部至天津南部出现了一次短历时暴雨过程,暴雨中心位于天津南部,模式客观预报和预报员主观预报均存在偏差。利用常规地面高空观测资料、卫星云图、多普勒雷达探测资料和同化了雷达和地面加密资料的VDRAS资料等,对导致此次强降水过程形成原因进行分析,特别是对本次暴雨最为关键的问题——雷暴触发和传播机制进行了深入细致的分析,结果表明:(1)本次暴雨过程发生在副热带高压加强北上过程中,从传统流型识别的角度看不利于副热带高压西北侧的高空槽东移影响华北东南部,这是一次发生在副热带高压588 dagpm线控制下的暖区暴雨,是非典型流型下的短历时暴雨,预报难度大;(2)邢台探空较北京探空距离暴雨区更远,但对于副热带高压西北侧西南气流影响下的暖区暴雨,位于暴雨区西南的邢台探空更具参考价值,邢台站24日11时的订正探空显示:大气层结极不稳定、低层水汽异常充沛且湿层深厚,CAPE值达3874 J·kg~(-1),对流抑制仅为22 J·kg~(-1),8 g·kg~(-1)比湿达600 hPa,地面露点出现接近30℃的极端高值;(3)850 hPa暖式切变线附近,两条地面辐合线合并和中尺度锋生是触发中尺度对流系统的重要因素,卫星云图上亦可见两条云带合并,其合并使得边界层辐合加强,因而积云在辐合区发展,暖切变线附近上午有小积云发展,随着辐合加强形成东西向排列中尺度对流系统;(4)雷暴触发后,其移动和传播是预报的难点,因其决定了对流降水持续时间,本例中受辐合线和风暴阵风出流共同作用,切变线西段有新的雷暴触发,加之切变线南侧南北向的云街与切变线相遇,使得雷暴在向西传播的同时向南发展,即传播方向为西偏南,在环境西南气流的作用下,对流单体向东偏北方向移动,即平流方向东偏北,平流与传播方向相反,因而形成"列车效应",另外,南北向云街表明切变线南侧逆温层之下有偏南暖湿气流补充,加之对流风暴阵风的出流再次触发雷暴使得对流风暴持续。 相似文献
3.
利用NCEP再分析资料,FY2E卫星的TBB资料,常规和加密气象站资料,对2012年7月2—4日,江苏省一次持续性梅雨锋暴雨过程进行了诊断和中尺度特征分析。结果表明:此次过程是东北冷涡槽东移与副热带高压西北侧暖湿气流交汇形成的。暴雨落区在低空西南急流的左侧和中高空急流的一、三象限,低层干线触发了不稳定能量的释放。经分析有7个中尺度云团造成了本次持续性暴雨,-64℃的冷云盖是较强降水的指标性温度,不断东移的中尺度云团类似于"列车效应",带来持续降水,降水开始时间落后于中尺度云团生成时间约2~4 h。地面中尺度辐合线是触发此次强降水的重要中尺度系统,辐合线附近易触发对流,且对流降水沿着辐合线方向移动。低层正、高层负的垂直螺旋度,高温高湿的大气以及较高的位势不稳定为暴雨和强对流天气提供有利条件。在垂直上升运动区北侧有明显下沉运动补偿气流,使上升气流得以长时间维持。暴雨区位于925 hPa超低空急流核移动方向的左侧。 相似文献
4.
一次由“列车效应”造成的致洪暴雨分析研究 总被引:4,自引:2,他引:4
2010年6月25日在粤东南部地区发生了超历史纪录的强降水过程。利用MICAPS 3.1软件系统、多普勒雷达及中尺度地面自动加密观测站等资料进行分析表明:深厚的高空冷涡位置偏南,移动缓慢是造成此次极端降水的直接影响系统。有组织排列的多单体风暴活动、地面准静止锋及其前方锋前暖区内出现的中尺度辐合长时间维持,是形成"列车效应(Train Effect)"的主要原因,降水回波沿东北—西南向排列的地面总能量中心移动,特殊的地形作用促使"列车效应"形成。反射率因子图上显示强降水回波具有低质心结构且垂直发展旺盛,具有"牛眼"结构特征的速度图上表明了强盛的低空西南急流存在。由于"大风核"存在,造成中小尺度次级垂直环流,并且这些次级环流有规则的排列,这可能是"列车效应"形成和维持的主要原因。在上述研究基础上提出了此次"列车效应"暴雨模式。 相似文献
5.
2016年7月6日在武汉发生了一次造成城市严重内涝的暴雨过程。本文利用多普勒天气雷达、逐小时地面加密观测资料和EC 0.25°×0.25°细网格模式数据,对这次梅雨锋附近极端暴雨的降水特征、中尺度对流系统演变和暴雨成因等进行了细致分析,结果表明:(1)本次大暴雨是在典型梅雨期环流形势下发生的,副热带高压西北侧的高温、高湿区配合江淮切变线稳定少动,暴雨则出现在西南低空急流风速辐合区,925 hPa西南低空气流的进退有利于东北路冷空气南下,这与雨带的落区和维持有密切联系。(2)梅雨锋狭长雨带上的降水量分布呈现不均匀性,强暴雨主要集中在几个中心,降水中心的分布与梅雨锋附近低层风场扰动有关,梅雨锋雨带上产生大暴雨是一个典型的中尺度对流系统(MCS),沿着西南一东北走向的引导气流移动,湖北特殊地形促使"列车效应"进一步加强。(3)列车线主要由江淮切变线或边界层辐合线附近的中尺度系统扰动形成,地面中尺度气旋性辐合及低空西南急流长时间维持,是形成"列车效应"的主要原因。(4)MCS在雷达回波上有三个明显特征,第一个是MCS在雷达回波形态上属于带状对流,由层状云和列车线共同组成,雨带与西南气流走向一致;第二特征是层状云和列车线移动方向几乎一致,MCS移动方向与列车线走向平行,垂直于列车线的分量很小;第三个是对流单体在列车线上游新生、加强,并向下游移动,对流单体的传播方向和列车线方向相反。(5)西南急流向近地面扩展、"牛眼"结构及风随高度顺转等中尺度系统,促使近地面扰动加强,诱发强降水。 相似文献
6.
利用京津冀区域加密自动气象站、SA多普勒天气雷达、L波段风廓线雷达、NCEP 0.25°再分析资料及0.03°高分辨率地形资料研究了北京2018年7月15—16日暖区特大暴雨特征和形成机制。结果表明:(1)这次暖区特大暴雨发生在副热带高压边缘的暖气团(θse高能区)中,无明显冷空气强迫,斜压性弱,有丰沛的水汽,850 hPa以下出现强水汽辐合。(2)暴雨的中尺度对流系统发展有3个过程:带状对流建立和局地强雨团影响、北京北部"列车效应"南部雷暴冷池出流造成对流加强和移动、平原地区线状对流重建。(3)暴雨发生前,低层西南风出现风速脉动,低空急流建立。首先在2500—3500 m高度形成低空急流,2 h后2500 m以下风速显著增大,5 h后急流厚度由边界层伸展到700 hPa。急流出口区降压,低层出现气旋性风场或切变,有利于垂直上升运动发展,触发和加强对流。(4)西南低空急流暖湿输送导致高温、高湿、高能的对流不稳定层结反复重建,这是对流发展加强的重要原因。(5)地面辐合线是对流触发并逐渐组织成带状对流系统的关键影响因素。地面辐合线方向、低空急流轴、回波移动方向三者几乎... 相似文献
7.
利用常规气象观测探测、中尺度自动气象站资料和多普勒天气雷达资料,对2010年6月18—20日湖南省大范围暴雨过程进行分析,着重分析该过程中"列车效应"的多普勒雷达特征。结果表明:深厚湿层是产生高降水率的水汽来源,中低层垂直风切变使对流系统具有高度的组织性,可使强降水维持更长时间,有利于大暴雨产生;低质心、高效率的大面积降水回波(≥40 dBz)较长时间源源不断从湘北经过产生"列车效应",导致湘中以北大范围暴雨甚至大暴雨;冷暖平流和辐合相叠加的径向速度特征、中气旋、低空急流的维持使"列车效应"长时间维持;利用多普勒天气雷达快速识别强降水回波和"列车效应"并对其维持时间作出预测,可为及时、准确发布暴雨预警与预报提供可靠依据。 相似文献
8.
利用常规气象观测资料、NCEP/NCAR再分析资料和多普勒天气雷达资料,对2016年8月6—8日潍坊一次强对流天气的成因和预报误差进行了分析,结果表明:1)500 hPa冷涡底部低槽、850 hPa低涡切变线和地面倒槽是主要影响天气系统, 数值预报对此次天气过程的影响系统预报偏差大,而预报员对数值预报依赖程度高是此次预报失误的主要原因;2)850 hPa以下强的水汽辐合是强降水发生的重要条件,低层辐合和高层辐散配置导致的强垂直上升运动是暴雨产生的动力机制,位势不稳定因中高层的冷空气入侵下沉得以加强;3)列车效应和强回波维持少动是造成短时强降水的重要回波特征,逆风区的发展和移动对于判断强降水的落区有指示作用,多普勒雷达反演风场中的中尺度辐合线是导致局地强降水发生的直接原因;4)风廓线雷达水平风场可以连续地反映降水过程中风场垂直结构及其变化,降水发生前探测高度明显升高,中高层冷空气侵入时间与强降水的时段相对应。 相似文献
9.
利用常规资料、自动站降水资料及NCEP/NCAR再分析资料(水平分辨率为1°×1°)等对2015年6月7—8日发生在黔东南州一次强降水过程进行诊断分析,结果表明:此次强降水的环流背景为副高西伸北抬,内蒙冷涡发展强盛,高原低值系统活跃,不断引导冷空气南下;700 h Pa与850 h Pa上西南急流加强并维持,低层风速风向辐合,为暴雨提供了水汽和动力条件;在降水发生前期,CAPE较大,不稳定能量明显积蓄,降水产生及雨势减弱停止时,CAPE迅速释放,强降水落区位于地面辐合线与850 h Pa切变线之间;雷达资料显示对流回波长时间维持并发展,"列车效应"显著。 相似文献
10.
2018年8月30—31日广东出现一次超历史记录的极端强降水过程,惠东高潭24 h雨量达1 056.7 mm,采用广东省区域雷达拼图产品、MICAPS实况、CFSR逐6 h再分析资料(水平分辨率0.5°×0.5°),以及广东省国家级地面气象观测站和区域自动站资料,着重分析了此次过程中"列车效应"的演变特征。结果表明:"列车效应"发生在缓慢移动的季风低压诱发的有利大气环流背景下,最显著的特点是水汽通量散度和假相当位温大值区主要存在于925 hPa及其以下的边界层中,且在强降水发生时段汕尾附近地区边界层风向由西南风逐渐逆时针转为偏南风,在汕尾中部附近地区形成气流辐合上升;MβCS中多单体对流风暴沿西南季风和莲花山山脉走势自西南向东北方向传播;地面中尺度辐合线以及低空西南-偏南暖湿气流的脉冲,以及惠东高潭附近的特殊地形分布触发了此次过程中"列车效应"的发生发展,从而引发了高潭创历史记录的极端强降水过程。 相似文献
11.
采用NCEP/NCAR再分析资料、FY2E卫星资料和加密自动站资料,结合中尺度WRF模式对2013年苏皖地区的一次梅雨锋暴雨过程进行诊断与模拟。观测资料分析表明:在有利的环流背景和热动力条件下,此次暴雨发生在梅雨锋前暖区,雨带呈现"先带状后串波状"的分布特征,并随锋面南移。前期降水由地面中尺度辐合线触发,受两个相继发展的中α尺度的线状对流系统直接影响;后期降水受地面暖式切变线触发,有多个中β尺度对流系统沿切变线串状排列,并不断东移发展。模拟结果分析表明:降水过程中,大尺度非地转强迫作用也是强对流的触发机制之一。地面辐合线产生条带状的低层辐合区,从而产生条带状连续分布的上升运动,形成线状对流系统及带状降水。此外地面辐合线能够在暴雨区形成南北两个中尺度垂直次级环流,这是降水的增强机制。暖式切变线上的局部扰动在低层局部地区产生强辐合,由此沿切变线形成强上升弱下沉间隔分布的现象,局部强上升区使得对流系统于该处得到发展,并形成分散的强降水区。 相似文献
12.
利用自动站观测资料、NCEP再分析资料,对2018年4月29日夜里金华中部出现的暴雨过程展开分析。结果表明:(1)大尺度环流场分析显示,暴雨发生时段高层有低槽,中层有槽切缓慢东移,金华处于槽前上升运动区,而低层并没有明显的切变对应,仅有一个小槽东移北缩减弱,底层处于类似鞍形场的偏南一侧高、低压之间,地面为均压场。(2)对中低层和底层风场的进一步分析表明,中低层西南风风速增大和西南气流中风向辐合为暴雨发生时段的水汽输送和上升运动的维持起到了重要作用,而造成此次暴雨的最直接的动力触发机制,是925 hPa在暴雨发生期间浙中地区一直存在的底层中尺度辐合线。(3)在暴雨发生时段,浙中地区存在一条明显的西南风和偏南风的中尺度辐合线,它为此次暴雨的形成,提供了重要的对流触发和动力抬升机制;该辐合线维持时间长,其周围不断有新生对流单体东移,产生"列车效应"。(4)底层辐合线的维持,使小的对流单体不断生成,为此次暴雨过程提供了动力触发机制;强盛的西南气流使得水汽输送十分充足,为此次暴雨过程提供了水汽来源;辐合区的稳定少动造成了降水时间较长。(5)中尺度辐合线的形成机理、与产生"列车效应"的对流云团之间的反馈机制、对暴雨的动力触发机制值得进一步深入研究。 相似文献
13.
利用FNL 1°×1°再分析资料、FY-2F卫星TBB资料及常规气象观测资料,对2019年5月24—26日发生在贵州的1次连续性暴雨天气过程进行分析。结果表明:此次连续性暴雨过程地面维持热低压影响,无冷空气影响,是典型的暖区暴雨;高空槽和中低层切变线为暴雨的产生提供了天气尺度背景,地面辐合线是触发对流的重要因子;暴雨发生前大气呈现动力和热力不稳定的结构特征;24日夜间地面辐合线在贵州中部地区稳定维持,触发中β尺度对流单体生成,并发展形成中α尺度系统,对流发展旺盛,伸展高度较高,影响范围广。25日夜间辐合线移动较快,触发的中β尺度对流单体组织性较弱,没有形成中α尺度系统,造成的暴雨局地性强;暴雨与水汽通量散度梯度的大值区、TBB≤-52 ℃的冷云区和TBB梯度大值区对应较好,TBB≤-65 ℃的区域有利于大暴雨产生。 相似文献
14.
2013年7月1日京津冀区域在副热带高压北抬、偏南低空急流加强、高空槽东移的环流背景下,出现了一次罕见的降水强度大、持续时间长的双雨带暴雨过程。利用常规观测、NCEP(National Centers for Environmental Prediction)再分析资料和多种加密观测以及雷达变分同化分析资料等对此次暴雨过程的成因和中尺度特征进行了分析。结果表明:南北两支暴雨带的形成机制和中尺度过程有显著差异,但是双雨带在形成与维持过程中也有相互促进作用。南支暴雨带发生于西南暖湿气流加强的环境下,对流不稳定层结显著、整层湿度大;强降水是在暖式中尺度辐合线的触发和组织下由中尺度对流复合体产生的,雷达回波具有明显的"列车效应"和后向传播特征,属于深厚的暖区湿对流暴雨,雨强和累积雨量极大、中尺度特征明显;地面辐合线及中尺度涡旋的位置决定了雨带和特大暴雨中心的位置,强降水产生的冷池出流和偏南暖湿气流形成的温度梯度最大区域指示了强回波的传播方向。北支暴雨带是在冷式切变线和低空低涡的影响下,由切变线云系形成的多单体回波带造成的;不稳定能量条件比南支暴雨带差,但是高低空系统耦合作用产生的上升运动强,中层的干冷侵入形成了明显的θse锋区,属于锋面对流系统,同时地形对降水有显著的增幅作用,多种因素综合作用造成雨强相对较弱,但是降水持续时间长,暴雨区面积大;过程中低空低涡的移动路径与强降水的落区和雨带的位置有较好的对应。南支暴雨带暖区降水后边界层形成的偏东风不仅为北支暴雨带提供水汽输送,而且在太行山前的地形抬升作用促使了强对流单体的发生发展,增强了北支暴雨带的降水强度,而太行山前强对流降水造成的冷池促进了地面中尺度涡旋的形成,造成南支暴雨带后期强对流回波的合并和降水的再度加强。 相似文献
15.
利用观测资料和NCEP再分析资料,结合卫星云图和雷达数据,对2017年7月6日白天到夜间发生在山东省枣庄市的一次大暴雨过程进行诊断分析。发现,这次降水发生在低槽东进过程中,副高和日本海高压的维持少动对上游系统的发展提供了有利条件;副高边缘中的低空或超低空急流提供了充足的水汽,是大暴雨发生的基本条件;地形原因导致的地面辐合线以及急流北部冷空气的入侵,触发了不稳定能量的释放,造成中尺度对流云团的发生、发展;云团移动中产生的"列车效应",更有利于大暴雨的发生。 相似文献
16.
17.
利用地面常规观测资料及加密自动站观测资料、FY-2G卫星云图、多普勒天气雷达产品和ERA5再分析资料,对2021年5月10日贵州东部和北部的一次辐合线锋生极端暴雨过程中尺度特征进行分析,初步探讨其形成机制。结果表明:此次极端暴雨过程发生在低涡切变背景下,低层强盛的南风为中尺度对流系统发生发展输送了充足的水汽和不稳定能量,地面辐合线及锋生提供了触发条件,暴雨区主要位于云团云顶亮温低值中心西侧或南侧梯度大值区,并沿地面辐合线呈东西向带状分布,最强降水发生在对流云团合并阶段。辐合线锋生作用在其西侧频繁触发对流单体,新生对流单体沿地面辐合线东移发展,持续影响贵州东部和北部地区。在降水最强的两个阶段,雷达回波呈现暖云和悬垂结构特征。地面辐合线及其锋生、上游降水带来的降温增压以及持续增强的南风有利于暴雨区水汽辐合增强,而垂直方向上纬向、经向中尺度次级环流上升支正好位于特大暴雨中心附近,有利于中尺度对流系统维持和增强。 相似文献
18.
19.
利用自动站加密观测资料、ERA5再分析资料、FY-2F云顶亮温资料和雷达产品资料等,对2019年5月24日夜间黔中地区暖区暴雨过程的中尺度对流系统特征及成因进行分析,结果表明:(1)此次暖区强降水过程具有持续时间长、小时雨强大、强降水范围广等特点;(2)高能高湿的环境及强的大气层结不稳定特征、深厚的暖云层以及较低的抬升凝结高度和自由对流高度,为高效率持续性降水的产生提供了有利条件;(3)本次暖区暴雨主要由2个对流发展旺盛且伸展高度较高的对流云团连续影响造成,其移动路径在黔中地区存在叠加效应;(4)暴雨由积云为主的积层混合降水回波长时间滞留造成,具有明显的“列车效应”,降水强回波质心低,具有热带降水型回波的特征;(5)地面辐合线为对流系统的发生发展提供了较好的动力条件。强降水落区的位置随着地面辐合线的移动而移动,同时强降水落区主要位于地面辐合线左侧的偏北气流内。 相似文献
20.
利用常规观测、加密自动站降水及NCEP 1°×1°再分析资料,结合铜仁多普勒雷达观测资料对2015年7月14日夜间发生在贵州省松桃县的一次局地特大暴雨进行分析,结果发现:此次局地特大暴雨是发生在中层500 h Pa中低纬"ω"环流型稳定形势下;低层高湿高能环境为暴雨提供了充足的水汽和能量;地面弱冷空气入侵激发了对流的产生,是产生强降水的触发条件;梵净山地形对气流既有抬升又有增强气流辐合的作用,对流单体不断在其迎风坡产生;雷达回波显示对流回波单体沿着地面中尺度辐合线生成、发展、合并、移动和消亡,出现了明显的列车效应,地面辐合线对对流单体起着组织、加强和引导作用;暴雨区位于850 h Pa暖式切变线南侧、地面冷锋前部、地面中尺度辐合线北侧,而地面中尺度辐合线北侧1~1.5个纬距内是强降水的主要落区。 相似文献