首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A wave flume experiment was conducted to study nutrient fluxes at water-sediment interface of Meiliang Bay under different hydrodynamic conditions. The results reveal that hydrodynamics has remarkable effects on nutrient fluxes in this area. With a bottom wave stress of 0.019 N m?2 (equivalent to disturbance caused by wind SE 5–7 m s?1 at the sediment sample site of Meiliang Bay), the fluxes of TN, TDN and NH4 +-N were separately 1.92 × 10?3, ?1.81 × 10?4 and 5.28 × 10?4 mg m?2 s?1 (positive for upward and negative for downward), but for TP, TDP and SRP, the fluxes were 5.69 × 10?4, 1.68 × 10?4 and ?1.29 × 10?4 mg m?2 s?1. In order to calculate the released amount of nutrients based on these results, statistic analysis on the long-term meteorological data was conducted. The result shows that the maximum lasting time for wind SE 5–7 m s?1 in this area is about 15 h in summer. Further calculation shows that 111 t TN, 32 t NH4 +-N, 34 t TP and 10 t TDP can be released into water (the sediment area was 47.45% of the whole surface area), resulting in concentration increase of 0.025, 0.007, 0.007 and 0.002 mg L?1 separately. With stronger disturbance (bottom wave stress is 0.217 N m?2 which is equivalent to disturbance caused by wind SE 10–11 m s?1 at the same site), there has been significant increase of nutrient fluxes (1.16 × 10?2, 6.76 × 10?3, 1.14 × 10?2 and 2.14 × 10?3 mg m?2 s?1 for TN, DTN and NH4 +-N and TP). The exceptions were TDP with flux having a decrease (measured to be 9.54 × 10?5 mg m?2 s?1) and SRP with flux having a small increase (measured to be 5.42 × 10?5 mg m?2 s?1). The same statistic analysis on meteorological data reveal that the maximum lasting time for wind SE 10–11 m s?1 is no more than 5 h. Based on the nutrient fluxes and the wind lasting-time, similar calculations were also made suggesting that 232 t TN, 134.9 t TDN, 228 t NH4 +-N, 42.7 t TP, 2.0 t TDP and 1.1 t SRP will be released from sediment at this hydrodynamic condition resulting in the concentration increases of 0.050, 0.029, 0.049, 0.009, 0.0004 and 0.0002 mg L?1. Therefore in shallow lakes, surface disturbance can lead to significant increase of nutrient concentrations although some components in water column had negative flux with weak disturbance (e.g. TDN and SRP in this experiment). In this case, sediment looks to be a source of nutrients. These nutrients deposited in sediment can be carried or released into water with sediment resuspension or changes of environmental conditions at water-sediment interface, which can have great effects on aquatic ecosystem and is also the characteristics of shallow lakes.  相似文献   

2.
The changes of NH3-N, NO3-N, NO2-N and TN/TP were studied during growth and non-growth season in 33 subtropical shallow lakes in the middle and lower reaches of the Yangtze River. There were significant positive correlations among all nutrient concentrations, and the correlations were better in growth season than in non-growth season. When TP>0.1 mgL-1, NH3-N increased sharply in non-growth season with increasing TP, and NO3-N increased in growth season but decreased in non-growth season with TP. These might be attributed to lower dissolved oxygen and low temperature in non-growth season of the hypereutrophic lakes, since nitrification is more sensitive to dissolved oxygen and temperature than antinitrification. When 0.1 mgL-1>TP>0.035 mgL-1, TN and all kinds of inorganic nitrogen were lower in growth season than in non-growth season, and phytoplank-ton might be the vital regulating factor. When TP<0.035 mgL-1, inorganic nitrogen concentrations were relatively low and NH3-N, NO2-N had significant correlations with phytoplankton, indicating that NH3-N and NO2-N might be limiting factors to phytoplankton. In addition, TN/TP went down with decline in TP concentration, and TN and inorganic nitrogen concentrations were obviously lower in growth season than in non-growth season, suggesting that decreasing nitrogen (especially NH3-N and NO3-N) was an important reason for the decreasing TN/TP in growth season. The ranges of TN/TP were closely related to trophic level in both growth and non-growth seasons, and it is apparent that in the eutrophic and hypertrophic state the TN/TP ratio was obviously lower in growth season than in non-growth season. The changes of the TN/TP ratio were closely correlated with trophic levels, and both declines of TN in the water column and TP release from the sediment were important factors for the decline of the TN/TP ratio in growth season.  相似文献   

3.
湖泊底泥疏浚对沉积物再悬浮及营养盐负荷影响的模拟   总被引:5,自引:2,他引:3  
选取太湖梅梁湾污染底泥为研究对象,利用沉积物再悬浮发生装置,通过室内模拟实验研究太湖夏季常规风情下底泥疏浚对沉积物再悬浮及上覆水营养盐动态变化的影响.结果表明,在模拟的风情扰动过程结束时(5 h),扰动过程未疏浚与疏浚处理水柱总悬浮颗粒物(TSS)含量变化差异显著,未疏浚对照水柱TSS含量是初始值的7.7倍,而疏浚水柱TSS在第2 h达到峰值,为初始值的3.8倍;未疏浚水柱TSS含量沉降过程最初1 h迅速降低了84.0%,而疏浚水柱TSS含量在沉降3 h后趋于平衡.伴随着沉积物的再悬浮过程,疏浚与未疏浚对照水柱中TP含量均在第5 h达到最大,分别增加负荷78.6和92.2 mg/m2.就短时效而言,底泥疏浚后沉积物的再悬浮过程显著受到抑制,并能够显著地减小沉积物再悬浮过程中溶解性磷酸盐的释放;但对水柱中总磷、总氮、铵氮、硝酸盐和亚硝酸盐含量变化影响较小.  相似文献   

4.
Estimation of internal nutrient release in large shallow Lake Taihu, China   总被引:17,自引:2,他引:17  
Based on field investigation of wave, sediment suspension and the changes in nutrient concentration of the water column in Lake Taihu, China, we proposed two release models to quantify nutrient release under static and dynamic conditions, respectively. Under static conditions, nutrient release from sediments to the overlying water mainly depends on chemical diffusion induced by concentration gradient, in which the nutrient release is controlled by the temperature, dissolved oxygen concentration in the sediment-water interface, oxidation-reduction potential and the concentration difference between porewater and overlying water. Under dynamic condition (or disturbed condition), both dissolved and particulate nutrients in sediments are released into the water column because of wind-induced sediment suspension. The amount of nutrient release under dynamic conditions is larger than that under the static condition. The release of dissolved nutrients, however, does not increase because the wind induced turbulence made oxidation of metallic elements such as Fe (ferric iron), Mn which are capable of precipitating soluble reactive phosphate (SRP). Under dynamic conditions, therefore, the release of total phosphorus (TP) increases dramatically but the release of SRP is close to those under static conditions. In sediments of Lake Taihu, high Fe content leads to a high ratio of Fe to P contents in sediments (Fe:P ratio). Under dynamic conditions, therefore, nutrient release is controlled by the intensity of disturbance, sediment consolidation and nutrient content in sediments. As for dissolved nutrients, especially SRP, the release is also controlled by the intensity of dynamic re-oxidation, Fe content in sediments and nutrient concentration gradient between porewater and overlying water. Based on these two release modes, the release flux in Lake Taihu has been estimated. In the static condition (i.e. laboratory experimental condition), total release of NH4 -N for whole lake is ca. 10,000 ton/a, and PO43--P is ca. 900 ton/a. In the dynamic condition, nutrient release following sediment suspension was estimated according to three different intensities of wind forcing which were defined as "calm" (wind speed is less than 2 m/s), "gentle" (wind speed is greater than 2 m/s and less than 6 m/s) and "gust" (wind speed is greater than 6 m/s). The release rate in the condition of "calm" was estimated in terms of the nutrient release in the laboratory experimental static condition; whereas the release rate in conditions of "gentle" and "gust" was estimated in terms of measurement during sediment resuspension conducted in flume experiments. With the observation of wind velocity and frequency in 2001, each type of wind forcing took the frequency of 12%, 82% and 6% for "calm", "gentle" and "gust", respectively. The yearly release of nitrogen was 81,000 ton and phos- phorus was 21,000 ton, which is about 2-6 folds of annual external loading, respectively.  相似文献   

5.
金沙江下游梯级水库对氮、磷营养盐的滞留效应   总被引:1,自引:0,他引:1  
氮、磷是水域重要的营养或污染物质,大型水库修建将对江河氮、磷物质的输运产生重要影响.以金沙江华弹、向家坝水文站2006-2016年实测水质资料为依据,通过建立污染物浓度与流量比值(TN/Q、TP/Q)与含沙量(S)的关系式,对金沙江下游溪洛渡、向家坝梯级水库蓄水前后进出库总氮(TN)、总磷(TP)浓度及通量的变化特征进行研究.结果表明:(1)华弹站不受蓄水影响,TN和TP浓度在0.38~1.41和0.01~0.73 mg/L之间变化,向家坝站蓄水前TN和TP浓度在0.32~1.33和0.03~0.42 mg/L之间变化,蓄水后在0.35~1.29和0.01~0.05 mg/L之间变化,蓄水后TN浓度较蓄水前略有升高,但TP浓度较蓄水前约降低75%;(2)蓄水前华弹站TN浓度与向家坝站基本接近,TP浓度总体低于向家坝站,蓄水后华弹站TN浓度低于向家坝站,TP浓度明显高于向家坝站;(3)金沙江TN以硝态氮(NO3--N)为主,占TN浓度的67.3%~91.8%;(4)两站的TN浓度随流量和含沙量变化较小,TP浓度与流量和含沙量均呈正相关关系;(5)华弹站TN、TP年通量在48357~135827和4720~14163 t之间变化,年均值分别为90337和8932 t,向家坝站蓄水前后TN年通量在64232~130966和71675~149647 t之间变化,蓄水后通量总体高于蓄水前,TP年通量在8851~18624和3131~7300 t之间变化,蓄水后通量远低于蓄水前;(6)水库蓄水对出库TN浓度与通量无明显影响,但TP浓度与通量较蓄水前明显降低,其中通量年均滞留率约为67.0%.  相似文献   

6.
东巢湖沉积物水界面氮、磷、氧迁移特征及意义   总被引:2,自引:0,他引:2  
以东巢湖近城市湖湾沉积物为研究对象,在沉积物氮、磷营养盐分析的基础上,采用沉积物柱状芯样静态释放模拟法定量评估研究区域沉积物—水界面氨氮、溶解性活性磷酸盐营养盐释放潜力,利用微电极非损伤测定技术获得沉积物—水微界面溶解氧(DO)剖面分布及微界面DO消耗和扩散特征.结果表明:东巢湖近城市湖湾沉积物氮、磷污染物蓄积量较高,受TN、TP污染程度较重.沉积物内源氨氮、磷酸盐释放明显,平均释放速率分别达到32.44 mg/(m~2·d)和1.25mg/(m~2·d),区域内沉积物已成为水柱中氮、磷营养盐的污染源.研究区域上覆水体处于好氧状态,沉积物—水微界面平均DO穿透深度(OPD)达到5.3 mm,平均DO扩散通量为4.56 mmol/(m~2·d),表现出良好的DO扩散能力.沉积物内源氨氮和磷酸盐释放能力与表层沉积物TN/TP物质含量及沉积物—水微界面DO穿透深度有关,在沉积物氮、磷污染较重的情况下,DO穿透深度越低越有利于氮、磷污染物从沉积物向上覆水体释放.  相似文献   

7.
模拟水动力对湖泊生物群落演替的实验   总被引:24,自引:7,他引:17  
从静止状况到小水流,大水流的模拟水动力实验表明,水动力对湖泊生物群落演替重要作用,藻类种类数以大小流时最高,其生物量也最高,这与NO^-/TDN比值相一致,由静止状态到大小流状态,藻类数量呈现递增趋势,这与相应的TDN/TN、TDP/TP呈递减趋势相呼应,浮游动力物种类、数量的变化较之浮模特更明显,尤其是枝角类的变化更大,动力作用通过增加水体中悬浮质、降低透明度、改变水下光照条件及生物过程释放放营  相似文献   

8.
Estimation of internal nutrient release in large shallow Lake Taihu,China   总被引:1,自引:0,他引:1  
Based on field investigation of wave, sediment suspension and the changes in nutrient concentration of the water column in Lake Taihu, China, we proposed two release models to quantify nutrient release under static and dynamic conditions, respectively. Under static conditions, nutrient release from sediments to the overlying water mainly depends on chemical diffusion induced by concentration gradient, in which the nutrient release is controlled by the temperature, dissolved oxygen concentration in the sediment-water interface, oxidation-reduction potential and the concentration difference between porewater and overlying water. Under dynamic condition (or disturbed condition), both dissolved and particulate nutrients in sediments are released into the water column because of wind-induced sediment suspension. The amount of nutrient release under dynamic conditions is larger than that under the static condition. The release of dissolved nutrients, however, does not increase because the wind induced turbulence made oxidation of metallic elements such as Fe (ferric iron), Mn which are capable of precipitating soluble reactive phosphate (SRP). Under dynamic conditions, therefore, the release of total phosphorus (TP) increases dramatically but the release of SRP is close to those under static conditions. In sediments of Lake Taihu, high Fe content leads to a high ratio of Fe to P contents in sediments (Fe:P ratio). Under dynamic conditions, therefore, nutrient release is controlled by the intensity of disturbance, sediment consolidation and nutrient content in sediments. As for dissolved nutrients, especially SRP, the release is also controlled by the intensity of dynamic re-oxidation, Fe content in sediments and nutrient concentration gradient between porewater and overlying water. Based on these two release modes, the release flux in Lake Taihu has been estimated. In the static condition (i.e. laboratory experimental condition), total release of NH4 +-N for whole lake is ca. 10,000 ton/a, and PO4 3?-P is ca. 900 ton/a. In the dynamic condition, nutrient release following sediment suspension was estimated according to three different intensities of wind forcing which were defined as “calm” (wind speed is less than 2 m/s), “gentle” (wind speed is greater than 2 m/s and less than 6 m/s) and “gust” (wind speed is greater than 6 m/s). The release rate in the condition of “calm” was estimated in terms of the nutrient release in the laboratory experimental static condition; whereas the release rate in conditions of “gentle” and “gust” was estimated in terms of measurement during sediment resuspension conducted in flume experiments. With the observation of wind velocity and frequency in 2001, each type of wind forcing took the frequency of 12%, 82% and 6% for “calm”, “gentle” and “gust”, respectively. The yearly release of nitrogen was 81,000 ton and phosphorus was 21,000 ton, which is about 2–6 folds of annual external loading, respectively.  相似文献   

9.
太湖底泥及其间隙水中氮磷垂直分布及相互关系分析   总被引:97,自引:16,他引:81  
范成新  杨龙元  张路 《湖泊科学》2000,12(4):359-366
对太湖主要湖区柱状样底泥的总氮、总磷含量及其间隙水铵态氮(NH^+4-N)、磷酸根磷(PO^3-4-P)和二价铁Fe(II)含量进行了分析,并对底泥和间隙水中相应物质含量进行了比较,结果表明:太湖近表层10cm内底泥TN、TP赋存含量较之下层高12%-20%左右,间隙水中PO^3+4-P和NH^+4-N含量随浓度增加而大致呈上升趋势,表层未见高浓度层存在,各湖区底泥间隙水中PO^3+4-P和NH^  相似文献   

10.
Accurate estimates of N and P loads were obtained for four contrasting UK river basins over a complete annual cycle. The fractionation of these loads into dissolved and particulate, and inorganic and organic components allowed a detailed examination of the nutrient load composition and of the factors influencing both the relative and absolute magnitude of these components. The particulate phosphorus (TPP) loads account for 26–75% of the annual total phosphorus (TP) transport and are predominantly inorganic. The inorganic (PIP) and organic (POP) fractions of the TPP loads represent 20–47% and 6–28% of the annual TP transport, respectively. In contrast, the particulate nitrogen loads (TPN) represent 8% or less of the annual total nitrogen (TN) loads and are predominately organic. For dissolved P transport, the dissolved inorganic fraction (DIP) is more important, representing 15–70% of the TP loads, whereas the dissolved organic fraction (DOP) represents only 3–9% of the TP loads. The TN loads are dominated by the dissolved component and more particularly the total oxidized fraction (TON), which is composed of nitrate and nitrite and represents 76–82% of the annual TN transport. The remaining dissolved N species, ammonium (NH4-N) and organic N (DON) account for 0·3–1·2% and 13–16% of the annual TN transport, respectively. The TPN and TPP fluxes closely reflect the suspended sediment dynamics of the study basins, which are in turn controlled by basin size and morphology. The dissolved inorganic nutrient fluxes are influenced by point source inputs to the study basins, especially for P, although the TON flux is primarily influenced by diffuse source contributions and the hydrological connectivity between the river and its catchment area. The dissolved organic fractions are closely related to the dissolved organic carbon (DOC) dynamics, which are in turn influenced by land use and basin size. The magnitude of the NH4-N fraction was dependent on the proximity of the monitoring station to point source discharges, because of rapid nitrification within the water column. However, during storm events, desorption from suspended sediment may be temporarily important. Both the magnitude and relative contribution of the different nutrient fractions exhibit significant seasonal variability in response to the hydrological regime, sediment mobilization, the degree of dilution of point source inputs and biological processes. © 1998 John Wiley & Sons, Ltd.  相似文献   

11.
太湖北部梅梁湾水域水质因子聚类   总被引:12,自引:5,他引:7  
刘元波  高锡芸 《湖泊科学》1997,9(3):255-260
计算了沿梁溪河河口到太湖湖心断面上10个监测点17个水质因子93组数据的Pearson相关系数和Kendall秩相关系数,进而运用最小距离法进行了因子聚类,正态分布检验和聚类结果表明,采用Kendall秩相关进行了聚类为宜,结果将诸因子聚为五大类:TDN,TN,CON,NO2-N,NH4-N,OH和CODMn归为一类,TDP,TP,PO^3+4和pH值归为一类;SS和SD归为一类,反映了该水域环境  相似文献   

12.
Fluxes of dissolved inorganic nutrients: NH4+, NO2-, NO3-, PO4(3-) and Si(OH)4 from nearshore sediments of Gazi Bay were measured in situ within mangrove, seagrass and coral reef biotopes using benthic flux bell-jar chambers of cross-sectional area 0.066 m2 and volume 0.0132 m3. The objectives were: (1) to determine the influence of benthic fluxes, fluvial discharge and seasonal variations on the nutrient budget in the Bay waters; (2) to determine the effect of tidal and spatial variations on nutrient loads in the water column and (3) to establish the relative importance of the nutrient sources with regard to total community production of the Bay. The directly measured fluxes ranged from -270 to +148 micromol NH4+-N/m2/h; -60 to +63 micromol NO2(-)-N/m2/h; -79 to +41 micromol NO3(-)-N/m2/h; -79 to +75 micromol PO4(3-)-P/m2/h and +30 to +350 micromol Si(OH)4-Si/m2/h for and respectively. It was established that benthic fluxes are the major sources of dissolved inorganic NH4+, NO2- and Si(OH)4 while fluvial sources are important for NO3- and PO4(3-) into Gazi Bay waters. Seasonal variations had an appreciable effect on the PO4(3-) fluxes, N:Si ratio, river nutrient discharge, plankton productivity and important environmental factors such as salinity and temperature. Tidal and spatial variations had no significant effect on nutrient concentrations and net fluxes within the water column. The results imply that benthic fluxes are largely responsible for the nutrient dynamics of the nearshore coastal ecosystems especially where direct terrestrial inputs do not contribute significantly to the nutrient budget.  相似文献   

13.
2007-2008年千岛湖营养盐时空分布及其影响因素   总被引:2,自引:2,他引:0  
2007-2008年对千岛湖水体中5个采样点(S1,S3,S4,S8,S9)的总氮、总磷、三态氮、溶解性总磷和可溶性活性磷等进行了不同深度的逐月监测,以研究探讨千岛湖营养盐的时空分布格局.结果表明,两年间总磷、总氮和硝酸盐氮浓度都呈现从上游(S1)至下游(S9)逐渐下降的趋势;2007-2008年汛期(3-7月)位于千岛湖上游新安江干流段的样点S1各种营养盐均为全年最高.但是2007年与2008年营养盐时空分布差异显著.2008年汛期(3-7月),S1的总磷和总氮浓度分别极显著低于和高于2007年同期.相对于2007年,虽然2008年具有更高的温度,但没有增强水体热稳定性.2008年强对流天气一方面通过打破水体热分层和促进水体混合,另一方面通过雨水带来大量的地表营养盐来影响营养盐的分布.汛期高浓度的总磷在1-2个月内平均降低64.4%,最大降低88.6%,显示千岛湖生态系统具有较强的净化能力.分析结果显示千岛湖营养盐时空分布总体格局是由水文、生物以及人类活动等各种因素之间的相互作用所产生的综合效应而形成的,而极端天气能够改变这一格局.  相似文献   

14.
以我国南方丘陵区红壤小流域为研究对象,对不同土地利用方式坡面下的4个水塘底泥中养分含量作了分层比较研究(0-5 cm,5-10 cm,10-15 cm,15-20 cm,20-25 cm,25-30 cm).结果表明:4个水塘底泥养分含量差异明显,在0-15 cm泥层有机碳、全氮、速效氮和全磷含量以邻近村庄的水塘(简称C塘)底泥最高,其次为板栗园坡下的水塘(简称B塘),水稻田坡面下水塘(简称S塘)和花生地坡面下水塘(简称H塘)最低;在15-30 cm泥层,有机碳和速效氮含量以B塘最高,而全氮和全磷含量则以C塘最高;有效磷含量除C塘0-15 cm底泥外,其余均为痕量.表明土地利用方式对其坡面下水塘底泥养分含量影响明显.各水塘底泥养分随泥层加深均呈递减趋势,其中全氮和速效氮减幅以C塘最大,分别为36.0%和38.7%,有机碳和全磷减幅则以B塘最大,为29.4%和31.9%;各塘底泥养分含量的最大降幅主要在浅层底泥,水塘养分积累加速表明近年来农村面源污染加剧.传统农业耕作方式的改变是农村水体底泥养分含量增加的主要原因之一.  相似文献   

15.
中华鲟与背角无齿蚌和鲢鳙混养的池水透明度(SD)对比试验表明,1#池(对照)、2#池(挂养背角无齿蚌)、3#池(混养鲢鳙)透明度平均值分别为11.92、16.45、17.45 cm,分别较试验本底值依次提高26.69%、56.67%、66.19%.2#、3#池的透明度显著大于1#池,最高可达1倍.3个池透明度与各水质指标关系的Panel Data模型分别为:SD1=-0.0072 TSS+0.8353 NH 4+-N-2.1711 TN+0.6195 TP-0.0405 COD+16.7815,SD2=0.0030 TSS+3.8864 NH 4+-N+0.1893 TN-12.4585 TP***-0.0104 COD+24.5306,SD3=0.0381 TSS*+3.7821 NH 4+-N+0.6003 TN-15.0444TP***-0.4078 COD**+34.2992(*、**、***分别表示显著、较显著、极显著相关).TP是影响中华鲟养殖池透明度的主要指标,NH 4+-N、TN、COD是影响透明度的间接指标,而TSS是影响透明度的直接指标.在悬浮物浓度较高、水体浑浊的中华鲟养殖池水体中,鲢鳙的放养对透明度的提高效果显著优于背角无齿蚌.  相似文献   

16.

Based on field investigation of wave, sediment suspension and the changes in nutrient concentration of the water column in Lake Taihu, China, we proposed two release models to quantify nutrient release under static and dynamic conditions, respectively. Under static conditions, nutrient release from sediments to the overlying water mainly depends on chemical diffusion induced by concentration gradient, in which the nutrient release is controlled by the temperature, dissolved oxygen concentration in the sediment-water interface, oxidation-reduction potential and the concentration difference between porewater and overlying water. Under dynamic condition (or disturbed condition), both dissolved and particulate nutrients in sediments are released into the water column because of wind-induced sediment suspension. The amount of nutrient release under dynamic conditions is larger than that under the static condition. The release of dissolved nutrients, however, does not increase because the wind induced turbulence made oxidation of metallic elements such as Fe (ferric iron), Mn which are capable of precipitating soluble reactive phosphate (SRP). Under dynamic conditions, therefore, the release of total phosphorus (TP) increases dramatically but the release of SRP is close to those under static conditions. In sediments of Lake Taihu, high Fe content leads to a high ratio of Fe to P contents in sediments (Fe:P ratio). Under dynamic conditions, therefore, nutrient release is controlled by the intensity of disturbance, sediment consolidation and nutrient content in sediments. As for dissolved nutrients, especially SRP, the release is also controlled by the intensity of dynamic re-oxidation, Fe content in sediments and nutrient concentration gradient between porewater and overlying water. Based on these two release modes, the release flux in Lake Taihu has been estimated. In the static condition (i.e. laboratory experimental condition), total release of NH4 +-N for whole lake is ca. 10,000 ton/a, and PO4 3−-P is ca. 900 ton/a. In the dynamic condition, nutrient release following sediment suspension was estimated according to three different intensities of wind forcing which were defined as “calm” (wind speed is less than 2 m/s), “gentle” (wind speed is greater than 2 m/s and less than 6 m/s) and “gust” (wind speed is greater than 6 m/s). The release rate in the condition of “calm” was estimated in terms of the nutrient release in the laboratory experimental static condition; whereas the release rate in conditions of “gentle” and “gust” was estimated in terms of measurement during sediment resuspension conducted in flume experiments. With the observation of wind velocity and frequency in 2001, each type of wind forcing took the frequency of 12%, 82% and 6% for “calm”, “gentle” and “gust”, respectively. The yearly release of nitrogen was 81,000 ton and phosphorus was 21,000 ton, which is about 2–6 folds of annual external loading, respectively.

  相似文献   

17.
The changes of NH3-N, NO3-N, NO2-N and TN/TP were studied during growth and non-growth season in 33 subtropical shallow lakes in the middle and lower reaches of the Yangtze River. There were significant positive correlations among all nutrient concentrations, and the correlations were better in growth season than in non-growth season. When TP>0.1 mgL?1, NH3-N increased sharply in non-growth season with increasing TP, and NO3-N increased in growth season but decreased in non-growth season with TP. These might be attributed to lower dissolved oxygen and low temperature in non-growth season of the hypereutrophic lakes, since nitrification is more sensitive to dissolved oxygen and temperature than antinitrification. When 0.1 mgL?1>TP>0.035 mgL?1, TN and all kinds of inorganic nitrogen were lower in growth season than in non-growth season, and phytoplankton might be the vital regulating factor. When TP<0.035 mgL?1, inorganic nitrogen concentrations were relatively low and NH3-N, NO2-N had significant correlations with phytoplankton, indicating that NH3-N and NO2-N might be limiting factors to phytoplankton. In addition, TN/TP went down with decline in TP concentration, and TN and inorganic nitrogen concentrations were obviously lower in growth season than in non-growth season, suggesting that decreasing nitrogen (especially NH3-N and NO3-N) was an important reason for the decreasing TN/TP in growth season. The ranges of TN/TP were closely related to trophic level in both growth and non-growth seasons, and it is apparent that in the eutrophic and hypertrophic state the TN/TP ratio was obviously lower in growth season than in non-growth season. The changes of the TN/TP ratio were closely correlated with trophic levels, and both declines of TN in the water column and TP release from the sediment were important factors for the decline of the TN/TP ratio in growth season.  相似文献   

18.
The variability of rainfall-dependent streamflow at catchment scale modulates many ecosystem processes in wet temperate forests. Runoff in small mountain catchments is characterized by a quick response to rainfall pulses which affects biogeochemical fluxes to all downstream systems. In wet-temperate climates, water erosion is the most important natural factor driving downstream soil and nutrient losses from upland ecosystems. Most hydrochemical studies have focused on water flux measurements at hourly scales, along with weekly or monthly samples for water chemistry. Here, we assessed how water and element flows from broad-leaved, evergreen forested catchments in southwestern South America, are influenced by different successional stages, quantifying runoff, sediment transport and nutrient fluxes during hourly rainfall events of different intensities. Hydrograph comparisons among different successional stages indicated that forested catchments differed in their responses to high intensity rainfall, with greater runoff in areas covered by secondary forests (SF), compared to old-growth forest cover (OG) and dense scrub vegetation (CH). Further, throughfall water was greatly nutrient enriched for all forest types. Suspended sediment loads varied between successional stages. SF catchments exported 455 kg of sediments per ha, followed by OG with 91 kg/ha and CH with 14 kg/ha, corresponding to 11 rainfall events measured from December 2013 to April 2014. Total nitrogen (TN) and phosphorus (TP) concentrations in stream water also varied with rainfall intensity. In seven rainfall events sampled during the study period, CH catchments exported less nutrients (46 kg/ha TN and 7 kg/ha TP) than SF catchments (718 kg/ha TN and 107 kg/ha TP), while OG catchments exported intermediate sediment loads (201 kg/ha TN and 23 kg/ha TP). Further, we found significant effects of successional stage attributes (vegetation structure and soil physical properties) and catchment morphometry on runoff and sediment concentrations, and greater nutrients retention in OG and CH catchments. We conclude that in these southern hemisphere, broad-leaved evergreen temperate forests, hydrological processes are driven by multiple interacting phenomena, including climate, vegetation, soils, topography, and disturbance history.  相似文献   

19.
Using sediment traps, we aimed to elucidate the temporal and spatial variations in sediment fluxes in large and shallow Lake Peipsi, over the May to October 2011 period, and analyze the factors behind those variations. The effects of weather factors (mean and maximum wind velocity, water level and water temperature) on sediment resuspension and the concentrations of suspended solids (SS), total phosphorus (TP), soluble reactive phosphorus (SRP), and chlorophyll a (Chl a) were investigated. Moreover, the internal loading of TP due to sediment resuspension was determined. The sediment resuspension rates were significantly higher in the shallower waters than in the deeper parts of the lake. Resuspension was a major factor in sedimentation dynamics of the lake, which is presently subject to eutrophication. The rates of sediment resuspension followed the same pattern as gross sedimentation during the study period, and their respective values differed significantly between sampling dates. The highest resuspension rates were observed in September (mean 55.4 g dw m?2 day?1), when the impacts of wind events were particularly pronounced. Weather factors that were recorded approximately 2 weeks before water and sediment sampling affected the gross sedimentation and sediment resuspension. The water quality variables of SS, TP, SRP, Chl a were similarly affected. During the study, TP concentrations of the water were mainly determined by the resuspension of sediments containing a large pool of organic material. Although internal loading of TP due to resuspension was several times greater than external loading, external loading determines the amount of phosphorus that enters the lake and can be resuspended.  相似文献   

20.
太湖梅梁湾水动力及相关过程的研究   总被引:56,自引:13,他引:43  
太湖是位于长江下游的一个大型水湖泊,水动力过程和要素对浅水湖泊的环境演化有着复杂和深远的影响,本文基于1998年开展的有关太湖梅梁湾的水动力过程的野外调查结果,总结了梅梁湾在夏季盛行风向条件下湖流特征,发现了梅梁湾在夏季偏南风条件下,表层湖流以顺时针环流为主要特征,但在湾内靠近梁溪河口地区,流场受地形影响而有所不同,反映在叶绿素浓度和总磷、总氮浓度分布上,因受湖流影响较大而富集在梁溪河口周转,即偏  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号