首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The authors compare the signal-to-noise ratios obtained on bottomed seismometers, bottomed hydrophones, and buried seismometers from near-surface explosions in the Ngendei Expedition. The data were recorded in 5.5-km-deep water in the south central Pacific Ocean with a triaxial borehole seismograph and four triaxial ocean-bottom seismographs having externally mounted hydrophones. At ranges less than 35 km, the data indicate that the ocean bottom seismometer is a superior signal detector than the ocean-bottom hydrophone, and that the subbottom seismometer is superior in performance to the ocean-bottom seismometer. Above 4 Hz, the seismometer appears to have a 10-dB signal-to-noise advantage over the hydrophone for surface explosions at ranges less than 30 km  相似文献   

2.
Tomographers map mesoscale ocean structure by inverting acoustic travel-time measurements through networks of underwater paths. To know where to deploy sensors and how to interpret their measurements, one must first understand the "forward problem," that is, how the sound channel and mesoscale features refract sound in three dimensions, and how such refraction alters the pulse-arrival sequence. We use a Hamiltonian ray-tracing program called HARPO to compute the refraction by continuous three-dimensional ocean models and to display the results in ways that add insight about refractive effects. We first simulate propagation in a simple range-independent sound channel, showing how pulse-arrival sequence depends on channel parameters and sensor placement. Next, we add linear range dependence and show that it is hard to extract range information from pulse measurements at one range. Finally, we add a simple model of a mesoscale eddy including its currents and show that deflection and splitting of the sound channel significantly alter the pulse-arrival sequence. Two diagrams that have not been widely used before are useful ways to display the arrival-time and ray-focusing perturbations caused by changes in ocean structure: they are plots of range versus launch angle and range versus travel time. Examples of azimuthal deflection, three-dimensional eigenrays, and reciprocal propagation through eddy currents are shown, and simplified methods for estimating the travel time of three-dimensional eigenrays are evaluated.  相似文献   

3.
A design procedure for an amplitude-modulated and nonlinear frequency-modulated (AM-NLFM) signal is introduced. The designed signal can drive a given transducer to its peak power to produce a sound pressure waveform into the water with a desired power spectrum and maximum possible energy. The signal can be formed either in the time domain or in the frequency domain. The frequency domain approach gives an output power spectrum precisely identical to a preferred shape. Therefore, the sidelobe levels after matched filtering are not raised by unwanted spectral magnitude ripples which exist when a time domain method is adopted. The absence of spectral ripples is desirable for applications requiring long range transmission and good multipath discrimination capability. An acceptable tradeoff between time resolution and sidelobe levels is achieved by properly choosing the desired power spectral shape. As the time resolution is usually the most critical specification for precision travel-time measurements, it is shown that by sacrificing some of the transducer's output power capability, a waveform with a considerably wider bandwidth can be transmitted, resulting in a significantly enhanced time resolution. A quasi-steady-state (QSS) approximation is used in the signal design, leading to a manageable and intuitive design procedure  相似文献   

4.
Signals from an explosive source backscattered from the seafloor and received at long range by hydrophones of a towed array are processed to estimate the directional distribution of energy for a given time increment. As assembly of these data shows the time and amplitude of scattering features, and after conversion to distance, the geographic location of the return. A frequency-domain beam-forming procedure is used in which beam levels are averaged over a given band of a broad-band source. The processing is applied to experimental data obtained in the southern Tyrrhenian Sea. The major backscattering occurred at the Baconi Seamounts and the coastal margin of Sardinia.  相似文献   

5.
Microseisms and ocean wave measurements   总被引:1,自引:0,他引:1  
Measurements of microseisms in Auckland, New Zealand, are compared with ocean wave data taken on the west coast of New Zealand, about 150 km southwest of Auckland. There is strong correlation at most times. Exceptions are when the Auckland area is subject to strong winds from the easterly quarter. Microseism activity in Auckland in the 0.05-1-Hz band appears to be entirely due to ocean waves  相似文献   

6.
The characteristics of free topographic trapped waves are investigated numerically for a two-layer model with basic flow, which is uniform, geostrophically balanced motion flowing parallel to the coast. Six modes are identified for this model with depth variations. They are external and internal Kelvin modes, a topographic Rossby mode, and additional three modes. The two of the additional modes are interesting. The first one is a quasi-geostrophic surface-trapped mode, while the second one is a quasi-geostrophic bottom-trapped mode. It is suggested that baroclinic instability takes place when these two modes take a resonance coupling each other.  相似文献   

7.
Very low data rate burst telemetry for long-range deep-ocean applications is discussed. Energy efficiency, propagation coherence, and waveform coding, together with transmitter constraints, influenced the design of proposed buoy-to-buoy and buoy-to-shore systems.  相似文献   

8.
This paper covers the topic of marine geodesy, its goals, and applications. Specifically discussed are position determination and establishment of geodetic control on the ocean bottom, ocean surface, and subsurface, and the determination of the geoid, a vertical reference surface. The various techniques used in position determination (including satellite, airborne, radio, inertial and acoustic techniques) are assessed in terms of accuracy, coverage, and contribution to the solution of specific problems associated with position and control. The results of several marine geodetic control experiments are presented. Classical techniques for the determination of the geoid are discussed and assessed, as are new techniques such as satellite altimetry. The outlook for marine geodetic measurements in the ocean is outlined in terms of what is being planned or considered for the next decade, and several recommendations are made.  相似文献   

9.
The often poor quality of ocean bottom seismic data, particularly that observed on horizontal seismometers, is shown to be the result of instruments responding to motions in ways not intended. Instruments designed to obtain the particle motion of the ocean bottom are found to also respond to motions of the water. The shear discontinuity across the ocean floor boundary results in torques that cause package rotation, rather than rectilinear motion, in response to horizontal ground or water motion. The problems are exacerbated by bottom currents and soft sediments. The theory and data presented in this paper suggest that the only reliable way of obtaining high fidelity particle motion data from the ocean floor is to bury the sensors below the bottom in a package with density close to that of the sediment. Long period signals couple well to ocean bottom seismometers, but torques generated by bottom currents can cause noise at both long and short periods. The predicted effects are illustrated using parameters appropriate for the operational OBS developed for the U. S. Office of Naval Research. Examples of data from ocean bottom and buried sensors are also presented.  相似文献   

10.
Temperature is one of the most frequently measured parameters of the ocean because of its importance to the understanding and prediction of oceanic and meteorological events, and also because the measurement is required for the determination of salinity and density. The ocean temperature range is narrow,-2degto35degC, but measurement is complicated by the harsh ocean environment, the necessity of remote hands off readings, power limitations due to the cable, and the fast response required to obtain a profile in a reasonable length of time. Platinum and copper thermometers are used for most precision measurements with thermistors or thermocouples used in some cases to improve speed of response and for lesser accuracy. A number of very different circuits have been used successfully in salinity, temperature, and depth profiling systems and achieve millidegree accuracies in laboratory measurements. However, very careful precautions and many checks are required to achieve that accuracy in the field, and to achieve the correlation of conductivity, pressure, and temperature readings required for equivalent accuracy in the salinity and density measurements.  相似文献   

11.
12.
海洋声层析观测技术和方法   总被引:2,自引:0,他引:2  
叙述海洋声层析观测系统,以声线传播时间层析为重点概括了海洋声层析的基本原理和其他主要方法,共6个方法。对运用海洋声层析观测来反演海洋状态问题的建立、求解及其误差来源作了分析和讨论。以测量声线传播时间为例介绍了海洋声层析观测系统主要设计技术。  相似文献   

13.
M-sequence waveform coding with a single long codeword has been considered as the basis for long-range underwater acoustic telemetry for one user. (An m-sequence is a periodic, binary, linear-law maximal-length sequence. If the span of the law is n, the maximal length L-2n=1). For a given law, a single m-sequence transmits a maximum of log2 (L) bits of source information per channel word. To increase the number of bits per word, families of m-sequences and Gold codes are considered and compared to a single m-sequence. A hypothetical idealized multipath channel with added white Gaussian noise is assumed. Coding using families of m-sequences is recommended because it requires a smaller bit-energy-to-noise ratio than other waveform codes to achieve an equivalent codeword error probability  相似文献   

14.
This paper presents the result of a first attempt to achieve a vertical synthetic aperture in the ocean for SOFAR multipath identification. The experiment was conducted during the deployment of a tomographic array in the Mediterranean Sea. Drifting the hydrophone up or down from a ship while listening to the transmitted signal created a powerful synthetic aperture at 400 Hz. Wide-band phase-coded signals, typically used in ocean tomography, were found suitable for this application. The displacement length was 100 m and the hydrophone velocity 1 m/s. The obtained resolution of 1° enabled all the rays in the tested middle range configuration to be resolved and identified. Most of them could not have been resolved with a static hydrophone. Several Doppler processing methods are presented. The narrowband approximation leading to fast algorithms is discussed. Phase time series of individual paths obtained with an array-like wave separation method show that the phase coherence of the different multipaths is nearly perfect. An angle/velocity calibration method and a first rough inversion are finally presented  相似文献   

15.
Long-range underwater acoustic systems, such as those used in ocean acoustic tomography, require low-frequency signals covering a broad frequency band. To meet this requirement, a novel design based on a tunable narrow-band high-efficiency sound projector has been used. The projector transmits a frequency sweep signal by mechanically tuning a resonator tube (or organ pipe) to match the frequency and phase of a reference signal. The resonator tube projector consists of a symmetrical pressure-balanced Tonpilz driver placed between two coaxially mounted tubes. The Tonpilz acoustic driver is composed of two pistons separated by preloaded ceramic stacks. The resonant tube is a simple, efficient, narrow-band, medium-output projector that operates at any ocean depth. Both projector tubes have slots (or vents) which are progressively covered or uncovered by sliding coaxial tubular sleeves. The frequency varies with the sleeve position. A computer-controlled electromechanical actuator moves the cylindrical sleeves along the tubes, keeping the projector in resonance at the instantaneous frequency of a swept frequency signal. The actuator smoothly tunes the resonator tube frequency in a bandwidth of 200 to 300 Hz during a 135-s transmission. A computer synthesizes the linear frequency-modulated signal; compares the phase between transmitted and reference signals; and, using a phase-lock loop (PLL) system, keeps the resonator tube frequency in resonance with the driver frequency. The estimated PLL precision is better than 3/spl deg/ phase error. The system was analyzed by means of finite element analysis and electrical equivalent circuit simulation. The projector prototype was first tested at the Woods Hole Oceanographic Institution (WHOI) dock in Woods Hole, MA and later in the Pacific Ocean during a voyage of the R/V "Point Sur" in November 2001.  相似文献   

16.
Models and laboratory experiments show that zooplankton may locate food more easily in turbulent waters, but whether plankton seek or avoid turbulence in the ocean is an open question. It is difficult to measure turbulence and plankton simultaneously and with the necessary spatial resolution using traditional methods (nets and airfoil shear sensors). Acoustics is commonly used to survey zooplankton abundance and recent studies have shown that stratified turbulence can also be a significant source of sound scatter. This may seem like more of a complication than a boon for those aiming to use acoustics to observe plankton in turbulence. We present acoustic data, however, that show that zooplankton and turbulence can be observed simultaneously with a single 307 kHz sounder. The different natures of the two targets (discrete targets versus a volume effect) allow them to be distinguished. The key is sampling the same targets at multiple ranges. The volume scattering strength of a discrete target will increase as the target nears the sounder, because the volume sampled decreases. Turbulence, as a volume scattering effect, has little range dependence to its volume scattering strength.  相似文献   

17.
海底地震仪实测信号特性分析   总被引:1,自引:1,他引:1  
置于海底数百米至数千米的海底地震仪(OBS)的实测信号相比陆地地震仪具有不同的特性;由于水的作用或记录信号源频率的不同,短周期OBS和宽频带OBS记录的信号又有明显的差异。文章对南海西南次海盆地震探测期间记录的人工气枪震源和天然地震实测信号进行了时频分析,结果如下。1)气枪作业后在海底激发两种噪声:一是水的波动不断叠加形成的长波,周期50s左右,以水平分量为主;二是高频噪声,主要是OBS底座细微晃动引起的。2)宽频OBS对于水下移动目标激发海底波动具有很好的探测能力,特别是水平分量可以获得大振幅且周期特征清晰的记录,并能够指示方向。3)宽频OBS能记录到清晰的天然地震信号,为研究调查区岩石圈结构增添了更多的信息,短周期OBS对远震直达P波有很好的记录。国产宽频I-4C型OBS碰巧记录了日本M9.0级大震。  相似文献   

18.
Measurements of the ocean wave directional spectrum using a dual, high-frequency (HF) radar system are presented. A model-fitting technique is used to obtain wave measurements from the radar Doppler spectra. Over 100 h of data, collected NURWEC2 (Netherlands-UK Radar Wavebuoy Experimental Comparison), have been compared with measurements using a WAVEC directional wave buoy. The amplitude and directional characteristics of long-wave components at frequencies of 0.07-0.1 Hz in general show good agreement. Reasonable estimates of the directional spectrum across the whole frequency range are obtained when the assumptions of the model-fitting technique are appropriate. Remaining problems in radar measurement and difficulties in assessing accuracy are discussed  相似文献   

19.
Using Signals, Underwater Sound (SUS) explosive charges as broad-band acoustic sources, a high-quality set of surface scattering strengths was measured throughout the Critical Sea Test (CST) experiments. These measurements were made for wind speeds ranging from ~1 to 18 m/s and covered grazing angles from ~5° to 30° and frequencies from ~60 to 1000 Hz. A new empirical algorithm was developed based on a multiparameter multidimensional nonlinear fit to all the SUS data from CST-1 through CST-7. This new algorithm returns the surface scattering strength for a given frequency, grazing angle, and wind speed. The new formulation explored the use of backaveraging the wind speeds in time (as opposed to using the instantaneous wind speed) to allow for the influence of processes driven by the wind history, In this paper, details of the development of this new algorithm will be discussed, comparisons with earlier prediction algorithms (the Ogden-Erskine and Chapman-Harris algorithms) will be made, and the important differences between the various CST SUS data sets will be highlighted and possible explanations offered. Finally, suggestions for further improvements to the algorithm are made  相似文献   

20.
The results of aero-magnetic measurements in the Skagerrak and of seismic profiling outside Kristiansand are presented.Characteristic magnetic features which are observed on the Norwegian mainland along the Skagerrak coastline can be followed into the Skagerrak (Figure 12).The seismic profiling off Kristiansand shows that the unmetamorphic sedimentary rocks found beneath the Skagerrak form a wedge-shaped border zone with the crystalline basement rocks on the landside. The magnetic measurements indicate that a wedge-shaped border zone may also exist all along the Norwegian Skagerrak coastline and along the Fennoscandian border zone (Figures 5 and 12).The basement depths in the Skagerrak, which are calculated on the basis of the magnetic records, show a maximum depth of over 6000 m (Figure 5).The distribution of the quaternary sediments in the Norwegian Channel supports the theory that glacier activity has played an important role during the formation of the Norwegian Channel.Paper No. 8 of the Working Group on the Skagerrak Project.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号