首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the analysis of coexisting minerals (magnetite, ilmenite, titanite, and pyroxene), the temperature and redox conditions of rock crystallization in the Khibina alkaline massif were estimated. Under the redox conditions typical of the Khibina complex, the carbon speciation evolved as follows: CO2 in fluid and carbonate anions in melt at high temperatures; then, graphite formation; and, at lower temperatures, the appearance of significant amounts of hydrocarbons owing to fluid-graphite interaction. Abiogenic hydrocarbons in magmatic complexes can be produced by processes differing from the Fischer-Tropsch synthesis.  相似文献   

2.
Relationships between methane and its homologues mainly contained in fluid microinclusions have been studied in 332 monomineralic fractions from the Khibiny and Lovozero alkaline plutons. Hydrocarbon gases (HCG) were extracted for subsequent chromatographic analysis using the bulk method of sample comminution. The molecular weight distribution (MWD) of gaseous alkanes in the same and associated minerals is different depending on geological setting of the samples. The molecular mass of HCG increases (i) with decrease in temperature and capture of fluid inclusions in the course of transformation of primary magmatic minerals and the formation of late minerals as products of intensified postmagmatic processes; (ii) in the direction from khibinite at the margin and foyaite in the core of the Khibiny pluton to the central ring structure; and (iii) from the bottom to top of the differentiated complex in the Lovozero pluton. The results obtained coupled with other geochemical data suggest multistage generation and transformation of hydrocarbons from the magmatic to the final low-temperature hydrothermal stage. The MWD of hydrocarbon components in gases occluded by minerals can serve as an indicator of conditions characteristic of rock and ore formation, as well as of the consecutive formation and transformation of associated minerals revealing ambiguous and controversial relationships.  相似文献   

3.
Carbon-saturated crustal fluids in the C–O–H system comprise H2O, CO2 and CH4 as the most important fluid species. Graphite precipitation from a cooling C–O–H is discussed for two different systems, namely for a fluid–rock system in which no transfer of atomic oxygen and hydrogen between the fluid and the rock is possible (closed fluid system), and for an open fluid system. Thermodynamic model calculations show that the graphite-forming reactions and the graphite precipitation potential are different for these two systems. Furthermore, the calculations demonstrate that for both systems, the following factors play a role in determining the graphite precipitation potential, i.e. (1) the redox state of the fluid, (2) the initial pressure and temperature conditions and (3) whether cooling is combined with decompression. Open and closed fluid system graphite precipitation can be distinguished from each other using fluid inclusion and stable carbon isotope studies. The results of this study provide insight in the formation of hydrothermal graphite deposits.  相似文献   

4.
O, Sr and C isotopes from east‐central Vermont are used to provide information on the timing and volume of metamorphic fluid flow. The results are then used to assess the evidence for redox transformations between C species. Oxygen profiles are homogenised on a metre scale; comparison with Sr isotopes suggest that O alteration may have occurred over a significantly larger timescale than that of Sr, possibly because O was modified during dewatering and diagenesis in addition to the high temperature alteration recorded by strontium. Sr isotope distributions are consistent with cross‐layer fluid fluxes of 104?106 moles m?2; absolute values depend on the Sr fluid‐rock distribution coefficient which is poorly known; however, reaction progress constraints suggest that fluxes were towards the lower end of this range. High δ13C values observed at lithological boundaries cannot be explained by volume loss or closed system processes and are taken to indicate reductive precipitation of graphite as a result of mixing between CO2 and CH4‐bearing fluids. Mass balance calculations indicate that redox reactions occurring under metamorphic conditions convert a minimum of 10% of the CO2 released from limestones into graphite, thus providing a potentially important control on the average residence time of C within the crust with implications for C cycling models.  相似文献   

5.
The vein graphite deposits of Sri Lanka are located in a Precambrian high grade metamorphic terrain dominated by granulite facies rocks. The vein graphite has been interpreted as being of solid phase lateral secretion origin, derived by hydrothermal solutions or of biogenic origin. Based on what is known on the composition of the fluids under granulite facies conditions and the role of these fluids in their transport through the crust, the origin of the graphite is proposed to be the direct consequence of granulite facies metamorphism in the presence of a CO2 rich fluid under low fO2 conditions. This CO2 rich fluid could promote hydraulic fracturing and precipitation of vein graphite. Textures and structures of the vein graphite indicate syntectonic deposition by a crack-seal process under granulite facies metamorphic conditions. This model is supported by temperature estimates on graphite based on XRD data and stable carbon isotopes of graphite that suggest a deep-seated crustal origin.  相似文献   

6.
When graphite is present, carbon‐bearing species dissolve in the C‐O‐H fluid and lower the activity of water (). Accordingly, metamorphic reactions that involve water, namely dehydration and partial melting reactions, adjust their P–T positions to accommodate the change of . In this modelling study, pseudosections are calculated for graphite‐bearing systems that are either closed or that progressively lose fluid and/or melt. The diagrams incorporate a new model of CO2 solubility in felsic melts that we derived to be compatible with a recently published melt model. As the result of the lowered in the carbon‐bearing systems, the temperature displacements of the solidus can be as large as 50 °C at low pressures in cordierite‐bearing zones (<4 kbar), but are smaller than 15 °C at mid‐pressure P–T conditions (4–9 kbar). In the supersolidus region, the phase relations among silicate minerals + melt are very close to those in carbon‐free systems. The fluid CO2 content increases as temperature increases in the supersolidus assemblages. The CO2‐rich fluid can be stable in granulite facies conditions in an oxidized system. In graphitic systems, melt and/or cordierite dominate the CO2 budget of high‐grade rocks. During cooling, the fluid that exsolves from such crystalizing melt is CO2‐rich. In addition to the phase relations, the pseudosections presented in this study enable researchers to quantitatively investigate the evolution of phase modes, including graphite, along specific metamorphic P–T paths. At low pressures in the cordierite stability field, graphite is predicted to precipitate as the pressure increases or temperature decreases in the subsolidus assemblages, or temperature increases in the region of melt + fluid coexistence. On the other hand, the graphite abundance remains nearly constant along the mid‐pressure P–T series, but the graphite mode in the supersolidus region may increase due to residual enrichment if the melt is extracted. The modelling results show that metamorphic processes in closed systems lead to only small changes in graphite mode (a few tenths of a per cent). This strongly suggests that open‐system behaviours are required for large amounts of graphite deposition, including fluid infiltration and mixing or residual enrichment processes in high‐grade rocks. In addition to P–T pseudosections, P/T–XO diagrams (XO = O/(H + O) in the fluid) illustrate the thermodynamic features of internal buffering from another perspective, and explore the dependence of phase relations on the externally imposed redox state. If the system is equilibrated with CO2 or CH4‐rich infiltrating fluid, the temperature displacements of metamorphic reactions can be larger than 50 °C, compared with carbon‐free systems.  相似文献   

7.
This paper presents new data on chromium mineralization in a fenitized xenolith in Mt. Kaskasnyunchorr in the Khibiny alkaline massif (Kola Peninsula, Russia) and summarizes data on Cr mineralogy in the Khibiny Mountains. Protolith silicates that contained Cr3+ admixture are believed to be the source of this element in the fenite. Cr-bearing (maximum Cr2O3 concentrations, wt %, are in parentheses) aegirine (5.8), crichtonite-group minerals (2.1), muscovite (1.3), zirconolite (1.1), titanite (1.0), fluorine-magnesioarfvedsonite (0.8), biotite (0.8), ilmenite (0.6), and aenigmatite (0.6) occur in the fenite. The late-stage spinellides of the FeTi-chromite-CrTi-magnetite series, which are very poor in Mg and Al and which formed after Crrich aegirine and ilmenite, are the richest in Cr (up to 42% Ct2O3). Cr concentrations grew with time during the fenitization process. Unlike minerals in the Khibiny ultramafic rocks where Cr is associated with Mg, Al (it is isomorphic with Cr), and with Ca, chromium in the fenites is associated with Fe, Ti, and V (with which Cr3+ is isomorphic) and with Na in silicate minerals. Cr3+ Mobility of Cr3+ and the unique character of chromium mineralization in the examined fenites were caused by high alkalinity of the fluid.  相似文献   

8.
The Khibiny Complex hosts a wide variety of carbon-bearing species that include both oxidized and reduced varieties. Oxidised varieties include carbonate minerals, especially in the carbonatite complex at the eastern end of the pluton, and Na-carbonate phases. Reduced varieties include abiogenic hydrocarbon gases, particularly methane and ethane, dispersed bitumens, solid organic substances and graphite. The majority of the carbon in the Khibiny Complex is hosted in either the carbonatite complex or within the so-called “Central Arch”. The Central Arch is a ring-shaped structure which separates khibinites (coarse-grained eudialite-bearing nepheline-syenites) in the outer part of the complex from lyavochorrites (medium-grained nepheline-syenites) and foyaites in the inner part. The Central Arch is petrologically diverse and hosts the major REE-enriched apatite–nepheline deposits for which the complex is best known. It also hosts zones with elevated hydrocarbon (dominantly methane) gas content and zones of hydrothermally deposited Na-carbonate mineralisation. The hydrocarbon gases are most likely the product of a series of post-magmatic abiogenic reactions. It is likely that the concentration of apatite-nepheline deposits, hydrocarbon gases and Na-carbonate mineralisation, is a function of long lived fluid percolation through the Central Arch. Fluid migration was facilitated by stress release during cooling and uplift of the Khibiny Complex. As a result, carbon with a mantle signature was concentrated into a narrow ring-shaped zone.  相似文献   

9.
Experimental studies of the Fe0–(Mg, Ca)CO3–S system were carried out during 18–20 h at 6.3 GPa, 900–1400°C. It is shown that the major processes resulting in the formation of free carbon include reduction of carbonates upon redox interaction with Fe0 (or Fe3C), extraction of carbon from iron carbide upon interaction with a sulfur melt/fluid, and reduction of the carbonate melt by Fe–S and Fe?S–C melts. Reconstruction of the processes of graphite formation indicates that carbonates and iron carbide may be potential sources of carbon under the conditions of subduction, and participation of the sulfur melt/fluid may result in the formation of mantle sulfides.  相似文献   

10.
Nine marble horizons from the granulite facies terrane of southern India were examined in detail for stable carbon and oxygen isotopes in calcite and carbon isotopes in graphite. The marbles in Trivandrum Block show coupled lowering of δ13C and δ18O values in calcite and heterogeneous single crystal δ13C values (? 1 to ? 10‰) for graphite indicating varying carbon isotope fractionation between calcite and graphite, despite the granulite facies regional metamorphic conditions. The stable isotope patterns suggest alteration of δ13C and δ18O values in marbles by infiltration of low δ13C–δ18O‐bearing fluids, the extent of alteration being a direct function of the fluid‐rock ratio. The carbon isotope zonation preserved in graphite suggests that the graphite crystals precipitated/recrystallized in the presence of an externally derived CO2‐rich fluid, and that the infiltration had occurred under high temperature and low fO2 conditions during metamorphism. The onset of graphite precipitation resulted in a depletion of the carbon isotope values of the remaining fluid+calcite carbon reservoir, following a Rayleigh‐type distillation process within fluid‐rich pockets/pathways in marbles resulting in the observed zonation. The results suggest that calcite–graphite thermometry cannot be applied in marbles that are affected by external carbonic fluid infiltration. However, marble horizons in the Madurai Block, where the effect of fluid infiltration is not detected, record clear imprints of ultrahigh temperature metamorphism (800–1000 °C), with fractionations reaching <2‰. Zonation studies on graphite show a nominal rimward lowering δ13C on the order of 1 to 2‰. The zonation carries the imprint of fluid deficient/absent UHT metamorphism. Commonly, calculated core temperatures are > 1000 °C and would be consistent with UHT metamorphism.  相似文献   

11.
《Gondwana Research》2013,23(3-4):799-809
Externally derived, pure CO2 that mixes with a carbon-(under)saturated C-O-H fluid in lower crustal granulites may result in graphite precipitation if the host-rock oxygen fugacity (fO2rock) is below the upper fO2 limit of graphite. The maximum relative amount of graphite that can precipitate varies between a few mol% up to more than 25 mol%, depending on pressure, temperature, and host-rock redox state. The maximum relative amount of graphite that can precipitate from an infiltrating CO2 fluid into a dry granulite (CO fluid system) varies between zero and a few mol%. Thermodynamic evaluation of the graphite precipitation process shows that CO2 infiltration into lower crustal rocks does not always result in a carbon (super)saturated fluid. In that case, graphite precipitation is only possible if carbon saturation can be reached as a result of the reaction CO2  CO + ½ O2. Graphite that has been precipitated during granulite facies metamorphic conditions can subsequently be absorbed by a COH fluid during retrograde metamorphism. It is also possible, however, that significant amounts of graphite precipitate from a COH fluid during retrograde metamorphism. This study shows that interpreting the presence or absence of graphite in granulites with respect to CO2 infiltration requires detailed information on the PTfO2rock conditions, the relative amount of CO2 that infiltrates into the rock, and whether H2O is present or not.  相似文献   

12.
The Trifilia karst aquifer presents a complex hydrochemical character due to the intricate geochemical processes that take place in the area. Their discernment was achieved by using the chemical analyses of major, trace elements and boron isotopes. Major ion composition indicates mixing between seawater and freshwater is occurring. Five hydrochemical zones corresponding to five respective groundwater types were distinguished, in which the chemical composition of groundwater is influenced mainly due to the different salinization grade of the aquifer. The relatively increased temperature of the aquifer indicates the presence of hydrothermal waters. Boron isotopes and trace elements indicate that the intruding seawater has been hydrothermally altered, as it is shown by the δ11B depleted signature and the increased concentrations of Li and Sr. Trace elements analyses showed that the groundwater is enriched in various metallic elements, which derive from the solid hydrocarbons (bitumens), contained in the carbonate sediments of the Tripolis zone. The concentration of these trace elements depends on the redox environment. Thus, in reductive conditions As, Mn, Co and NH4 concentrations are high, in oxidized conditions the V, Se, Mo, Tl and U concentration increases while Ni is not redox sensitive and present high concentration in both environments.  相似文献   

13.
CO2 rich spring waters were sampled and analyzed for Co, Ni, Cu, Pb, Zn, Cd, Cr, As, Sb and Ge by graphite furnace atomic absorption spectroscopy. The springs belong to two groups corresponding to possible events which may occur during the ascent of a thermomineral water: cooling without major modification of the mineralization (Vichy springs) or mixing at constant temperature (Vals les Bains springs). The implications of these phenomena on the trace element behavior are presented. Because of changes in pH, temperature, mineralization and redox conditions, water-rock interactions increase and the new conditions allow higher concentrations of metals than in the deep fluid. The calculated distribution of aqueous species indicates the importance of bicarbonate complexes in the transport of divalent metals. The total dissolved concentrations are limited by the solubility of carbonates or the adsorption on ferric hydroxydes. On the contrary, As, Sb and Ge are dissolved under hydrothermal conditions and their concentrations tend to decrease when the deep fluid cools down or mixes with superficial water. The behavior of Ge seems to differ from that of silica, and the influence of the oxidation state is demonstrated for As and Sb. These last two elements are involved with precipitations of clay minerals, silica or ferric hydroxydes.  相似文献   

14.
To elucidate the conditions of formation of epigenetic graphite inclusions in natural diamond, we carried out experiments on high-temperature treatment of natural and synthetic diamond crystals containing microinclusions. The crystal annealing was performed in the CO–CO2 atmosphere at 700–1100 °C and ambient pressure for 15 min to 4 h. The starting and annealed diamond crystals were examined by optical microscopy and Raman spectroscopy. It has been established that the microinclusions begin to change at 900 °C. A temperature increase to 1000 °C induces microcracks around the microinclusions and strong stress in the diamond matrix. The microinclusions turn black and opaque as a result of the formation of amorphous carbon at the diamond–inclusion interface. At 1100 °C, ordered graphite in the form of hexagonal and rounded plates is produced in the microcracks. A hypothesis is put forward that graphitization in natural diamond proceeds by the catalytic mechanism, whereas in synthetic diamond it is the result of pyrolysis of microinclusion hydrocarbons. The obtained data on the genesis of graphite microinclusions in diamond are used to evaluate the temperature of kimberlitic melt at the final stage of formation of diamond deposits.  相似文献   

15.
Although hydrocarbon-bearing fluids have been known from the alkaline igneous rocks of the Khibiny intrusion for many years, their origin remains enigmatic. A recently proposed model of post-magmatic hydrocarbon (HC) generation through Fischer-Tropsch (FT) type reactions suggests the hydration of Fe-bearing phases and release of H2 which reacts with magmatically derived CO2 to form CH4 and higher HCs. However, new petrographic, microthermometric, laser Raman, bulk gas and isotope data are presented and discussed in the context of previously published work in order to reassess models of HC generation. The gas phase is dominated by CH4 with only minor proportions of higher hydrocarbons. No remnants of the proposed primary CO2-rich fluid are found in the complex. The majority of the fluid inclusions are of secondary nature and trapped in healed microfractures. This indicates a high fluid flux after magma crystallisation. Entrapment conditions for fluid inclusions are 450–550 °C at 2.8–4.5 kbar. These temperatures are too high for hydrocarbon gas generation through the FT reaction. Chemical analyses of rims of Fe-rich phases suggest that they are not the result of alteration but instead represent changes in magma composition during crystallisation. Furthermore, there is no clear relationship between the presence of Fe-rich minerals and the abundance of fluid inclusion planes (FIPs) as reported elsewhere. δ13C values for methane range from − 22.4‰ to − 5.4‰, confirming a largely abiogenic origin for the gas. The presence of primary CH4-dominated fluid inclusions and melt inclusions, which contain a methane-rich gas phase, indicates a magmatic origin of the HCs. An increase in methane content, together with a decrease in δ13C isotope values towards the intrusion margin suggests that magmatically derived abiogenic hydrocarbons may have mixed with biogenic hydrocarbons derived from the surrounding country rocks.  相似文献   

16.
Fluid inclusions and mineral associations were studied in late-stage charnockitic granites from the Bjerkreim-Sokndal lopolith (Rogaland anorthosite province). Because the magmatic and tectonic evolutions of this complex appear to be relatively simple, these rocks are a suitable case for investigation of the origin and evolution of granulitic fluids. Fluid inclusions, primarily contained in quartz, can be divided into four types: carbonic (type I), N2-bearing (type II), CO2+H2O (type III) and aqueous inclusions (type IV). For each type, the role of leakage and fluid mixing are discussed from microthermometric and Raman spectrometric data. The most striking features of CO2-rich inclusions (the predominant fluid) is the presence of graphite in numerous, trail-bound inclusions (Ib) and its absence in a few isolated, very dense (d=1.16), pure CO2 inclusions (Ia) and in the late carbonic inclusions (Ic). Fluid chronology and mineral assemblages suggest that carbonic Ia inclusions represent the first fluid (pure CO2) trapped at or close to magmatic conditions (T=780–830° C, fO2=10-15 atm and P=7.4±1 kb), outside the graphite stability field. In contrast, type Ib inclusions enclosed graphite particles from a channelized fluid during retrograde rock evolution (P=3–4 kb and T=600° C). Decreases in T-fO2 could explain a progressive evolution from a CO2-rich fluid to an H2O-rich fluid in a closed C–O–H system. However, graphite destabilization observed in type Ic inclusions implies some late introduction of external water during the last stage of retrogression. The main results of this study are the following: (1) a carbonic fluid was present in an early stage of rock evolution (probably in the charnockitic magma) and (2) this granulite occurrence offers good evidence of crossing the graphite stability field during post-magmatic evolution.  相似文献   

17.
The results of detailed mineralogical, geochemical, and thermobarogeochemical studies of the Kalguty complex greisen deposit are presented. The chemical compositions of ore veins, greisens, and other geological bodies have been determined. A wide range of chemical elements from Li to U (48 elements, including noble metals and REE) has been determined in ore minerals. Graphite in association with quartz and sulfides was identified in ore veins for the first time. Graphite is enriched in a light carbon isotope. The δ13C value varies from ?26.3 ± 0.4 to ?26.6 ± 0.3‰. High Au, Ag, Hg, Te, Sb, Bi, Cu, Pb, Zn, Fe, and S contents were detected in graphite grains with a microprobe. The graphite content increases regularly with depth; the spatial correlation of graphite with W, Mo, Cu, Au, Pt, Pd, and other metals is established. The highest Au, Ag, Pt, Pd, and Os contents are characteristic of minor intrusions of albitized granite porphyry (γπ2J1vk), intramineral dikes of hydrothermally altered kalgutite (γπ3J1vk), ore veins, their greisen selvages, and autonomous ore-bearing greisen bodies of the Mo stock type. Gold occurs in native form, while silver is contained largely in sulfides and sulfosalts. High PGE contents are characteristic of pyrite, wolframite, and molybdenite. The major components of fluid inclusions in quartz (H2O, CO2, CO, and H2) have been studied, as well as hydrocarbons (CH4, C2H6, C3H8, C4H10, C5H12, C6H14, C2H2, and C2H4) contained therein. Two-phase fluid inclusions are predominant, while single-and three-phase inclusions are less abundant. The homogenization temperatures of primary and secondary inclusions are 290–340 and 140–160°C, respectively. The concentration of dissolved salts (NaCl and KCl) in two-phase inclusions amounts to 11.6–14.0%. The H2O and CO2 contents decrease with depth, whereas the CO, H2, and HC concentrations increase in the same direction. Graphite is regarded as a product of reactions with participation of fluid (gas) components. The ore mineralization was formed under contrasting conditions related to the oxidation of a primary reduced deep metalliferous fluid.  相似文献   

18.
The distribution of volatiles in ore units of the Western Pana layered mafic pluton in the Kola province was studied with pyrolytic gas chromatography. In comparison with barren rocks, the rocks containing Pt-Pd mineralization are characterized by a much higher concentration of volatiles, especially H2S, SO3, and CH4. With a drop in temperature, the redox potential of the fluid phase in the ore-magmatic system increased. PGE mineralization was largely formed at the postcumulus stage with participation of volatiles under variable redox conditions.  相似文献   

19.
Epigenetic, vein-type graphite mineralization originates by deposition from C—O—H fluids in high-temperature environments. Consequently, fluid-deposited graphite is uniformly highly crystalline in volumetrically large occurrences. This work examines the factors controlling graphite crystallinity in fluid-deposited occurrences with reference to some case studies from southern Spain where vein-type graphite is associated with a variety of host rocks. Possible causes influencing high crystallinity of graphite in these occurrences include: (1) large graphite occurrences are generated from large volumes of fluids that maintain their temperatures for long periods of time, which is easier at higher temperatures; (2) high temperature conditions are required for a fluid to precipitate a major part of its dissolved carbon during a small temperature decrease; (3) carbon is incorporated into C—O—H fluids mainly through devolatilization reactions which also require high temperatures; (4) highly crystalline graphite generated at high-T/high-P conditions is less susceptible to resorption as P decreases or by subsequent fluid flow; (5) graphite precipitation involves high activation energy that can be overcome only if the temperature is high enough. These causes can be extrapolated to most vein-type graphite deposits worldwide. Received: 23 February 1998 / Accepted: 28 April 1998  相似文献   

20.
Poorly crystalline carbonaceous matter was observed in chlorite to sillimanite grade metasediments from the Trois Seigneurs Massif, in contrast to other studies of carbon crystallinity which observed well crystallised graphite under upper greenschist facies conditions. Using transmission electron microscopy four types of carbon particle were identified; globular carbon, composite flakes, homogeneous flakes and crystalline graphite. Globular carbon and composite flakes are poorly crystalline microporous carbon. Homogeneous flakes decompose in the electron beam and are probably composed of heavy volatile hydrocarbons. Graphite is confined to samples from retrograde shear zones and often occurs with globular carbon. The lack of graphitisation in metasediments is probably a consequence of the microporous structure of the carbonaceous matter combined with low f O 2. The preservation of carbonaceous matter in the Trois Seigneurs metasediments is not compatible with the metasediments having been externally buffered by a high X H2O fluid syn-metamorphism. An alternative hypothesis of internal buffering is preferred to explain the carbonaceous matter in the Trois Seigneurs metasediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号