首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The discrete quasitomographic method of the analysis of the interferometric data of meteor radar gives us the possibility of measuring coordinates and velocities of very weak meteor showers with a 2 × 2 square degree resolution on the celestial sphere. The minimal rate of the meteors in each microstream is five meteors per day. At such sensitivity, basic distinctions between irregularities of the sporadic background and meteor streams vanish. More than 1000 of the detected microshowers per month are associated with a combination of (a) the large known meteor showers, (b) the weaker known meteor showers and (c) till now unknown associations of microshowers. All microshowers regardless of association have the identical velocities, limited areas of radiation and near simultaneity of their acting dates. The results are compiled as maps of radiant distribution and average velocities of microstreams for different months. From these it is possible to see how the microshower activity for various discrete sites on the celestial sphere correlate with the behavior of the well-known meteor streams and thus to infer the orbital properties of the different microstream configurations.  相似文献   

2.
We present the first clear observations of meteor shower activity from meteor-head echoes detected by a high-power large-aperture radar (HPLAR). Such observations have been performed at the Jicamarca VHF radar using its interferometric capabilities allowing the discrimination of meteor shower echoes from the much more frequent sporadic meteors. Until now, HPLARs were unable to distinguish meteor shower from the much more common sporadic meteor ones. In this work we have been able to detect and characterize the η-Aquariids (ETA) as well as the Perseids (PER) showers. The shower activity is more conspicuous for the ETA than for the PER shower due to the more favorable geometry. Namely, PER meteors come from low elevation angles, experiencing more filtering due to the combined Earth-atmosphere-radar instrument. In both cases, there is an excellent agreement between the measured mean velocity of the shower echoes and their expected velocity, within a fraction of 1 km s−1. Besides the good agreement with expected visual results, HPLARs observe meteors with a variety of particles sizes and masses, not observed by any other technique. Taking into account the different viewing volumes, compare to optical observations Jicamarca observes more than 1000 times more ETA meteors. Our results indicate that Jicamarca and other HPLARs are able to detect the echoes from meteor showers, but without interferometric capabilities such populations are difficult to identify just from their velocity distributions, particularly if their velocity distributions are expected to be similar to the more dominant distributions of sporadic meteors.  相似文献   

3.
We deal with theoretical meteoroid streams the parent bodies of which are two Halley-type comets in orbits situated at a relatively large distance from the orbit of Earth: 126P/1996 P1 and 161P/2004 V2. For two perihelion passages of each comet in the far past, we model the theoretical stream and follow its dynamical evolution until the present. We predict the characteristics of potential meteor showers according to the dynamical properties of theoretical particles currently approaching the orbit of the Earth. Our dynamical study reveals that the comet 161P/2004 V2 could have an associated Earth-observable meteor shower, although no significant number of theoretical particles are identified with real, photographic, video, or radar meteors. However, the mean radiant of the shower is predicted on the southern sky (its declination is about −23°) where a relatively low number of real meteors has been detected and, therefore, recorded in the databases used. The shower of 161P has a compact radiant area and a relatively large geocentric velocity of ∼53 km s−1. A significant fraction of particles assumed to be released from comet 126P also cross the Earth’s orbit and, eventually, could be observed as meteors. However, their radiant area is largely dispersed (declination of radiants spans from about +60° to the south pole) and, therefore, mixed with the sporadic meteor background. An identification with real meteors is practically impossible.  相似文献   

4.
Jack D. Drummond 《Icarus》1981,47(3):500-517
Sixteen comets produce recognizable meteor showers that are found in A. F. Cook's (1973, In Evolutionary and Physical Properties of Meteoroids (C. L. Hemenway, P. M. Millman, and A. F. Cook, Eds.), pp. 183–191, U.S. Govt. Printing Office, Washington, D.C.), working list of meteor streams. Of these, five are long period, including one in a parabolic and one in a hyperbolic orbit. The largest Earth-comet orbit miss distance is 0.20 AU for P/Encke and the Northern and Southern Taurids. Using this is an upper limit for meteor showers from comets, all comets which approach the Earth's orbit to within 0.20 AU were extracted from the Catalogue of Cometary Orbits (B. G. Marsden, 1979. 3rd ed., Central Bureau of Astronomical Telegrams, IAU SAO, Cambridge, Mass.). A compilation of such comets is presented by date minimum approach, along with the distance of closest approach and the theoretical geocentric radiants and velocities of possible associated meteor showers. Both pre- and postpperihelion encounters with the Earth's orbit are considered. There are 240 entries for 178 long-period comets, and 36 for 28 short-period comets. It is noted that all short-period comets that have approached the Earth's orbit to within 0.08 AU have produced meteors, except P/Lexell, P/Finlay, P/Denning-Fujikawa, and P/Grigg-Skjellerup. Attention is called to the favorable observing conditions for detecting meteors from P/Grigg-Skjellerup in April 1982, and for the possibility of another great Draconid storm from P/Giacobini-Zinner in October 1985. A comparison is made between observed sporadic meteor rates and the distribution of theoretical radiants throughout the year, from which it is concluded that the currently known comets can account for sporadic meteors. A criterion is developed to test whether or not an observed meteor shower can be associated with a given theoretical radiant. Based on known examples, a qualitative model for comet/meteor relationships is also presented.  相似文献   

5.
A new meteroid stream—October Ursa Majorids—was announced by Japanese observers on Oct. 14–16, 2006 (Uehara et al. 2006). Its weak manifestation was detected among coincidental major meteor showers (N/S Taurids, Orionids), as its meteors radiated from a higher placed radiant on the northern sky. We have tried to find out previous displays of the stream throughout available meteor orbits databases, and among ancient celestial phenomena records. Although we got no obvious identification, there are some indications that it could be a meteor shower of cometary origin with weak/irregular activity, mostly overlayed by regular coincidental meteor showers. With a procedure based on D-criterion (Southworth and Hawkins 1963) we found a few records in IAU MDC database of meteor photographic orbits which fulfill common similarity limits, for October Ursae Majorids. However, their real association cannot be established, yet. With respect to the mean orbit of this stream, we suggest for its parent body a long-period comet.  相似文献   

6.
The meteor radar response function is an important tool for analyzing meteor backscatter observed by radar systems. We extend previous work on the development of the response function to include a non-uniform meteor ionization profile, provided by meteor ablation theory, in contrast to what has been assumed in the past. This has the advantage that the height distribution of meteors expected to be observed by a radar meteor system may be accurately modeled. Such modeling leads to meteor height distributions that have implications for the composition of those meteoroids ablating at high altitudes which may be observed by “non-traditional” meteor radars operating at MF/HF. The response function is then employed to investigate meteor backscatter observed by narrow beam MST radars which in recent years have been used increasingly to observe meteors.  相似文献   

7.
Forward-scatter radio meteor observations have been made at Japan since 1996 using inexpensive and low-end equipment. The activity of some major meteor showers and the seasonal variability of sporadic meteors in 2006 are presented.  相似文献   

8.
The Canadian Meteor Orbit Radar (CMOR) is used to look at the distribution of meteoroids which encounter the Earth. As a single-station operation, it is capable of determining radiant distributions on a statistical basis and the position and speed of individual meteors. The addition of two outlying receiving stations allows the determination of the orientation in space of the meteor leading to an estimate of the orbital parameters of the individual meteor and an independent additional estimate of its speed. Comparison is made of the effectiveness of the two modes of operation using observations on the Geminid and Sextantid meteor streams.  相似文献   

9.
《New Astronomy》2007,12(1):52-59
In the present age, several techniques for the application to the observation of meteors and meteor showers have been developed in modern meteor astronomy. The initial definition for a meteor storm based on the visual observation with a Zenithal Hourly Rate of above 1000 seems insufficient now, since it only means a storm or burst of meteors in numbers and means that an eyewitness could have a chance to see a spectacular meteor show. Up to now, peoples have also recorded the meteoric flashes on the Moon during the Leonid meteor showers. Especially, the increasing activities of mankind in space for scientific, commercial and military purposes, have led to an increase in the problems concerning the safety of the satellites, space stations and astronauts. How the intense activity of a meteor storm is defined and forecast, some new points of view are needed. In this paper, several aspects about the intensity of the meteor storm are analyzed, including the number, mass, impulse, energy, electric charge, different purposes and different physical meanings. Finally, a synthetical index denoting the activity and potential threat of an intense meteor shower is suggested.  相似文献   

10.
The asteroid 3200 Phaethon is suggested as a candidate for direct impact research. The object is considered to be an extinct comet and the parent of the Geminid meteor shower. One could say that this provides a possible argument for a space mission. Based on such a mission, this paper proposes to investigate the nature of the extinct comet and the additional interesting possibility of artificially generated meteor showers.
Dust trail theory can calculate the distribution of a bundle of trails and be used to show in which years artificial meteors would be expected. Results indicate that meteor showers will be seen on Earth about 200 yr after the event, on 2022 April 12.  相似文献   

11.
Abstract— In this paper, we provide an overview of meteors with high beginning height. During the recent Leonid meteor storms, as well as within the regular double station video observations of other meteor showers, we recorded 164 meteors with a beginning height above 130 km. We found that beginning heights between 130 and 150 km are quite usual, especially for the Leonid meteor shower. Conversely, meteors with beginning heights above 160 km are very rare even among Leonids. From the meteor light curves, we are able to distinguish two different processes that govern radiation of the meteors at different altitudes. Light curves vary greatly above 130 km and exhibit sudden changes in meteor brightness. Sputtering from the meteoroid surface is the dominating process during this phase of the meteor luminous trajectory. Around 130 km, the process switches to ablation and the light curves become similar to the light curves of standard meteors. The sputtering model was successfully applied to explain the difference in the beginning heights of high‐altitude Leonid and Perseid meteors. We show also that this process in connection with high altitude fragmentation could explain the anomalously high beginning heights of several relatively faint meteors.  相似文献   

12.
We used light curve analysis to search for evidence of the dustball meteoroid model. Leonid, Taurid, Alpha Monocerotid and sporadic meteors from November 2003 were observed and analyzed using uniform methodology. Meteors from these four sources were examined for evidence of fragmentation by examining light curve shape and searching for light curve irregularities. Differences in meteoroid structure should be reflected by differences in meteor light curves. The resulting meteor light curve F-parameter values showed no statistically significant differences between the meteors from the various cometary showers or the sporadic meteors. The F-parameter values also suggest that the meteoroids from these sources do not follow a single body ablation model, which suggests that all four sources produce meteoroids with a dustball structure.  相似文献   

13.
First results are presented from a newly developed meteoroid orbit survey, called CAMS – Cameras for Allsky Meteor Surveillance, which combines meteor detection algorithms for low-light video observations with traditional video surveillance tools. Sixty video cameras at three stations monitor the sky above 31° elevation. Goal of CAMS is to verify meteor showers in search of their parent comets among newly discovered near-Earth objects.This paper outlines the concept of operations, the hardware, and software methods used during operation and in the data reduction pipeline, and accompanies the data release of the first batch of meteoroid orbits. During the month of November 2010, 2169 precisely reduced meteoroid trajectories from 17 nights have an error in the apparent radiant of the trajectory <2° and error in speed <10%. Median values of the error are 0.31° and 0.53 km/s, respectively, sufficient to resolve the intrinsic dispersion of annual meteor showers and resolve minor showers from the sporadic background. The limiting visual magnitude of the cameras is +5.4, recording meteors of +4 magnitude and brighter, bright enough to stand out from the mostly fainter sporadic meteors detected as under dense radar echoes.CAMS readily detected all established showers (6) active during the clear nights in November. Of the showers that needed confirmation, we confirm the theta Aurigids (THA, IAU#390), the chi Taurids (CTA, IAU#388), and the omicron Eridanids (OER, IAU#338). We conclude that the iota November Aurigids (IAR, IAU#248) are in fact the combined activity of the theta Aurigids and chi Taurids, and this shower should be dismissed from the list. Finally, there is also a clustering consistent with the zeta Cancrids (ZCN, IAU#243), but we cannot exclude that this is lower perihelion dust belonging to the Orionid shower.Data are submitted to the IAU Meteor Data Center on a semi-regular basis, and can be accessed also at http://cams.seti.org.  相似文献   

14.
We have analysed the meteor records in the chronicles that describe the era of the Song dynasty ( ad 960–1279). The data are complementary to the record-vacant 10th century of the Koryo dynasty ( ad 918–1392). The annual activity of sporadic meteors analysed shows a generic sinusoidal behaviour as in modern observations. In addition, we have also found that there are two prominent meteor showers, one in August and the other in November, appearing on the fluctuating sporadic meteors. The date of occurrence of the August shower indicates it to be the Perseids. By comparing the date of occurrence of the November shower with those of the Leonid showers of the Koryo dynasty, recent visual observations and the world-wide historical meteor storms, we conclude that the November shower is the Leonids. The regression rate of the Leonids is obtained to be     days per century, which agrees with recent observations.  相似文献   

15.
Hyperbolic meteor orbits from the catalog of 64,650 meteors observed by the multistation video meteor network located in Japan (SonotaCo 2009) have been investigated with the aim of determining the relation between the frequency of hyperbolic and interstellar meteors. The proportion of hyperbolic meteors in the data decreased significantly (from 11.58% to 3.28%) after a selection of quality orbits, which shows its dependence on the quality of observations. Initially, the hyperbolic orbits were searched for meteors unbound due to planetary perturbation. It was determined that 22 meteors from the 7489 hyperbolic orbits in the catalog (and 2 from the selection of the orbits with the highest quality) had had a close encounter with a planet, none of which, however, produced essential changes in their orbits. Similarly, the fraction of hyperbolic orbits in the data, which could be hyperbolic by reason of a meteor's interstellar origin, was determined to be at most 3.9 × 10?2. From the statistical point of view, the vast majority of hyperbolic meteors in the database have definitely been caused by inaccuracy in the velocity determination. This fact does not necessarily assume great measurement errors, since, especially near the parabolic limit, a small error in the value of the heliocentric velocity of a meteor can create an artificial hyperbolic orbit that does not really exist. The results show that the remaining 96% of meteoroids with apparent hyperbolic orbits belong to the solar system meteoroid population. This is also supported by their high abundance (about 50%) among the meteor showers.  相似文献   

16.
The hyperbolic meteor orbits among the 4,581 photographic and 62,906 radar meteors of the IAU MDC have been analysed using statistical methods. It was shown that the vast majority of hyperbolic orbits has been caused by the dispersion of determined velocities. The large proportion of hyperbolic orbits among the known meteor showers strongly suggests the hyperbolicity of the meteors is not real. The number of apparent hyperbolic orbits increases inversely proportional to the difference between the mean heliocentric velocity of meteor shower and the parabolic velocity limit. The number of hyperbolic meteors in the investigated catalogues does not, in any case, represent the number of interstellar meteors in observational data. The apparent hyperbolicity of these orbits is caused by a high spread in velocity determination, shifting a part of the data through the parabolic limit.  相似文献   

17.
Observational data relating to the duration of radio-echoes from overdense meteor trains are presented and discussed, with particular reference to the differences between daytime and night-time conditions. Experimental distributions of echo-duration for different meteor showers observed at various radio frequencies have been collected from several sources. When interpreted in terms of duration distribution theory (which, as developed here, represents an important revision of previous theories) these data are shown to be consistent with the assumption that free electrons are removed by an apparent three-body attachment mechanism, at a rate which is approximately three times higher at night than during the day. The absolute rates which emerge from this analysis depend on the exact meteor ionization model adopted, but for the most probable range of models our values are found to be lower than those obtained by other workers by an order of magnitude. The duration of echoes from bright meteors associated with the Quadrantid shower has been observed to increase considerably some 30 min after sunrise in the meteor region. This phenomenon is associated with a decrease in the mean range of the echoes. The results indicate that deionization is particularly rapid below ˜80 km at night, and may no longer appear as a three-body attachment in this region.

It is shown that the observed echo characteristics cannot be satisfactorily explained in terms of the well-known processes of direct recombination or simple attachment to atmospheric molecules, indicating that a much more complex ion-chemistry is required.  相似文献   


18.
The prime measurement objective of the Near Earth Object Chemical Analysis Mission (NEOCAM) is to obtain the ultraviolet spectra of meteors entering the terrestrial atmosphere from ∼125 to 300 nm in meteor showers. All of the spectra will be collected using a slitless ultraviolet spectrometer in Earth orbit. Analysis of these spectra will reveal the degree of chemical diversity in the meteors, as observed in a single meteor shower. Such meteors are traceable to a specific parent body and we know exactly when the meteoroids in a particular shower were released from that parent body (Asher, in: Arlt (ed.) Proc. International Meteor Conference, 2000; Lyytinen and van Flandern, Earth Moon Planets 82–83:149–166, 2000). By observing multiple apparitions of meteor showers we can therefore obtain quasi-stratigraphic information on an individual comet or asteroid. We might also be able to measure systematic effects of chemical weathering in meteoroids from specific parent bodies by looking for correlations in the depletions of the more volatile elements as a function of space exposure (Borovička et al., Icarus 174:15–30, 2005). By observing the relation between meteor entry characteristics (such as the rate of deceleration or breakup) and chemistry we can determine if our meteorite collection is deficient in the most volatile-rich samples. Finally, we can obtain a direct measurement of metal deposition into the terrestrial stratosphere that may act to catalyze atmospheric chemical reactions.  相似文献   

19.
Abstract— We discuss eight trecento (fourteenth century) paintings containing depictions of astronomical events to reveal the revolutionary advances made in both astronomy and naturalistic painting in early Renaissance Italy, noting that an artistic interest in naturalism predisposed these pioneering painters to make their scientific observations. In turn, the convincing representations of their observations of astronomical phenomena in works of art rendered their paintings more convincing. Padua was already a renowned center for mathematics and nascent astronomy (which was separating from astrology) when Enrico Scrovegni commissioned the famous Florentine artist Giotto di Bondone to decorate his lavish family chapel (ca. 1301–1303). Giotto painted a flaming comet in lieu of the traditional Star of Bethlehem in the Adoration of the Magi scene. Moreover, he painted a historical apparition that he recently had observed with a great accuracy even by modern standards: Halley's comet of 1301 (Olson, 1979). While we do not know the identity of the artist's theological advisor, we discuss the possibility that Pietro d'Abano, the Paduan medical doctor and “astronomer” who wrote on comets, might have been influential. We also compare Giotto's blazing comet with two others painted by the artist's shop in San Francesco at Assisi (before 1316) and account for the differences. In addition, we discuss Giotto's pupil, Taddeo Gaddi, reputed to have been partially blinded by a solar eclipse, whose calamity may find expression in his frescoes in Santa Croce, Florence (1328–1330; 1338?). Giotto also influenced the Sienese painter Pietro Lorenzetti, two of whose Passion cycle frescoes at Assisi (1316–1320) contain dazzling meteor showers which reveal that the artist observed astronomical phenomena, such as the “radiant” effect of meteor showers, first recorded by Alexander von Humboldt in 1799 and accepted only in the nineteenth century. Lorenzetti also painted sporadic, independent meteors, which do not emanate from the radiant. It is also significant that these artists observed differences between comets and meteors, facts that were not absolutely established until the eighteenth century. In addition we demonstrate that artistic and scientific visual acuity were part of the burgeoning empiricism of the fourteenth century, which eventually yielded modern observational astronomy.  相似文献   

20.
Meteor44 is a software system developed at MSFC for the calibration and analysis of video meteor data. The photometric range of the (8 bit) video data is extended from a visual magnitude range of from 8 to 3 to from 8 to −8 for both meteors and stellar images using saturation compensation. Camera and lens specific saturation compensation coefficients are derived from artificial variable star laboratory measurements. Saturation compensation significantly increases the number of meteors with measured intensity and improves the estimation of meteoroid mass distribution. Astrometry is automated to determine each image's plate coefficient using appropriate star catalogs. The images are simultaneously intensity calibrated from the contained stars to determine the photon sensitivity and the saturation level referenced above the atmosphere. The camera's spectral response is used to compensate for stellar color index and typical meteor spectra in order to report meteor light curves in traditional visual magnitude units. Recent efforts include improved camera calibration procedures and long focal length "streak" meteor photometry. Meteor44 has been used to analyze data from the 2001, 2002 and 2003 MSFC Leonid observational campaigns as well as several lesser showers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号