首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work discusses and interprets the factors responsible for the Oligocene–Miocene drowning of the Central Apennine platform deposits, based on facies and stable‐isotope analyses of two representative stratigraphic sections. The Mediterranean carbonate platforms were affected during the Oligocene–Miocene boundary by a carbonate production crisis that was induced by global factors and amplified by regional events, such as volcanic activity. The positive δ13C shift observed in the studied sections corresponds to vertical facies changes reflecting the evolution from middle carbonate ramp to outer ramp‐hemipelagic depositional environments. This drowning event is recorded not only in the Apennine platforms, but also in other Mediterranean platforms such as in southern Apulia, Sicily and Malta, and outside the Mediterranean Basin. The ~24–23.5 Ma Mi‐1 glacial maximum may have had a significant influence on this drowning event because it was associated with high rates of accumulation of continent‐derived sediments. The increased continental weathering and runoff sustained high trophic conditions. These probably were a consequence of the Aquitanian–Burdigalian volcanic activity in the Central‐Western Mediterranean, that may have led to an increase in nutrient content in seawater and an increase in atmospheric and marine CO2 concentrations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The identification and interpretation of drowning events in the geologic record can aid significantly to the reconstruction of the depositional, tectonic and eustatic history of a study area and often improve reservoir and seal prediction in carbonate rocks. The differentiation between drowned platforms showing a record of continuous deepening and those with a record of exposure followed by rapid deepening remains, however, problematic. The Zhujiang carbonate platform (Liuhua 11-1 field, South China Sea) study shown here provides an example of an integrated approach combining high-resolution geochemistry, microfacies analyses and foraminiferal biostratigraphy in order to improve the reconstruction of environmental conditions prior, during and after platform demise and drowning. The Zhujiang carbonate platform displays the following vertical succession of four facies types i) skeletal grain facies with a miogypsinid/lepidocyclinid-dominated fauna deposited in a moderately deep (< 50 m), oligotrophic back-reef setting; ii) in situ corals in patch-reef facies in an oligotrophic lagoon (< 10 m); iii) rhodoid facies with in situ red algal crusts, dominated by Heterostegina sp. and spiroclypeids, possibly capped by a subaerial exposure surface. Well-rounded rhodoids representing a mesotrophic lagoon dominate the upper portions of the rhodoid facies; iv) pelagic marine shales of the Hanjiang Formation burying the carbonate platform after drowning. This facies succession, in combination with geochemical evidence suggests a deepening-upward trend. This trend might have been interrupted by transient subaerial exposure but no evidence for meteoric diagenesis was found at the drowning unconformity topping the carbonate platform. Instead, microfacies analyses suggest that platform demise may be related to progressive changes in environmental conditions, including increasing nutrient-levels and/or decreasing temperature up-core towards the drowning unconformity. These findings are of significance for those concerned with Miocene carbonate factories and, more specifically, the demise of carbonate platforms in general.  相似文献   

3.
Within the upper Valanginian to upper Albian deposits of the easternmost part of the Prebetic Zone of the Betic Cordillera (Iberian Peninsula), seven lithostratigraphic formations made up of shallow-water carbonate and carbonate-siliciclastic sediments and of outer-platform hemipelagic sediments have been recognized. These formations were deposited in the most distal part of a platform that developed on the Southern Iberian Continental Palaeomargin. The geodynamic context was a margin affected by extensional or transtensional faults that produced tilted blocks. The interval studied records three major second-order transgressive-regressive facies cycles: (I) A late Valanginian to earliest Aptian cycle, mostly represented by hemipelagic and condensed sedimentation, with the development of a tectonically controlled high without sedimentation that separated two sectors with different sedimentary evolution and that ended with an episode of shallow-water carbonate platform development; (II) An earliest to latest Aptian cycle, with a transgressive phase represented by a retrogradational shallow-water carbonate platform capped by a drowning event leading to hemipelagic sedimentation, which was affected by an anoxic event (OAE 1a); the regressive phase is represented by progradation and aggradation of shallow-water carbonate deposits. Finally (III) a latest Aptian to early-late Albian cycle that records the expansion of mixed platform deposits in the entire area, ending with a phase of shallow-water carbonate platform development. Extensional tectonics leading to spatial and temporal changes in subsidence patterns is envisaged as the main control on sedimentation at a local scale, resulting in notable lateral changes in thickness as the main signature. Tectonics exerted a strong control on the distribution of sedimentary environments only during Cycle I. At a higher order, sea-level fluctuations are responsible for sequential organization, and environmental factors determined shallow-water carbonate platform development and demise, as well as oceanic anoxic events. The relevant continuity of the stratigraphic record in the distal part of the Prebetic platform has led to the recognition of events related to cycle boundaries, which result mainly from a combination of tectonics and sea-level changes.  相似文献   

4.
Cenomanian–Turonian strata of the south‐central Pyrenees in northern Spain contain three prograding carbonate sequences that record interactions among tectonics, sea level, environment and sediment fabric in controlling sequence development. Sequence UK‐1 (Lower to Upper Cenomanian) contains distinct lagoonal, back‐margin, margin, slope and basin facies, and was deposited on a broad, flat shelf adjacent to a deep basin. The lack of reef‐constructing organisms resulted in a gently dipping ramp morphology for the margin and slope. Sequence UK‐2 (Upper Cenomanian) contains similar shallow‐water facies belts, but syndepositional tectonic modification of the margin resulted in a steep slope and deposition of carbonate megabreccias. Sequence UK‐3 (Lower to Middle Turonian) records a shift from benthic to pelagic deposition, as the shallow platform was drowned in response to a eustatic sea‐level rise, coupled with increased organic productivity. Sequences UK‐1 to UK‐3 are subdivided into lowstand, transgressive and highstand systems tracts based on stratal geometries and facies distribution patterns. The same lithologies (e.g. megabreccias) commonly occur in more than one systems tract, indicating that: (1) the depositional system responded to more than just sea‐level fluctuations; and (2) similar processes occurred during different times throughout sequence development. These sequences illustrate the complexity of carbonate platform dynamics that influence sequence architecture. Rift tectonics and flexural subsidence played a major role in controlling the location of the platform margin, maintaining a steep slope gradient through syndepositional faulting, enhancing slope instability and erosion, and influencing depositional processes, stratal relationships and lithofacies distribution on the slope. Sea‐level variations (eustatic and relative) strongly influenced the timing of sequence and parasequence boundary formation, controlled changes in accommodation and promoted platform drowning (in conjunction with other factors). Physico‐chemical and climatic conditions were responsible for reducing carbonate production rates and inducing platform drowning. Finally, a mud‐rich sediment fabric affected platform morphology, growth geometries (aggradation vs. progradation) and facies distribution patterns.  相似文献   

5.
In this study, progradation and the subsequent retrogradation of a late Paleocene isolated carbonate platform (Galala Mountains, Eastern Desert, Egypt) is demonstrated by variations of distinct facies associations from the platform margin in the north to the hemipelagic basin in the south. A combination of a sea-level drop and tectonic uplift at around 59 Ma (calcareous nannofossil biozone NP5) favored the initiation of the carbonate platform. From this time onwards, the facies distribution along the platform–basin transect can be subdivided into five facies belts comprising nine different facies associations. Their internal relationships and specific depositional settings are strongly coupled with the Maastrichtian–Paleocene seafloor topography, which resulted from local tectonic movements. Patch reefs and reef debris were deposited at the platform margin and the horizontally bedded limestones on the upper slope. Slumps and debris flows were stored on the lower slope. In the subhorizontal toe-of-slope facies belt, mass-flow deposits pass into calciturbidites. Further southwards in the basin, only hemipelagic marls were deposited. Between 59 and 56.2 Ma (NP5–NP8), the overall carbonate platform system prograded in several pulses. Distinct changes in facies associations from 56.2 to 55.5 Ma (NP9) resulted from rotational block movements. They led to increased subsidence at the platform margin and a coeval uplift in the toe-of-slope areas. This resulted in the retrogradation of the carbonate platform. Furthermore the patch-reef and reef-debris facies associations were substituted by the larger foraminifera shoal association. The retrogradation is also documented by a significant decrease in slump and debris-flow deposits on the slope and calciturbidites at the toe of slope.  相似文献   

6.
The Taltheilei, Utsingi, McLean and Blanchet formations form a 175–390 m thick carbonate platform-to-basin succession in the lower part of the PaleoProterozoic Pethei Group, preserved in the eastern arm of Great Slave Lake. Carbonates accumulated along the south-east margin of the Slave Craton within a foredeep formed during the collision of the Slave and Churchill Cratons. The rocks include eight, predominantly microbial, carbonate facies that comprise five facies associations representing (1) shallow-water rimmed shelf, (2) shallow-water open shelf, (3) shallow-water ramp, (4) upper slope and deep ramp, and (5) lower slope and basin plain environments. Microbialite facies grew by organically mediated precipitation of spar and micritic cement and trapping and binding of lime mud. These wholly subtidal facies typically reflect progressive shallowing and changing geometry of the lower Pethei sea floor, from ramp, to open shelf, to shallow rimmed shelf, with associated slope and basin plain deposition. Repeated relative sea-level changes influenced platform growth. This resulted in five shallowing upward packages; each separated by an incipient drowning event of varying magnitude. Antecedent topography and the size of the preceding drowning event strongly influenced the initial growth of each interval. This repeated pattern is attributed to interaction between (a) the inherent tendency of microbial carbonates to aggrade vertically, (b) changing sedimentation rates and (c) readjustments of relative base level. The lower Pethei succession is one of few PaleoProterozoic examples of carbonate platform growth within a foreland basin. It has (1) a low gradient profile, (2) extensive slope and basin plain carbonate production and sedimentation, (3) no ooids, (4) minor terrigenous clastic sediments, and (4) a mobile, submergent shelf rim lacking substantial carbonate sand shoals.  相似文献   

7.
The Guevgueli Ophiolite Complex near Demir Kapija (Eastern Vardar Ophiolitic Unit) was studied for the age and facies of the overlying sediments. Cherts in direct contact with basalts are dated to late Bathonian–early Callovian with radiolarians. The post-obduction sequence, here informally named the Demir Kapija group, is composed of polymictic conglomerate, probably Kimmeridgian in age, and a more than 350-m thick carbonate succession. The carbonate succession consists of hemipelagic, slope and platform margin facies and contains algae and benthic foraminifers indicative of the Tithonian age. These new data support the previously proposed palaeogeographical connection between the Guevgueli and South Apuseni ophiolite complexes.  相似文献   

8.
The depositional architecture and the geometric relationships between platform-slope deposits and basinal sediments along with paleontological evidence indicate the time interval of the younger Anisian Reitziites reitzi ammonoid zone to largely represent the main stage of platform aggradation at the Cernera and Bivera/Clapsavon carbonate platforms. Published and new U-Pb age data of zircons from volcaniclastic layers bracketing the stratigraphic interval of platform growth constrain the duration of platform evolution to a time span shorter than 1.8±0.7m.y., probably in the order of 0.5-1m.y., reflecting fast rates of vertical platform aggradation exceeding 500 m/m.y. In the range of growth potentials for shallow-water carbonate systems estimated in relation to the time span of observation, this high rate is in agreement with values for short intervals of 105-106yrs (e.g., Schlager 1999). After drowning, the platforms at Cernera and Bivera/Clapsavon were blanketed by thin pelagic carbonates. On the former platform flanks the draping sediments in places comprise red nodular pelagic limestones (Clapsavon Limestone) similar in facies to the Han Bulog Limestones occurring elsewhere in Middle Triassic successions of the Mediterranean Tethys. The drowning of vast areas of former carbonate platforms possibly triggered the onset of bottom-water circulation in adjacent basins as suggested by the abrupt transition from laminated to bioturbated pelagic nodular limestones in the Buchenstein Formation which occurred close to the time of initial platform submergence. During the Late Ladinian the topographic features of the drowned platforms were onlapped by rapidly deposited, predominantly clastic successions including coarse breccias and volcanic rocks sealing and preserving the peculiar stratigraphic setting.  相似文献   

9.
Analyses of high resolution, seismic reflection profiles and surface sediment samples indicate that the Cat Island shelf is presently in an incipiently drowned state. This small carbonate bank is characterized by a thin (<4 m), coarse-grained, relict sediment cover, along with limited reef development, and a relatively deep (20–30 m) margin indicating that it has been unable to ‘keep-up’ with Holocene sea-level rise. Early flooding at relatively high rates of sea-level rise (4 m kyr-1, 5–8 × 103 yr BP) in conjunction with small bank size and relatively low elevation, led to a reduced rate of carbonate accumulation and incipient drowning. The shelf edge currently lies beneath the zone of maximum carbonate production and exposes the interior shelf to open marine conditions which may result in permanent drowning if it is unable to ‘catch-up’ with continued sea-level rise. Sediment facies patterns are largely oriented perpendicular or oblique to the shelf edge and appear to be controlled by shelf circulation patterns focused by bank-margin reentrants. In comparison with most of the northern Bahamas, the Cat Island shelf was flooded earlier and at relatively higher rates of Holocene sea-level rise which led to selective drowning, implying that carbonate platforms need not drown synchronously over widespread areas as commonly thought. The potential rock record of this incipient drowning event would be a thin, open-marine sand sheet of highly degraded cryptocrystalline and aggregate grains associated with poorly developed reefs.  相似文献   

10.
The Plassen carbonate platform (Kimmeridgian to Early Berriasian) developed above the Callovian to Tithonian carbonate clastic radiolaritic flysch basins of the Northern Calcareous Alps during a tectonically active period in a convergent regime. Remnants of the drowning sequence of the Plassen Formation have been discovered at Mount Plassen in the Austrian Salzkammergut. It is represented by calpionellid-radiolaria wacke- to packstones that, due to the occurrence of Calpionellopsis oblonga (Cadisch), are of Late Berriasian age (oblonga Subzone). Thus, the Plassen Formation at its type-locality shows the most complete profile presently known, documenting the carbonate platform evolution from the initial shallowing upward evolution in the Kimmeridgian until the final Berriasian drowning. The shift from neritic to pelagic sedimentation took place during Berriasian times. A siliciclastic-influenced drowning sequence sealed the highly differentiated Plassen carbonate platform. The former interpretation of a Late Jurassic carbonate platform formed under conditions of tectonic quiescence cannot be confirmed. The onset, evolution and drowning of the Plassen carbonate platform took place at an active continental margin. The tectonic evolution of the Northern Calcareous Alps during the Kimmeridgian to Berriasian time span and the reasons for the final drowning of the Plassen carbonate platform are to be seen in connection with further tectonic shortening after the closure of the Tethys Ocean.  相似文献   

11.
The Mid-Cenomanian Event was a positive carbon-isotope (δ13C) excursion recorded in hemipelagic basins of the western Tethyan Sea, North to Tropical Atlantic Ocean, and Japan. It is thought of as a prelude to the Oceanic Anoxic Event 2. However, the Mid-Cenomanian Event has never been studied in detail in shallow marine platform deposits and it is not known how it relates to carbonate production and stratigraphic geometry. To better understand how this carbon cycle disruption influenced the neritic biological communities in shallow carbonates during the Cenomanian, a facies, geochemical, diagenetic, and sequence stratigraphic study of the northern Aquitaine platform has been conducted. Seventy-six δ13C and δ18O measurements have been made on micrite, rudists, and diagenetic cements. Fifteen sedimentary facies have been arranged into four depositional environments. Three third-order sequences (CB, CC, CD) are defined from late early Cenomanian to early late Cenomanian and are well correlated with eustatic cycles in European basins. Two peaks of the Mid-Cenomanian Event (MCE1a, +1.2‰, and MCE1b, +1.7‰) have been identified for the first time in shallow marine carbonates. Analysis of diagenetic blocky calcite cements suggests that diagenesis did not affect the δ13C of micrite, which can be discussed in terms of the initial signal. The Mid-Cenomanian Event was synchronous with a turnover in neritic carbonate producers marking a transition from photozoan to heterozoan facies. This facies change resulted from the establishment of mesotrophic to eutrophic conditions at the early/mid-Cenomanian transition, reflecting a clear connection between the Mid-Cenomanian Event and neritic biological communities. Depositional geometry and carbonate production varied with δ13C during the Mid-Cenomanian Event on the Aquitaine platform. When δ13C values were between 2.5‰ and 3‰, the geometry was a flat platform with a high carbonate sedimentation rate leading to the formation of sandbars and rudist bioherms (Accommodation/Sedimentation ratio less than 1, A/S < 1). When the δ13C value exceeded 3‰, a carbonate demise occurred and clays and marls were deposited in the lower offshore environment (A/S >> 1). The general carbonate demise affecting the northern Aquitaine platform during the mid-Cenomanian can be explained by both a eustatic sea-level rise and the establishment of eutrophic conditions. The coincidence of the Mid-Cenomanian Event with both (1) the occurrence of mesotrophic to eutrophic conditions marked by carbonate producer turnover from photozoan to heterozoan facies and (2) the transgressive cycles, suggests that eustatic sea-level rise leading to high trophic conditions could explain this positive δ13C excursion in the Atlantic and western Tethyan domain. During the mid-Cenomanian, carbon cycle perturbations largely controlled the neritic biological communities on shallow carbonate platforms in a part of the western Tethyan domain.  相似文献   

12.
Bulk carbonate samples of hemipelagic limestone–marl alternations from the Middle and Upper Triassic of Italy are analysed for their isotopic compositions. Middle Triassic samples are representative of the Livinallongo Formation of the Dolomites, while Upper Triassic hemipelagites were sampled in the Pignola 2 section, within the Calcari con Selce Formation of the Southern Apennines in Southern Italy. Triassic hemipelagites occur either as nodular limestones with chert nodules or as plane‐bedded limestone–marl alternations which are locally silicified. In the Middle Triassic Livinallongo Formation, diagenetic alteration primarily affected the stable isotopic composition of sediment surrounding carbonate nodules, whereas the latter show almost pristine compositions. Diagenesis lowered the carbon and oxygen isotope values of bulk carbonate and introduced a strong correlation between δ13C and δ18O values. In the Middle Triassic successions of the Dolomites, bulk carbonate of nodular limestone facies is most commonly unaltered, whereas carbonate of the plane‐bedded facies is uniformly affected by diagenetic alteration. In contrast to carbonate nodules, plane‐bedded facies often show compaction features. Although both types of pelagic carbonate rocks show very similar petrographic characteristics, scanning electron microscopy studies reveal that nodular limestone consists of micrite (< 5 μm in diameter), whereas samples of the plane‐bedded facies are composed of calcite crystals ca 10 μm in size showing pitted, polished surfaces. These observations suggest that nodular and plane‐bedded facies underwent different diagenetic pathways determined by the prevailing mineralogy of the precursor sediment, i.e. probably high‐Mg calcite in the nodular facies and aragonite in the case of the plane‐bedded facies. Similar to Middle Triassic nodular facies, Upper Triassic nodular limestones of the Lagonegro Basin are also characterized by uncorrelated δ13C and δ18O values and exhibit small, less than 5 μm size, crystals. The alternation of calcitic and aragonitic precursors in the Middle Triassic of the Dolomites is thought to mirror rapid changes in the type of carbonate production of adjacent platforms. Bioturbation and dissolution of metastable carbonate grains played a key role during early lithification of nodular limestone beds, whereby early stabilization recorded the carbon isotopic composition of sea water. The bulk carbonate δ13C values of Middle and Upper Triassic hemipelagites from Italy agree with those of Tethyan low‐Mg calcite shells of articulate brachiopods, confirming that Triassic hemipelagites retained the primary carbon isotopic composition of the bottom sea water. A trend of increasing δ13C from the Late Anisian to the Early Carnian, partly seen in the data set presented here, is also recognized in successions from tropical palaeolatitudes elsewhere. The carbon isotopic composition of Middle and Upper Triassic nodular hemipelagic limestones can thus be used for chemostratigraphic correlation and palaeoenvironmental studies.  相似文献   

13.
Geological mapping, definition of facies distributions and reconstruction of platform‐interior growth geometries of the Messinian Cariatiz carbonate platform (Sorbas basin, South Spain), were performed to evaluate the controlling factors in platform growth and to test a 3‐D computer simulation program. For the simulation with the program REPRO, five platform‐related facies were modelled: (1) the reef crest facies by the numerical solution of a Fisher equation; (2) the lagoonal facies by a function of water depth‐dependent carbonate production; (3) the proximal and middle slope facies (breccia and block facies, calcarenite facies) by a subroutine simulating gravity‐driven particle export from the reef crest; (4) a distal slope; and (5) a basinal facies by a pelagic rain function. Development of a fan delta conglomeratic system is simulated by using a siliciclastic point source and gravity‐driven particle redistribution. A best fit between the observed platform growth geometries and modelling results is achieved by assuming that high‐frequency sea‐level changes superimposed onto a longer term sea‐level fall controlled platform growth. For the modelling, a relative sea‐level curve was reconstructed, which is based on a deep‐sea benthic foraminiferal stable oxygen isotope record at ODP Site 926 with a 45 m eustatic sea‐level fall, and a tectonic uplift component of 20 m. The consistency of 3‐D simulation results is corroborated by the coral growth rates provided by the Fisher‐equation subroutine. These rates of 2–8 mm year−1 compare well to the coral growth rates in Recent fringing reefs. We propose that during the early stage of platform evolution the high‐frequency fluctuations were obliquity‐modulated precessional cycles, whereas precessional cycles control later stages of platform growth. REPRO provides a separate visualization of the different facies bodies as a function of time and space, showing the intrinsic pattern of facies distribution in the platform. This is the result of a combination of platform growth and syndepositional subaerial erosion. For example, only the youngest stages of reef framework facies in the development of the Cariatiz carbonate platform are preserved.  相似文献   

14.
Carbonate platform drownings are frequent, often synchronous global occurrences, yet explanations for these world-wide events remain unsatisfactory. In the Central Apennines, Lower and Middle Miocene carbonate rocks deposited on a 'temperate' ramp in the Maiella platform margin record two episodes of platform drowning followed by hemipelagic sedimentation, dated as latest Oligocene–Aquitanian (26–23 M a) and as Burdigalian–Langhian (20–16 Ma). A high-resolution stratigraphy, based on strontium- isotopes, allows us to correlate key phases of platform evolution with events recorded in deep water ocean sediments. This paper suggests that high weathering rates and nutrient input in the Mediterranean during the early and middle Miocene –possibly linked to the uplift of the Tibetan region – set the preconditions for platform drowning, which were ultimately caused by rapid eustatic sea-level rises.  相似文献   

15.
梁传茂 Fred.  GM 《现代地质》1992,6(4):426-430
作者认为北美阿巴拉契亚地区和我国贺兰山地区奥陶系的一套碳酸盐砾岩层序,就是低海平面时期的一种特殊沉积岩相。这种岩相不仅是古海洋条件变化的一种标志,而且也是良好的油气储集层。文中主要从沉积学的角度解释了它们的形成机制。  相似文献   

16.
A condensed hemipelagic limestone unit with glauconite and phosphate separates a drowned Late Burdigalian carbonate platform from overlying Langhian pelagic mudstones, marls, and calcarenitic tempestites within the Neogene Manavgat Basin of southwestern Anatolia, Turkey. The unit consists of coeval lenticular limestone bodies, between 1 cm and 15 m in thickness, ranging from 10 m to 3 km in lateral extent. The P2O5 content of this limestone ranges from 0.2 to 10% by weight and the iron-oxide, clay, and other metal-oxide contents of this unit substantially exceed those of the underlying and overlying rocks.This condensed stratigraphic unit was deposited on the southwesterly outer shelf portions of drowned horsts that directly faced upwelling currents. The unit displays three main facies: 1) glauconitic phosphate crusts associated with hardgrounds; 2) bedded glauconitic-phosphatic limestones; and 3) glauconitic-phosphatic limestones interbedded with resedimented limestones. Facies (1) forms the thinnest units whereas facies (3) is the thickest, since the thickness and spatial distribution of this facies are related to environmental contrasts caused by block faulting of the underlying carbonate platform.This lithostratigraphic unit of hemipelagic glauconite–phosphate deposition represents an interval of maximum flooding in tectonically active situations and depositional hiatus on submarine highs that separate the carbonate transgressive systems tract from the overlying terigenic tempestite highstand systems tract. This appears to be the sole condensed unit within the Miocene Manavgat Basin; and is here ascribed to a third-order (2.3) eustatic rise in sea level comprising the maximum flooding of the first-order cycle. This is also the time for early–Mid Miocene major changes in Mediterranean climate from tropical to temperate.  相似文献   

17.
Chemostratigraphic analyses (87Sr/86Sr, δ13Ccarb) of limestones from two Jurassic platform‐carbonate sequences in Italy (Trento and Campania–Lucania Platforms) illustrate previously established trends found in pelagic sediments and skeletal carbonates from biostratigraphically well‐calibrated sections elsewhere in Europe. Chemostratigraphic correlations between the platform‐carbonate successions and appropriate intervals from well‐dated reference sections allow the application of high‐resolution stratigraphy to these shallow‐water peritidal carbonates and, furthermore, elucidate the facies response to the Early Toarcian Oceanic Anoxic Event (OAE). Lower Jurassic (Toarcian) levels of the western Trento Platform (Southern Alps, Northern Italy) contain spiculitic cherts that appear where rising carbon‐isotope values characterize the onset of the OAE: a palaeoceanographic phenomenon interpreted as driven by increased nutrient levels in near‐surface waters. There is a facies change to more clay‐rich facies at the level of the abrupt negative carbon‐isotope excursion, also characteristic of the OAE, higher in the section. The Campania–Lucania Platform (Southern Apennines, Southern Italy) records a change to more clay‐rich facies where carbon‐isotope values begin to rise at the beginning of the OAE but the negative excursion, higher in the section, occurs within oolitic facies. Although, in both examples, the Early Toarcian OAE can be recognized by a change to more clay‐rich lithologies, this facies development is diachronous and in neither case did the platform drown. Although the Trento Platform, in the south‐west sector studied here, was adversely affected by the OAE, it did not drown definitively until Late Aalenian time; the Campania–Lucania Platform persisted throughout the Jurassic and Cretaceous. Differential subsidence rates, which can be calculated using comparative chemostratigraphy, are identified as a crucial factor in the divergent behaviour of these two carbonate platforms: relatively fast in the case of the Trento Platform; relatively slow in the case of the Campania–Lucania Platform. It is proposed that where water depths remained as shallow as a few metres during the OAE (Campania–Lucania Platform), dissolved oxygen levels remained high, nutrient levels relatively low and conditions for carbonate secretion and precipitation remained relatively favourable, whereas more poorly ventilated and/or more nutrient‐rich waters (Trento Platform) adversely influenced platform growth where depths were in the tens of metres range. The stage was thus set for drowning on the more rapidly subsiding western margin of the Trento Plateau and a pulse of oolite deposition post‐dating the OAE was insufficient to revitalize the carbonate factory.  相似文献   

18.
Subaqueous sand dunes are common bedforms on continental shelves dominated by tidal and geostrophic currents. However, much less is known about sand dunes in deep‐marine settings that are affected by strong bottom currents. In this study, dune fields were identified on drowned isolated carbonate platforms in the Mozambique Channel (south‐west Indian Ocean). The acquired data include multibeam bathymetry, multi‐channel high‐resolution seismic reflection data, sea floor imagery, a sediment sample and current measurements from a moored current meter and hull‐mounted acoustic Doppler current profiler. The dunes are located at water depths ranging from 200 to 600 m on the slope terraces of a modern atoll (Bassas da India Atoll) and within small depressions formed during tectonic deformation of drowned carbonate platforms (Sakalaves Seamount and Jaguar Bank). Dunes are composed of bioclastic medium size sand, and are large to very large, with wavelengths of 40 to 350 m and heights of 0·9 to 9·0 m. Dune migration seems to be unidirectional in each dune field, suggesting a continuous import and export of bioclastic sand, with little sand being recycled. Oceanic currents are very intense in the Mozambique Channel and may be able to erode submerged carbonates, generating carbonate sand at great depths. A mooring located at 463 m water depth on the Hall Bank (30 km west of the Jaguar Bank) showed vigorous bottom currents, with mean speeds of 14 cm sec?1 and maximum speeds of 57 cm sec?1, compatible with sand dune formation. The intensity of currents is highly variable and is related to tidal processes (high‐frequency variability) and to anticyclonic eddies near the seamounts (low‐frequency variability). This study contributes to a better understanding of the formation of dunes in deep‐marine settings and provides valuable information about carbonate preservation after drowning, and the impact of bottom currents on sediment distribution and sea floor morphology.  相似文献   

19.
Isolated carbonate platforms occur throughout geological history, and commonly exhibit considerable spatial variability. To evaluate the controls on the nature of sediment accumulation across the expansive, shallow platform tops, this study systematically compares and contrasts patterns in surface sediments from several shallow (<10 m) Holocene Bahamian examples. Remote‐sensing data, field observations, petrographic characterization and quantitative grain‐size analyses reveal the spatial patterns of sediment accumulation on Crooked–Acklins Platform and the Berry Islands Bank. Integration of these data with synoptic observations of waves, tides and currents, along with regional geochemical data, provides a means to explore the factors that influence platform‐scale sedimentary patterns. These data illustrate that the platform interiors of both Crooked–Acklins Platform and Berry Islands Bank are blanketed with medium to coarse sand size sediment. Peloids are most common in the interior of Crooked–Acklins Platform, whereas the Berry Islands Bank includes more abundant composite grains. In both areas, very little mud is present, with surface sediments averaging <2% mud. Comparison of these results with published data from Little Bahama Bank, Great Bahama Bank and Caicos Platform suggest that, contrary to previous interpretations, the presence of open margins and/or brisk winds are not necessary for the occurrence of a platform top with little mud. Although the muddy sediment fraction of the interior can be suspended by elevated wave energy, wind‐generated current speeds in protected platform interiors are relatively low. Instead, in parts of the platform interiors, transport and winnowing of fines is enhanced greatly by tidal currents, which carry suspended sediments off the shallow platforms, even if shielded by islands. Beyond physical influences, however, regional geochemical compilations suggest that the Bahamian tides supply highly supersaturated waters rich in dissolved oxygen to these platform interiors. This exchange is interpreted to facilitate favourable conditions for calcium carbonate precipitation in the form of ooids, marine cements and hardened peloids across vast expanses of the platform interiors. Such fundamental controls on Holocene platform‐scale sediment dynamics are likely to have influenced carbonate systems through the geological record.  相似文献   

20.
杨振  张光学  张莉 《地球科学》2016,41(8):1349-1360
生物礁及碳酸盐台地是南海南部重要的油气储层之一,但目前对万安盆地生物礁的识别及碳酸盐台地沉积相带的划分尚不够深入.基于钻井和地震数据对该区的生物礁及碳酸盐台地进行了精细刻画,万安盆地中生物礁及碳酸盐台地的发育可分为4个演化阶段:早中新世时期,碳酸盐台地初始发育,台地规模小、数量少,零星分布于盆地中部;中中新世台地发育进入繁盛阶段,主要分布于北部隆起、中部隆起及隆起周缘的斜坡之上,横向上呈东、西带状展布,此时期的生物礁以台地边缘礁和块状礁为主;至晚中新世时期,碳酸盐台地开始衰退,而生物礁类型全、数量多,包括台地边缘礁、块状礁、塔礁、点礁等;上新世以来,生物礁及碳酸盐台地全面被淹没,盆地内部不再有生物礁及碳酸盐台地的发育.构造作用和相对海平面变化控制了碳酸盐台地的发育演化过程,古近纪基底断裂产生的地形控制了生物礁及碳酸盐台地初始发育位置及后期发育的空间分布,晚中新世以来的快速沉降和相对海平面变化控制了台地的衰退及淹没过程.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号