首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
In some volcanic systems, thoron and radon activity and CO2 flux, in soil and fumaroles, show a relationship between (220Rn/222Rn) and CO2 efflux. It is theorized that deep, magmatic sources of gas are characterized by high 222Rn activity and high CO2 efflux, whereas shallow sources are indicated by high 220Rn activity and relatively low CO2 efflux. In this paper we evaluate whether the observed inverse relationship is a true geochemical signal, or potentially an analytical artifact of high CO2 concentrations. We report results from a laboratory experiment using the RAD7 radon detector, known 222Rn (radon) and 220Rn (thoron), and a controllable percentage of CO2 in the carrier gas. Our results show that for every percentage of CO2, the 220Rn reading should be multiplied by 1.019, the 222Rn radon should be multiplied by 1.003 and the 220Rn/222Rn ratio should be multiplied by 1.016 to correct for the presence of the CO2.  相似文献   

2.
Precursory geochemical signatures of radon degassing in the subsurface of the Tenerife Island were observed several months prior to the recent 2004 seismic-volcanic crisis. These premonitory signatures were detected by means of a continuous monitoring of 222Rn and 220Rn activity from a bubbling CO2-rich gas spot located at 2.850 m depth inside a horizontal gallery for groundwater exploitation at Tenerife. Multivariate Regression Analysis (MRA) on time series of the radon activity was applied to eliminate the radon activity fluctuation due to external variables such as barometric pressure, temperature and relative humidity as well as power supply. Material Failure Forecast Method (FFM) was successfully applied to forecast the anomalous seismicity registered in Tenerife Island in 2004. The changes in the 222Rn/220Rn ratio observed after the period of anomalous seismicity might suggest a higher gas flow rate and/or changes in the vertical permeability induced by seismic activity.  相似文献   

3.
Measurement of 226Ra activity concentrations is often used to estimate supported levels of 210Pb for purposes of geochronology. However, the implicit assumption that supported 210Pb and 226Ra are in secular radioactive equilibrium may not always be true because of the migration of an intermediate product, gaseous 222Rn. As a consequence, supported 210Pb activity concentration might be lower than the measured 226Ra value, which was the case in a core collected from the South Adriatic Pit. Here we present a new approach to improve the determination of supported 210Pb, which is based on correction of 226Ra activity concentrations using the average (210Pb/226Ra) activity ratio in deeper sediment layers. Using this approach, sedimentation rates for the South Adriatic Pit with a constant rate of supply model and a constant initial concentration model were 0.054 g/cm2/a and 0.070 g/cm2/a, respectively.  相似文献   

4.
Groundwater discharge flux into rivers (riverine groundwater discharge or RGD) is essential information for the conservation and management of aquatic ecosystems and resources. One way to estimate area-integrated groundwater discharge into surface water bodies is to measure the concentration of a groundwater tracer within the water body. We assessed groundwater discharge using 222Rn, a tracer common in many surface water studies, through field measurements, surface water 222Rn mass balance model, and groundwater flow simulation, for the seldom studied but ubiquitous setting of a flooding river corridor. The investigation was conducted at the dam-regulated Lower Colorado River (LCR) in Austin, Texas, USA. We found that 222Rn in both the river water and groundwater in the river bank changed synchronously over a 12-hour flood cycle. A 222Rn mass balance model allowed for estimation of groundwater discharge into a 500-m long reach of the LCR over the flood. The groundwater discharge ranged between negative values (indicating recharge) to 1570 m3/h; groundwater discharge from groundwater flow simulations corroborated these estimates. However, for the dynamic groundwater discharge estimated by the 222Rn box model, assuming whether the groundwater 222Rn endmember was constant or dynamic led to notably different results. The resultant groundwater discharge estimates are also highly sensitive to river 222Rn values. We thus recommend that when using this approach to accurately characterize dynamic groundwater discharge, the 222Rn in near-stream groundwater should be monitored at the same frequency as river 222Rn. If this is not possible, the 222Rn method can still provide reasonable but approximate groundwater discharge given background information on surface water-groundwater exchange time scales.  相似文献   

5.
To estimate the spatial distribution of groundwater discharge from the bottom of a small lake of Kumamoto in Japan, we applied continuous radon measurements with a dual loop system and verified the results obtained using the radon method by visual diving surveys. Time‐shifting correction in the dual‐loop system is reasonable to obtain the true radon activity in water. Distributions of radon activity and water temperature in the study area reveal the effects on groundwater discharge and mixing situation of lake water. The estimated discharge zone ascertained using the radon method agrees with the groundwater discharge distribution observed through diving surveys. Although the data resolution of the radon method is much greater than the width of observed discharge zones, the general distribution of groundwater discharge is recognizable. The dual loop system of radon measurement is useful for smaller areas.  相似文献   

6.
In earthquake prediction studies, the regional behaviour of accurate 222Rn measurements at a set of sites plays a significant role. Here, measurements are obtained using active and passive radon detector systems in an earthquake-active region of Turkey. Two new methods are proposed to explain the spatial behaviours and the statistical uncertainties in the 222Rn emission measurements along fault lines in relation to earthquake occurrence. The absolute point cumulative semivariogram (APCSV) and perturbation method (PM) help to depict the spatial distribution patterns of 222Rn in addition to the joint effects of the K dr, the radon distribution coefficient, and the perturbation radon distribution coefficient (PRDC). The K dr coefficient assists in identifying the spatial distributional behaviour in 222Rn concentrations and their migration along the Earth’s surface layers. The PRDC considers not only the arithmetic averages but also the variances (or standard deviations) and the correlation coefficients, in addition to the size of the error among the 222Rn measurements. The applications of these methodologies are performed for 13,000 222Rn measurements that are deemed to be sufficient for the characterization of tectonics in the Keban Reservoir along the East Anatolian Fault System (EAFS) in Turkey. The results are evaluated for the ?çme earthquake (M L 5.4, 5.7 km, 23 June 2011), which occurred in the vicinity of the EAFS.  相似文献   

7.
The objective of this study was to investigate whether 222Rn in groundwater can be used as a tracer for light non‐aqueous phase liquid (LNAPL) quantification at a field site treated by dual‐phase LNAPL removal. After the break of a pipeline, 5 ha of soil in the nature reserve Coussouls de Crau in southern France was contaminated by 5100 m3 of crude oil. Part of this oil seeped into the underlying gravel aquifer and formed a floating oil body of about 3.9 ha. The remediation consists of plume management by hydraulic groundwater barriers and LNAPL extraction in the source zone. 222Rn measurements were performed in 21 wells in and outside the source zone during 15 months. In uncontaminated groundwater, the radon activity was relatively constant and remained always >11 Bq/L. The variability of radon activity measurements in wells affected by the pump‐and‐skim system was consistent with the measurements in wells that were not impacted by the system. The mean activities in wells in the source zone were, in general, significantly lower than in wells upgradient of the source zone, owing to partitioning of 222Rn into the oil phase. The lowest activities were found in zones with high non‐aqueous phase liquid (NAPL) recovery. LNAPL saturations around each recovery well were furthermore calculated during a period of high groundwater level, using a laboratory‐determined crude oil–water partitioning coefficient of 38.5 ± 2.9. This yielded an estimated volume of residual crude oil of 309 ± 93 m3 below the capillary fringe. We find that 222Rn is a useful and cheap groundwater tracer for finding zones of good LNAPL recovery in an aquifer treated by dual‐phase LNAPL removal, but that quantification of NAPL saturation using Rn is highly uncertain.  相似文献   

8.
Ground waters from fractured igneous and high-grade sialic metamorphic rocks frequently have elevated activity of dissolved radon (222Rn). A chemically based model is proposed whereby radium (226Ra) from the decay of uranium (238U) diffuses through the primary porosity of the rock to the water-transmitting fracture where it is sorbed on weathering products. Sorption of 226Ra on the fracture surface maintains an activity gradient in the rock matrix, ensuring a continuous supply of 226Ra to fracture surfaces. As a result of the relatively long half-life of 226Ra (1601 years), significant activity can accumulate on fracture surfaces. The proximity of this sorbed 226Ra to the active ground water flow system allows its decay progeny 222Rn to enter directly into the water. Laboratory analyses of primary porosity and diffusion coefficients of the rock matrix, radon emanation, and ion exchange at fracture surfaces are consistent with the requirements of a diffusion/ion-exchange model. A dipole-brine injection/withdrawal experiment conducted between bedrock boreholes in the high-grade metamorphic and granite rocks at the Hubbard Brook Experimental Forest, Grafton County, New Hampshire, United States (42 degrees 56'N, 71 degrees 43'W) shows a large activity of 226Ra exchanged from fracture surfaces by a magnesium brine. The 226Ra activity removed by the exchange process is 34 times greater than that of 238U activity. These observations are consistent with the diffusion/ion-exchange model. Elutriate isotopic ratios of 223Ra/226Ra and 238U/226Ra are also consistent with the proposed chemically based diffusion/ion-exchange model.  相似文献   

9.
This study aims to evaluate the application of 222Rn in groundwater as a tracer for monitoring CO2 plume migration in a shallow groundwater system, which is important to detect potential CO2 leakage in the carbon capture and storage (CCS) project. For this research, an artificial CO2-infused water injection experiment was performed in a shallow aquifer by monitoring hydrogeochemical parameters, including 222Rn. Radon in groundwater can be a useful tracer because of its sensitivity to sudden changes in subsurface environment. To monitor the CO2 plume migration, the data were analysed based on (a) the influence of mixing processes on the distribution of 222Rn induced by the artificial injection experiment and (b) the influence of a carrier gas role by CO2 on the variation of 222Rn. The spatio-temporal distributions of radon concentrations were successfully explained in association with horizontal and vertical mixing processes by the CO2-infused water injection. Additionally, the mixing ratios of each monitoring well were calculated, quantitatively confirming the influence of these mixing processes on the distribution of radon concentrations. Moreover, one monitoring well showed a high positive relationship between 222Rn and Total dissolved inorganic carbon (TIC) by the carrier gas effect of CO2 through volatilization from the CO2 plume. It indicated the applicability of 222Rn as a sensitive tracer to directly monitor CO2 leakage. When with a little effect of carrier gas, natural 222Rn in groundwater can be used to compute mixing ratio of CO2-infused water indicative of CO2 migration pathways. CO2 carrier gas effect can possibly increase 222Rn concentration in groundwater and, if fully verified with more field tests, will pose a great potential to be used as a natural tracer for CO2.  相似文献   

10.
Submarine groundwater discharges (SGD) were investigated in a marine watershed in south‐eastern Korea using water budget analysis and a 222Rn mass balance model. Multi‐layered TOPMODEL added hydrological assumption was used to estimate groundwater components in the water budget analysis. Field observations of soil moisture, rainfall, runoff and groundwater fluctuations were used for calibration and validation of the hydrologic model. Based on observed hydrological data and terrain analyses, parameters for the hydrologic model were delineated and used to describe several hydrologic responses in the watershed. SGD estimations by 222Rn mass balance method were also performed at Il‐Gwang bay in July, 2010, and May, June, July and Nov. 2011. The estimated groundwater through hydrologic modeling and water balance analysis was 1.3x106 m3/year, which rapidly increased during typhoon season due to heavy rainfall and permeable geologic structure. The estimated groundwater was approximately 3.7–27.1% of SGD as evaluated by 222Rn mass balance method ranges 3.44 and 17.45 m3m?2year?1. Even though SGD is predominantly influenced by tide fluctuation, the head gradient (difference) from hydrologic processes associated with heavy rainfalls can also have extra significant influences. Comprehensive understanding of SGD evaluation can be improved through a simultaneous application of both these approaches. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Coastal groundwater discharge (CGD) plays an important role in coastal hydrogeological systems as they are a water resource that needs to be managed, particularly in wetland areas. Despite its importance, identifying and monitoring CGD often presents physical and logistical constraints, restraining the application of more traditional submarine groundwater discharge surveying techniques. Here we investigate the capability of electrical resistivity imaging (ERI) in the Peníscola wetland (Mediterranean coast, Spain). ERI surveying made it possible to identify and delineate an ascending regional groundwater flow of thermal and Ra‐enriched groundwater converging with local flows and seawater intrusion. The continuous inputs of Ra‐rich groundwater have induced high activities of Ra isotopes and 222Rn into the marsh area, becoming among the highest previously reported in wetlands and coastal lagoons. Geoelectrical imaging enabled inferring focused upward discharging areas, leaking from the aquifer roof through a confining unit and culminating as spring pools nourishing the wetland system. Forward modelling over idealized subsurface configurations, borehole datasets, potentiometric records from standpipe piezometers, petrophysical analysis, and four natural and independent tracers (224Ra, 222Rn, temperature and salinity) permitted assessing the geoelectrical model and a derived hydrogeological pattern. The research highlights the potential of ERI to improve hydrogeological characterization of subsurface processes in complex contexts, with different converging flows. Additionally, a hydrogeological conceptual model for a groundwater‐fed coastal wetland was proposed, based on the integration of surveying datasets. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Coastal lagoons are significant wetland environments found on coastlines throughout the world. Groundwater seepage may be a key component of lagoon water balances, though only a few studies have investigated large (>100 km2) coastal lagoons. In this study, we combined airborne thermal infrared imagery with continuous measurements of radon (222Rn—a natural groundwater tracer), conductivity, water temperature and dissolved oxygen to map groundwater seepage to a large coastal lagoon in New Zealand. We found evidence of seepage along the margins of the lagoon but not away from the margins. Our findings confirmed previously known seepage zones and identified new potential locations of groundwater inflow. Both point source and diffuse seepage occurred on the western and northwestern margins of the lagoon and parallel to the barrier between the lagoon and sea. These observations imply geologic controls on seepage. The combination of remote sensing and in-situ radon measurements allowed us to effectively map groundwater discharge areas across the entire lagoon. Combined, broad-scale qualitative methods built confidence in our interpretation of groundwater discharge locations in a large, dynamic coastal lagoon.  相似文献   

13.
In regions where aquifers sustain rivers, the location and quantification of groundwater discharge to surface water are important to prevent pollution hazards, to quantify and predict low flows and to manage water supplies. 222Rn is commonly used to determine groundwater discharge to rivers. However, using this isotopic tracer is challenging because of the high diffusion capacity of 222Rn in open water. This study illustrates how a combination of isotopic tracers can contribute to an enhanced understanding of groundwater discharge patterns in small rivers. The aim of this paper is to combine 222Rn and δ13CDIC to better constrain the physical parameters related to the degassing process of these tracers in rivers. The Hallue River (northern France) was targeted for this study because it is sustained almost exclusively by a fractured chalk aquifer. The isotopes 222Rn, δ13CDIC, δ2H and δ18O were analysed along with other natural geochemical tracers. A mass balance model was used to simulate 222Rn and δ13CDIC. The results of δ2H and δ18O analyses prove that evaporation did not occur in the river. The calibration of a numerical model to reproduce 222Rn and δ13CDIC provides a best‐fit diffusive layer thickness of 3.21 × 10?5 m. This approach is particularly useful for small rivers flowing over carbonate aquifers with high groundwater DIC where the evolution of river DIC reflects the competing processes of groundwater inflow and CO2 degassing. This approach provides a means to evaluate groundwater discharge in small ungauged rivers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Splash detachment by raindrops was measured using a factorial experiment involving three soils (sandy loam, clay loam and clay) and two organic materials (cow dung and groundnut haulms) applied at five levels (0, 2, 4, 6 and 8 per cent by mass). A simulated rainfall intensity of 145 mm h?1 for 10 min duration was used for the tests. Detachment was described in terms of the direct effects and the first and second order interactions of the variables mentioned above. Results indicated that mean splash detachment was reduced significantly (P < 0·01) from 1·97 kg m?2 in the sandy loam to 0·67 kgm?2 in the clay soil. For each soil type, detachment was reduced significantly (P < 0.01) with increasing levels of added organic matter. Groundnut haulms produced lower values of detachment than cow dung. There were also significant interaction effects between the study variables. These interactions were used to describe the effect of added organic materials on splash detachment. For each soil type and organic material, negative exponential relationships were established to relate splash detachment to levels of added organic matter.  相似文献   

15.
16.
The rate of escape of 40Ar from the moon is calculated from mass-spectrometer data obtained at the Apollo-17 landing site. It is shown that the rate of loss of Ar from the moon varies significantly over periods the order of one lunation and that the average loss rate is about 3 t/a, corresponding to about 6% of the present rate of Ar production by K decay within the moon. These features of the Ar loss-rate data are interpreted as evidence that this gas originates in the partially molten asthenosphere, which in turn requires that early differentiation only affected the outer 600–1,000 km of the moon, trapping significant amounts of radioactive materials in the present asthenosphere. The relationship of the venting of Ar and other radiogenic gases of the lunar atmosphere are discussed.  相似文献   

17.
Severe dust storms in the Southern Aral Sea Basin have become common with the desiccation of the sea. The high incidence of dust in the area has had severe ecological consequences. Within the framework of efforts to reduce this phenomenon, deflatability as well as deflatability‐related characteristics of some prominent soils/sediment surfaces in the Southern Aral Sea Basin were examined. The materials included a salt crust from a developed Solonchak, a Takyr crust and a Takyr‐like soil, and salt crusts from undeveloped Solonchaks formed on the exposed bottom of the Aral Sea. Characteristics determined were particle size distribution, dry aggregate size distribution and salt, carbonate and organic carbon contents. Deflatability was examined using a suction type wind tunnel with a SENSIT‐type sensor to detect airborne unconsolidated material, on materials treated to different moisture levels and with a chemical stabilizer, and on restored crusts created from the unconsolidated materials. Fine sand dominates in the materials, and in the Takyr crust and Takyr‐like soils is accompanied by significant amounts of silt and clay. All materials contain moderate amounts of carbonate and are low in organic matter. All soils/sediments contain salts, but in the salt crusts of the Solonchaks the salt fraction dominates. They all have more than 50 per cent PM850 (particles with diameter <850 µm), indicating a relatively high deflatability potential. The materials from the Takyr crusts and Takyr‐like soil with a high proportion of fine aggregates had the lowest threshold friction velocities, while the salt crusts of the Solonchaks with a high proportion of coarse aggregates had the highest. This suggests that Takyrs and Takyr‐like soils are the most deflatable and Solonchak soils the least deflatable. These differences are attributed to the presence of salts that create stable, large aggregates in the Solonchak crusts. Wetting of the materials to three moisture levels considerably increased threshold friction velocity. The increase was most prominent in the salt‐rich materials, and was attributed to the rapid formation of surface films by drying in the course of the wind tunnel determinations. Applications of chemical stabilizers at two levels also considerably increased threshold friction velocity. On the restored crusts, threshold friction velocity dramatically increased, occasionally to non‐recordable values. This increase was monitored with both the salt crusts characteristic for the Solonchak soils and the fine‐grained crusts characteristic for the Takyr soils. The stability was attributed to the tightly packed salt particles in the salt crusts, and to the cohesive properties of the fine‐grained materials in the Takyr crusts. Once the crusts were ruptured, however, strong deflation commenced. These results suggest that by maintaining moisture in the soils/sediments (for example, by maintaining a high water table in the Amu‐Darya river flood plain) deflation can be reduced. By the same means, deflation can be reduced by creating new crusts or by preserving existing crusts. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
The annual regimes of estimated rates of oxygen and carbon dioxide exchange between water surface and the atmosphere was compared for two water bodies with different sizes and hydroecological conditions: the deep oligotrophic Lake Baikal and the small mesotrophic–eutrophic Mozhaisk Reservoir with water exchange rate 150 times greater than that of Baikal. The obtained, very large, differences between the rates of gas evasions and invasions in the lake and the reservoir allow the rates of these processes to be used as integral characteristics for the parameterization of the self-purification capacity of freshwater bodies from organic pollutants.  相似文献   

19.
关于湖泊沉积物磷释放及其测定方法的雏议   总被引:16,自引:5,他引:16  
湖水位下降是近期我国西北地区湖泊一种普遍现象,由于该地区湖泊多属闭合流域,湖泊水位下降往往导致湖水浓缩咸化,进而给湖体及湖周带来一系列的生态环境问题,本文根据近几十年来岱海的湖区气候,湖泊集水域的入湖径流特征分析,以及湖泊水量平衡计算,分辨出1955-1995年3.85m,的水位降幅中,人为影响的贡献为3.17m,占82%,自然因素的贡献为0.68m,占18%,说明岱海湖水位下降主要是集水域内人类  相似文献   

20.
This study examines the release of dissolved organic carbon (DOC) from upland peat during the period of the autumn flushing. Hydroclimatic conditions were monitored in conjunction with measurements of absorbance and the E4/E6 ratio of the stream draining an 11·4 km2 upland peat catchment in northern England. During two months of monitoring the effects of 67 separate rainfall events were examined showing that:
  • The peat behaves hydrologically as if it were a two end‐member system consisting of old, interevent, and new, event, water. Runoff is initiated by percolation excess of new water at the acrotelm–catotelm interface.
  • The discharge of dissolved organic matter behaves like a three end‐member system with the between‐event water being low in DOC and storm events being characterized by two types of water. Initial runoff being characterized by new water rich in DOC that gives way to new water depleted in DOC. This transition can be ascribed to the runoff progressing from throughflow within the acrotelm progressing to saturation‐excess overland flow.
  • Depletion of DOC during storm events is accompanied by a change in the character of the DOC as the E4/E6 ratio changes. This suggests that the decrease in DOC during events is the result of exhaustion of reserves rather than changes in the flowpaths being utilized by runoff.
  • The amount of carbon released in any event is critically dependent upon the time between events during which oxidation processes generate a reservoir of available carbon. Production of available carbon in the catchment is as high as 4·5 g C per day per m3 of peat, suggesting a turnover rate of peat of the order of 42 years. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号