首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study is concerned with the mechanisms of dust storm development in East Asia and the characteristics of the responsible synoptic systems. Two severe East Asian dust storms which occurred in spring 2002 are analyzed using synoptic and remote sensing data. The relationships between the formation and the movement of the dust storms and the evolution of the synoptic systems are examined. It is shown that a dust storm may develop when a synoptic system moves to the desert area of Northeast Asia with a surface wind speed exceeding 6 m s− 1. Numerical simulations of the two dust storms are carried out using a dust storm forecasting model. The performance of the model is verified with observations. The dust sources are found to be consistent with the desert regions in Northeast Asia, but cover a somewhat larger area than the observations suggest. Finally, we present a conceptual model of dust storm generation and movement in East Asia on the basis of numerical modeling and synoptic analysis.  相似文献   

2.
An integrated dust storm modeling system is developed for the prediction of dust storms. The system couples a wind erosion scheme, a dust transportation model and the Penn State/UCAR modeling system (MM5) with a geographic information database. The system can be used for the prediction of dust emission rate and dust concentration associated with individual dust storm events. Two severe dust storm events occurred in spring 2002, one on the 19th–22nd of March and the other on the 6th–9th of April. The integrated modeling system is used to simulate the two events. The numerical results are compared with surface weather records and satellite images and good agreement is found between the model results and observation in dust concentration distribution and evolutions. The Gobi Desert in southern Mongolia and the Badain Jaran Desert, Tengger Desert and Hunshandake sandy land in Inner Mongolia (China) are identified to be the dust sources for the two events. The dominant modes of dust particles over western Inner Mongolia and Mongolia are from 2 to 11 μm in size, and 2 to 22 μm over Beijing and its surrounding area. The emission of particles in the 2–11 μm size range is found to be most important for Northeast Asian dust storms.  相似文献   

3.
The characteristics of Asian dust events that occurred in Northeast Asia during the springtime from 1993 to 2004 are investigated using 3-hourly SYNOP reports (World Meteorological Organization). Occurrences of blowing sand and dust storm are low in 1997 and 1999, but have increased rapidly since 2000. The maximum occurrence was recorded in 2002. Wind velocity of 6.5 m s− 1 as a threshold wind velocity is not so exactly consistent with the occurrence of blowing sand. However, wind velocity of 14 m s− 1 as a strong wind causing dust storm had similar tendency to those of dust storm and Dust Storm Index.Source regions of Asian dust are divided into three regions (A: dry arid, B: semi-arid, and C: cultivated), based upon the occurrence of blowing sand and dust storm. Eight meteorological stations are selected in three regions, which have frequent occurrences of blowing sand. Source regions of Asian dust that affect the Korean peninsula are gradually extending eastward. Positive anomalies of NDVI occurred in 1994, 1995, and 1998 when temperature was high and precipitation was heavy. However, the frequent occurrence of the dust phenomena is not always consistent with lots of vegetation, high temperature, and much precipitation in this study.  相似文献   

4.
A review on East Asian dust storm climate, modelling and monitoring   总被引:8,自引:1,他引:7  
In arid and semi-arid area of Asia, dust storms occur frequently. Asian dust storms have a major impact on the air quality of the densely populated areas of China, Korea and Japan, and are important to the global dust cycle. In extreme cases, they result in the loss of human lives and disruptions of social and economic activities. In recent years, systematic research on Asian dust storms has been carried out. Much progress has been made in the development of integrated dust storm monitoring and modeling systems by making use of advanced numerical models, satellite remote sensing and GIS data. In this paper, we summarize the recent achievements in Asian dust storm research with an emphasis on dust climatology, modeling and satellite monitoring. The concept of integrated dust storm monitoring and modeling system is described and a summary of the developments in key research areas is given, including new dust models and techniques in satellite remote sensing and system integration. We then discuss the current research frontiers and the challenges for future studies.  相似文献   

5.
The Aeolian Dust Experiment on Climate Impact (ADEC) was initiated in April 2000 as a joint five-year Japan–China project. The goal was to understand the impact of aeolian dust on climate via radiative forcing (RF). Field experiments and numerical simulations were conducted from the source regions in northwestern China to the downwind region in Japan in order to understand wind erosion processes temporal and spatial distribution of dust during their long-range transportation chemical, physical, and optical properties of dust and the direct effect of radiative forcing due to dust. For this, three intensive observation periods (IOP) were conducted from April 2002 to April 2004.The in situ and network observation results are summarized as follows: (1) In situ observations of the wind erosion process revealed that the vertical profile of moving sand has a clear size dependency with height and saltation flux and that threshold wind velocity is dependent on soil moisture. Results also demonstrated that saltation flux is strongly dependent on the parent soil size distribution of the desert surface. (2) Both lidar observations and model simulations revealed a multiple dust layer in East Asia. A numerical simulation of a chemical transport model, CFORS, illustrated the elevated dust layer from the Taklimakan Desert and the lower dust layer from the Gobi Desert. The global-scale dust model, MASINGAR, also simulated the dust layer in the middle to upper free troposphere in East Asia, which originated from North Africa and the Middle East during a dust storm in March 2003. Raman lidar observations at Tsukuba, Japan, found the ice cloud associated with the dust layer at an altitude of 6 to 9 km. Analysis from lidar and the radio-sonde observation suggested that the Asian dust acted as ice nuclei at the ice-saturated region. These results suggest the importance of dust's climate impact via the indirect effect of radiative forcing due to the activation of dust into ice nuclei. (3) Studies on the aerosol concentration indicated that size distributions of aerosols in downwind regions have bimodal peaks. One peak was in the submicron range and the other in the supermicron range. The main soluble components of the supermicron peak were Na+, Ca2+, NO3, and Cl. In the downwind region in Japan, the dust, sea salt, and a mixture of the two were found to be dominant in coarse particles in the mixed boundary layer. (4) Observation of the optical properties of dust by sky-radiometer, particle shoot absorption photometer (PSAP), and Nephelometer indicated that unpolluted dust at source region has a weaker absorption than originally believed.A sensitivity experiment of direct RF by dust indicated that single scattering albedo is the most important of the optical properties of dust and that the sensitivity of instantaneous RF in the shortwave region at the top of the atmosphere to the refractive index strongly depends on surface albedo. A global scale dust model, MASINGAR, was used for evaluation of direct RF due to dust. The results indicated the global mean RF at the top and the bottom of the atmosphere were − 0.46 and − 2.13 W m− 2 with cloud and were almost half of the RF with cloud-free condition.  相似文献   

6.
A simple mathematical model for the evolution of a system of collisionally interacting bodies—such as the asteroid population—consists of two coupled, nonlinear, first-order differential equations for the abundances of “small” and “big” bodies. The model easily allows us to recover Dohnanyi's value for the exponent of the equilibrium mass distribution. Moreover, the model shows that any initial value for the ratio of “big” to “small” bodies rapidly relaxes to the equilibrium ratio, corresponding to the exponent, and that integrating the evolution equations backward in time—an attractive possibility to investigate the mass distribution of primordial planetesimals—leads to strong numerical instability.  相似文献   

7.
Modeling mineral dust emissions from Chinese and Mongolian deserts   总被引:6,自引:0,他引:6  
The present study investigates the frequency and intensity of mineral dust emissions over the deserts of eastern Asia from 1996 to 2001. Mineral dust emissions are simulated using a physical dust emission scheme over a region extending from 35.5°N to 47°N and from 73°E to 125°E. The input parameters required by the dust emission model are (1) surface features data including aerodynamic roughness length, soil dry size distribution and texture; and (2) meteorological surface data, mainly wind speed, soil moisture and snow cover. The way by which these surface features and meteorological data can be assessed is described and discussed. The influence of soil moisture and snow cover is taken into account and their effects on simulated dust emission are quantified.The simulations reproduce on a daily basis the location and intensity of the severe events of April 1998 and spring 2001 as recorded by the meteorological stations and/or described in various studies. Based on 6 yr of simulations, the main dust source regions are identified and their relative contributions to the total dust emissions are quantified.The seasonal cycle of the dust storms frequency is well reproduced with a maximum in spring. The simulations suggest that it is mainly controlled by the emissions occurring in the Taklimakan desert in latter spring and in summer, and by those occurring in the northern deserts of China in winter. The Taklimakan desert appears to be the most frequent and steady source of dust emissions during the studied period. On the other hand, in the Gobi desert, only a few dust emission events are simulated, but the dust amount emitted during each event is generally very large. In the northern deserts of China, dust emissions are frequent and their intensity is variable.These results show an important annual and inter-annual variability of the emitted dust (between 100 Mt yr− 1 and 460 Mt yr− 1), mainly controlled by the occurrence of severe events in the Gobi desert and in the northern deserts of China.  相似文献   

8.
Contributions of the nine potential dust source regions (North and South Africa, the Arabian Peninsula, Central Asia, eastern and western China, North and South America, and Australia) to the global dust budget are investigated with a global dust transport model. A six-year simulation (1990 to 1995) indicates that the greatest contributor to the global dust budget is found to be North Africa (the Sahara Desert), which accounts for 58% of the total global dust emission and 62% of the total global dust load in the atmosphere. Australian dust dominates the southern hemisphere. The dust emission and atmospheric dust load originating from East Asia (eastern and western China) are estimated to be 214 Tg yr− 1 and 1.1 Tg, respectively, which are 11% and 6% of the total global dust emission and dust load. Dust from East Asia dominates the atmospheric load over China and Mongolia (about 70%), Korea (60%), Japan (50%), and the North Pacific Ocean (40%). The contribution of dust originating from regions other than East Asia to the dust load over these East Asian countries and the North Pacific Ocean cannot be ignored. The simulated total dust deposition flux on Greenland suggests a possible overestimation of the Saharan dust and an underestimation of the East Asian dust in the Arctic region, which may be a common problem with global dust transport models. Possible reasons for the underestimation of the East Asian dust are discussed.  相似文献   

9.
Broadband afterglow observations provide a probe of the density structure of the circumburst medium. In the spreading jet model, prompt and intense X-ray/UV radiation from the reverse shock may destroy and clear the dust in the circumburst cloud out to about 30 pc within the initial solid angle of the jet. Asthe jet expands significantly, optical radiation from the high-latitude part of the jet may suffer extinction by dust outside the initial solid angle, while radiation from the part within the initial solid angle can be observed without extinction. In previous studies, it is usually assumed that the extinction is complete. We calculate the extinction effect by taking the optical depth into account. Our numerical results showthat a break appears in the light curve of optical afterglow but it extends over a factor of ~ 80 in time rather than a factor of ~ 10 in time for the case of strong dust extinction and a factor of ~ 60 in time for the case without dust extinction. These results may provide a way to judge how large the number density of the circumburst cloud is. Finally, we carry out a detailed modeling for the afterglow of GRB 000926. Our model can provide a good fit to the multi-color observations of this event.  相似文献   

10.
In this paper, the dust event on 7 April 2001 in northern China is investigated with three MODIS thermal infrared (IR) bands. It is found that for the dust cloud, the observed 11 μm minus 12 μm brightness temperature difference (BTD) is always negative, while the BTD of 8.5 μm minus 11 μm varies from positive to negative depending on the dust concentration. Based on these distinguishing properties, we develop a dust mask algorithm to identify the dust storm occurrence and spatial extent. The algorithm can be used successfully in both the daytime and nighttime. Using the Mie spherical scattering theory, the thermal radiation transfer through the single dust layer is performed with the widely used forward model DISTORT. Our calculations show that the dust-like aerosols can well explain the observed BTD although both of the complex refractive index and particle size of aerosols will significantly influence the BTD. When the complex refractive index is fixed (dust-like aerosols in this paper), then the dust optical thickness and effective radii of dust particles can be retrieved from the brightness temperature (BT) of the 11 μm channel and the BTD of 11 μm minus 12 μm channels, respectively. The integral dust column density can also be derived from the retrieved dust optical thickness and effective radius.  相似文献   

11.
Observations from 560 weather stations in China show that sand–dust storms occur most frequently in April in north China. The region consists of Sub-dry Mid Temperate, Dry Mid Temperate, Sub-dry South Temperate and Dry South Temperate Zones and much of the land surface is desert or semi-desert: it is relatively dry with minimal rainfall and a high annual mean temperature. In most regions of China, the annual mean frequency of sand–dust events decreased sharply between 1980 and 1997 and then increased from 1997 to 2000. Statistical analyses demonstrate that the frequency of sand–dust storms correlates highly with wind speed, which in turn is strongly related to land surface features; on the other hand, a significant correlation between storm events and other atmospheric quantities such as precipitation and temperature was not observed. Accordingly, land surface cover characteristics (vegetation, snowfall and soil texture) may play a significant role in determining the occurrence of sand–dust storms in China. Analysis of Normalized Difference Vegetation Index derived from National Oceanic and Atmospheric Administration and Empirical Orthogonal Function show that since 1995 surface vegetation cover in large areas of Northern China has significantly deteriorated. Moreover, a high correlation is shown to exist among the annual occurrence of sand–dust storms, surface vegetation cover and snowfall. This suggests that the deterioration of surface vegetation cover may strongly influence the occurrence of sand–dust storms in China. Soils with coarse and medium textures are found to be more associated with sand–dust storms than other soils.  相似文献   

12.
The outer region of the jovian system between ∼50 and 300 jovian radii from the planet is found to be the host of a previously unknown dust population. We used the data from the dust detector aboard the Galileo spacecraft collected from December 1995 to April 2001 during Galileo's numerous traverses of the outer jovian system. Analyzing the ion amplitudes, calibrated masses and speeds of grains, and impact directions, we found about 100 individual events fully compatible with impacts of grains moving around Jupiter in bound orbits. These grains have moderate eccentricities and a wide range of inclinations—from prograde to retrograde ones. The radial number density profile of the micrometer-sized dust is nearly flat between about 50 and 300 jovian radii. The absolute number density level (∼10 km−3 with a factor of 2 or 3 uncertainty) surpasses by an order of magnitude that of the interplanetary background. We identify the sources of the bound grains with outer irregular satellites of Jupiter. Six outer tiny moons are orbiting the planet in prograde and fourteen in retrograde orbits. These moons are subject to continuous bombardment by interplanetary micrometeoroids. Hypervelocity impacts create ejecta, nearly all of which get injected into circumjovian space. Our analytic and numerical study of the ejecta dynamics shows that micrometer-sized particles from both satellite families, although strongly perturbed by solar tidal gravity and radiation pressure, would stay in bound orbits for hundreds of thousands of years as do a fraction of smaller grains, several tenths of a micrometer in radius, ejected from the prograde moons. Different-sized ejecta remain confined to spheroidal clouds embracing the orbits of the parent moons, with appreciable asymmetries created by the radiation pressure and solar gravity perturbations. Spatial location of the impacts, mass distribution, speeds, orbital inclinations, and number density of dust derived from the data are all consistent with the dynamical model.  相似文献   

13.
This study investigates how the choice of the planetary boundary layer (PBL) parameterization and dust emission scheme affects the prediction of dust entrainment simulated with a regional mesoscale model. For this analysis we consider a representative dust episode which occurred on April 2001 in the Aral Sea region. The meteorological fields were simulated using the PSU/NCAR MM5 modeling system considering two different boundary layer parameterizations. In each case, emitted dust fluxes were computed off-line by incorporating MM5 meteorological fields into the dust module DuMo. Several dust emission schemes with a prescribed erodible fraction and fixed threshold wind speed were the subject of our analysis. Implications to assessment of the anthropogenic fraction of dust emitted in the Aral region were investigated by conducting the full, half, and no lake modeling experiments.Our results show that the discrepancies in dust fluxes between the two different PBLs are much higher compared to the discrepancy associated with the use of considered dust production schemes. Furthermore, the choice of the PBL affects the timing and duration of a modeled dust event. We demonstrate that different combinations of the PBL parameterization and wind- or friction velocity-driven dust emission schemes can result in up to about a 50% difference in predicted dust mass caused by the Aral Sea desiccation. We found that the drying-up of the Aral cannot only affect the dust emission by expanding the source area, but also by affecting atmospheric characteristics, especially winds. These competitive factors add further complexity to quantification of the anthropogenic dust fraction in the region.  相似文献   

14.
Artificial neural networks (ANN) are non-linear mapping structures analogous to the functioning of the human brain. In this study, we take the ANN approach to model and predict the occurrence of dust storms in Northwest China, by using a combination of daily mean meteorological measurements and dust storm occurrence. The performance of the ANN model in simulating dust storm occurrences is compared with a stepwise regression model. The correlation coefficients between the observed and the estimated dust storm occurrences obtained from the neural network procedure are found to be significantly higher than those obtained from the regression model with the same input data. The prediction tests show that the ANN models used in this study have the potential of forecasting dust storm occurrence in Northwest China by using conventional meteorological variables.  相似文献   

15.
We present observations of a local dust storm performed by the OMEGA and PFS instruments aboard Mars Express. OMEGA observations are used to retrieve the dust single-scattering albedo in the spectral range 0.4-4.0 μm. The single-scattering albedo shows fairly constant values between 0.6 and 2.6 μm, and a sharp decrease at wavelengths shorter than 0.6 μm, in agreement with previous studies. It presents a small absorption feature due to ferric oxide at 0.9 μm, and a strong absorption feature due to hydrated minerals between 2.7 and 3.6 μm. We use a statistical method, the Independent Component Analysis, to determine that the dust spectral signature is decoupled from the surface albedo, proving that the retrieval of the single-scattering albedo is reliable, and we map the dust optical thickness with a conventional radiative transfer model. The effect of the dust storm on the atmospheric thermal structure is measured using PFS observations. We also simulate the thermal impact of the dust storm using a one-dimensional atmospheric model. A comparison of the retrieved and modeled temperature structures suggests that the dust in the storm should be confined to the 1-2 lowest scale heights of the atmosphere. However, the observed OMEGA reflectance in the CO2 absorption bands does not support this suggestion.  相似文献   

16.
We consider the mechanisms of the formation of dust ejected from craters produced by large-meteoroid impacts on the Martian surface, as well as the mechanisms of the elevation of dust that already existed on the surface, due to impulsed aeolian processes. Detailed numerical calculations of the dust injection, the shock wave propagation, and the formation and evolution of the dust cloud are carried out for vertical impacts of meteoroids with sizes from 1 m to 100 m. The results of these calculations show that dust raised by a 1-m impactor is sufficient to produce a local dust storm, while the mass of dust formed in impacts of large bodies is comparable to the mass of a regional or even a global dust storm. The impact detection rates for 1-, 5-, 20-, and 100-m-sized meteoroids are estimated to be a few impact events per year, one event in every 5–6 years, one event in every 300–800 years, and one event in every 5000–20000 years, respectively. In the last case, the thickness of the global layer of precipitated dust and small fragments, which has been formed through impacts over a period of 107–108 years, is comparable to the thickness of the global dust layer on the Martian surface. In the first case, the mass of raised dust is greater than that for typical dust devils. The speed of impulsed wind at large distances from the impact site is shown to exceed the critical speed at which the blowing-off of dust from the surface begins. Some factors that may enhance the dust ejection have been previously ignored in numerical calculations. We discuss here the role of these factors. The second part of our study deals with the determination of the impact-induced radiation impulse and the estimation of its effect on the rise of dust.  相似文献   

17.
We have constructed a numerical model of a galaxy that consists of a stellar, gas and dust disc imbedded within a dark halo. We have used this model to assess the radiation, gravitational and viscous forces on dust grains and to trace their motion through the interstellar medium over a period of 109 yr. We conclude that the disc opacity is a crucial factor in understanding the motion of the grains. Large grains (≈0.1 μm) with low disc opacity will lead to dust expulsion from the stellar disc, while high opacity leads to dust retention. Reasonable disc opacities lead to the recycling of the larger grains from the outer to the inner regions of the galaxy. The larger grains travel at higher velocities than small grains (0.01−0.001 μm), and so the smaller grains remain relatively close to their formation sites. Dust can 'leak' out over the entire surface of the disc because of the imbalance of radiation and gravitational forces. The dust is dynamically coupled to the gas and so although the gas lags behind the dust it is carried along with it. This explains the close correlation between the far-infrared emission from dust and the gas column density. We use a simple analytical model to show how the dust mass of a galaxy may evolve with time and how a significant fraction (90 per cent) of the total dust mass produced may have been expelled into the intergalactic medium.  相似文献   

18.
We apply our analytic model for the dust diffusivity to calculate the vertical structure of the dust sub-disk in a turbulent protoplanetary nebula. We present a numerical solution of a vertical dust settling equationand a coagulation equation for dust grains covering four orders of magnitude in time and grain size.  相似文献   

19.
A correct understanding of the dynamical effect of solar radiation exerted on fluffy dust particles can be achieved with assistance of a light scattering theory as well as the equation of motion. We reformulate the equation of motion so that the radiation pressure and the Poynting-Robertson effect on fluffy grains are given in both radial and nonradial directions from the center of the Sun. This allows numerical estimates of these radiation forces on fluffy dust aggregates in the framework of the discrete dipole approximation, in which the first term of the scattering coefficients in Mie theory determines the polarizability of homogeneous spheres forming the aggregates.The nonsphericity in shape turns out to play a key role in the dynamical evolution of dust particles, while its consequence depends on the rotation rate and axis of the grains. Unless a fluffy dust particle rapidly revolves on its randomly oriented axis, the nonradial radiation forces may prevent, apart from the orbital eccentricity and semimajor axis, the orbital inclination of the particle from being preserved in orbit around the Sun. However, a change in the inclination is most probably controlled by the Lorentz force as a consequence of the interaction between electric charges on the grains and the solar magnetic field. Although rapidly and randomly rotating grains spiral into the Sun under the Poynting-Robertson effect in spite of their shapes and structures, fluffy grains drift inward on time scales longer at submicrometer sizes and shorter at much larger sizes than spherical grains of the same sizes. Numerical calculations reveal that the dynamical lifetimes of fluffy particles are determined by the material composition of the grains rather than by their morphological structures and sizes. The Poynting-Robertson effect alone is nevertheless insufficient for giving a satisfactory estimate of lifetimes for fluffy dust grains since their large ratios of cross section to mass would reduce the lifetimes by enhancing the collisional probabilities. We also show that the radiation pressure on a dust particle varies with the orbital velocity of the particle but that this effect is negligibly small for dust grains in the Solar System.  相似文献   

20.
《Icarus》1987,71(2):313-334
A dynamical mechanism for the Martian (atmospheric) polar warming observed by the Viking IRTM during the 1977 winter solstice dust storm (and a similar one possibly observed by Mariner 9 in 1971) is proposed, and investigated using a simplified nonlinear model. The model is of a type previously used to successfully simulate the essential aspects of terrestrial sudden stratospheric warmings. The dynamical mechanism is, in part, very similar fundamentally to that responsible for these warmings, involving planetary-scale waves. A number of numerical experiments have been conducted to assess the basic viability of such a mechanism for the martian polar warming and to examine its sensitivity to several factors. These experiments demonstrate that a planetary wave mechanism can produce a polar warming with the magnitude and suddenness of that observed. A planetary wave mechanism must primarily involve wavenumber 1, as wavenumber 2 is too strongly vertically trapped to produce a warming like that observed. The necessary wave forcing in the present model can be topographic (mechanical) or thermal (and nonstationary), and is relatively large but certainly plausible. The strong radiative damping in the Mars atmosphere acts to substantially inhibit a warming, through its effects on both the zonal flow and the wave. Dissipation plays a greater role relative to transience in a model Martian warming of the type studied here than in a sudden stratospheric warming. Increasing radiative damping during a warming due to higher temperatures and greater dust loading may play a role in yielding a relatively rapid cooling phase for the Mars warming event. The residual mean meridional circulation during a model warming entails strong poleward and downward flow into high northern latitudes, throughout a very deep region. This probably indicates similar transport of atmospheric dust, as well as water. Such transports are of considerable potential significance for both the dust and water cycles on Mars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号