首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Inland waterway transport (IWT) is the most appropriate means of transportation in the pursuit of a sustainable development strategy. The development of IWT varies per region. Public entities and institutions play an important role in the development of IWT. This paper analyses the development of IWT on the Pearl River from an institutional perspective. Chinese national fiscal reforms, land use reforms and the transfer of power from the central government to local governments impact the governance of IWT. The paper demonstrates that the privatization of inland ports was triggered by the mismatch between the objectives of IWT operators and either public objectives or market demand. This process unfolded while top-level governors did not aim for privatization. The paper shows how formal institutional changes of IWT on the Pearl River are both the result of deliberate design and a path creation in the transformation from the Chinese planned economy to the Chinese market economy. It also shows how institutional changes resulted in a dual development path (i.e. a rapid development of inland terminals but underdevelopment of inland waterways) of IWT in the Pearl River. Policy recommendations are provided based on the research findings with specific attention to the factors hindering IWT development on the Pearl River at the level of the waterway infrastructure and inland ports.  相似文献   

2.
《Comptes Rendus Geoscience》2008,340(9-10):564-574
An overview of the expected change of climate extremes during this century due to greenhouse gases and aerosol anthropogenic emissions is presented. The most commonly used methodologies rely on the dynamical or statistical downscaling of climate projections, performed with coupled atmosphere–ocean general circulation models. Either of dynamical or of statistical type, downscaling methods present strengths and weaknesses, but neither their validation on present climate conditions, nor their potential ability to project the impact of climate change on extreme event statistics allows one to give a specific advantage to one of the two types. The results synthesized in the last IPCC report and more recent studies underline a convergence for a very likely increase in heat wave episodes over land surfaces, linked to the mean warming and the increase in temperature variability. In addition, the number of days of frost should decrease and the growing season length should increase. The projected increase in heavy precipitation events appears also as very likely over most areas and also seems linked to a change in the shape of the precipitation intensity distribution. The global trends for drought duration are less consistent between models and downscaling methodologies, due to their regional variability. The change of wind-related extremes is also regionally dependent, and associated to a poleward displacement of the midlatitude storm tracks. The specific study of extreme events over France reveals the high sensitivity of some statistics of climate extremes at the decadal time scale as a consequence of regional climate internal variability.  相似文献   

3.
The European 7th Framework Programme project Extreme Weather impacts on European Networks of Transport devised a holistic analysis of extreme weather risks for the transport system. The analysis provided an overview of extreme weather risks, or a risk panorama. The risk panorama was built on a probabilistic approach to extreme weather phenomena occurrences and on vulnerability analysis based on selected macro-level economic and transport system indicators of the member states of EU-27. The panorama covers all transport modes and views infrastructure-related risks, time delay risks, and accidents risks. In addition to climatic circumstances, the devised risk indicator is also dependent on regional circumstances, such as population and transport density and income level. This paper describes the construct and application of an extreme weather risk indicator (EWRI). EWRIs are counted for each country and each transport mode separately. Furthermore, this paper also presents the most significant extreme weather events in different parts of Europe and on the transport modes they affect the most.  相似文献   

4.
The possible impact of El Niño-Southern Oscillation (ENSO) and macrocirculation patterns (CPs) on local precipitation are examined and analyzed here under climate change conditions. First the relationship between the input and output variables under present conditions is established using two models, a fuzzy rule-based model (FRBM) and a multivariate linear regression model (MLRM), then this historical relationship is extended under climate change conditions. The input variables for these models consist of lagged ENSO-data (represented by the Southern Oscillation Index, SOI) and 500 hPa height data clustered into macrocirculation patterns over the western United States, while the output is an estimate of monthly local precipitation at selected Arizona stations. To overcome the lack of SOI data under climate change, several scenarios are constructed by perturbing the historical SOI data in a design of experiments framework. The results of the experimental design show that, in general, the precipitation amount seems to decrease under climate change. While the stations and months have differences, as expected, the perturbed scenarios do not show significant differences.  相似文献   

5.
Impact of climate change on extreme rainfall events and flood risk in India   总被引:8,自引:0,他引:8  
The occurrence of exceptionally heavy rainfall events and associated flash floods in many areas during recent years motivate us to study long-term changes in extreme rainfall over India. The analysis of the frequency of rainy days, rain days and heavy rainfall days as well as one-day extreme rainfall and return period has been carried out in this study to observe the impact of climate change on extreme rainfall events and flood risk in India. The frequency of heavy rainfall events are decreasing in major parts of central and north India while they are increasing in peninsular, east and north east India. The study tries to bring out some of the interesting findings which are very useful for hydrological planning and disaster managements. Extreme rainfall and flood risk are increasing significantly in the country except some parts of central India.  相似文献   

6.
Climate change is presently a major global challenge. As the world??s largest developing country, China is particularly vulnerable to global warming, especially in the rapidly developing coastal regions in the southeast of the country. This paper provides an overview of the impacts of climate change on the nature of geological disasters in the coastal regions of southeastern China. In the context of climate change, processes with the potential for causing geological disasters in this region, including sea-level rise, land subsidence, storm surges, and slope failures, which already have a substantial occurrence history, are all aggravated. All these processes have their own characteristics and relevance to climate change. Sea-level rise together with land subsidence reduces the function of dikes and flood prevention infrastructure in the study areas and makes the region more vulnerable to typhoons, storm surges, floods, and astronomical tidal effects. Storm surges have caused great losses in the study areas and also have contributed to increases in rainstorms. As a result, numerous rainfall-induced slope failures, characterized by focused time concentration, high frequencies, strong ??burstiness,?? and substantial damage, occur in the study areas. To prevent and mitigate such disasters that are accelerated by climate change, and to reduce losses, a series of measures is proposed that may help to achieve sustainable development in coastal southeastern China.  相似文献   

7.
《Comptes Rendus Geoscience》2008,340(9-10):621-628
Climate change will increase the recurrence of extreme weather events such as drought and heavy rainfall. Evidence suggests that modifications in extreme weather events pose stronger threats to ecosystem functioning than global trends and shifts in average conditions. As ecosystem functioning is connected with ecological services, this has far-reaching effects on societies in the 21st century. Here, we: (i) present the rationale for the increasing frequency and magnitude of extreme weather events in the near future; (ii) discuss recent findings on meteorological extremes and summarize their effects on ecosystems and (iii) identify gaps in current ecological climate change research.  相似文献   

8.
气候变化下淮河流域极端洪水情景预估   总被引:3,自引:0,他引:3       下载免费PDF全文
利用IPCC第4次评估公开发布的22个全球气候模式在A1B、A2和B1三种典型排放情景下的未来气温和降水预测结果,结合新安江月分布式水文模型,在对模型验证效果良好的基础上,参照集合预报方法,对未来90年(2010~2099年)气候变化下淮河流域的极端洪水进行预估。研究结果表明,从出现概率来看,淮河流域未来可能发生极端洪水年份的密集程度从大到小依次为A2情景、A1B情景、B1情景。A1B情景下,21世纪下半叶出现极端洪水的可能性增大,A2情景在2035~2065年以及2085年以后是极端洪水发生较为集中的时期。B1情景在21世纪70年代左右发生极端洪水的可能性较大。综合各种极端事件的定义方法,将极端洪水划定3个洪水量级。A2情景预估极端洪水的平均洪量在3种情景中最大,B1情景最小。3种情景未来一级极端洪水发生比例都比历史上偏大,A2情景下增加最多。二级极端洪水都较历史略有减少,三级极端洪水减少最显著。3种情景下各个量级极端洪水所占比例各不相同,A1B和A2情景二级以上极端洪水出现比例较大,B1情景下极端洪水量级多为三级,超1954年的一级极端洪水所占比例较小。  相似文献   

9.
Huang  Hefei  Cui  Huijuan  Ge  Quansheng 《Natural Hazards》2021,108(2):2059-2079
Natural Hazards - A warmer climate has caused more extreme climate events like the heatwave or extreme precipitation, which has led to a large number of lives and economic losses. In this study, we...  相似文献   

10.
This paper deals with the 2007 wildfires that hit Peloponnesus, the southern peninsula of Greece, presenting an overview of the impacts in terms of infrastructural damages and human injuries and losses. Network performance and components’ criticality analyses are used to assess the effects of the fires in vehicular traffic and the overall transport network. The crisis and emergency management of the event are discussed in depth, highlighting potential gaps and possibilities for future improvement. The paper concludes with a presentation of the adaptation measures that succeeded the event in terms of recovery plans, national efforts on fire prevention programs and wildfire management.  相似文献   

11.
Ansa Thasneem  S.  Chithra  N. R.  Thampi  Santosh G. 《Natural Hazards》2019,98(3):1169-1190
Natural Hazards - This study investigated the variation of extreme precipitation on a catchment under climate change. Extreme value analysis using generalized extreme value distribution was used to...  相似文献   

12.
Based on the actual meteorological data that characterize statistically significant changes in the air temperature and the amount of precipitation in the southwest of the Moscow artesian basin, the conditions that form the water balance and groundwater recharge are modeled. The comparison of the calculated longterm average values for the previous (1965–1988) and recent (1989–2012) periods made it possible to estimate the climate changes in the elements of water balance and groundwater recharge. Based on the maps of longterm average groundwater recharge for these periods, which were constructed using the results of modeling, the estimation of the change in natural resources of groundwater in the territory was performed, showing an increase of 9% (780000 m3/day).  相似文献   

13.
A method for predicting the impact of climate change on slope stability   总被引:4,自引:0,他引:4  
 A major effect of man-induced climate change could be a generally higher frequency and magnitude of extreme climatological events in Europe. Consequently, the frequency of rainfall-triggered landslides could increase. However, assessment of the impact of climate change on landsliding is difficult, because on a regional scale, climate change will vary strongly, and even the sign of change can be opposite. Furthermore, different types of landslides are triggered by different mechanisms. A potential method for predicting climate change impact on landsliding is to link slope models to climate scenarios obtained through downscaling General Circulation Models (GCM). Methodologies, possibilities and problems are discussed, as well as some tentative results for a test site in South-East France. Received: 25 October 1997 · Accepted: 25 June 1997  相似文献   

14.
We identify and discuss ways to use existing information on the thermal ecology of freshwater fishes to assess the potential impact of climate change on wild populations of these organisms. Two primary questions are identified: (i) how do aquatic habitats change in response to atmospheric climate change? (ii) how do fish respond to habitat change at both the individual and population levels? In lakes, climate warming will lead to higher surface water temperatures, longer ice-free periods, and longer periods of thermal stratification. In rivers, climate warming will lead to higher groundwater temperatures with corresponding increases in both summer and winter temperatures, from headwaters to mouth. We describe several methods for predicting the biological effects of these changes in habitat. We examine the use of bioenergetic models to predict the impact of climate change on the growth of individual fish. We examine the use of thermal habitat models to assess the impact of climate change on population abundance. We examine the use of life cycle models to assess the impact of climate change on the zoogeographic distribution of species. Finally, we identify new research required to further develop these methods.  相似文献   

15.
This study investigates how extreme flows in the Grote Nete watershed located in the Flanders region of Belgium will respond to climate change and urban growth using the hydrological model WetSpa. Three climate change scenarios (low, mean and high), three urban development scenarios (low, medium and high) and the nine combined climate–urban change scenarios are considered. The results indicate that extreme low flows would decrease noticeably by climate change, while they would be less sensitive to urban development. On the other hand, extreme peak flows are predicted to increase considerably due to both climate change and urban growth. It is concluded that coupling the effects of land use change with climate change may lead to severe increase in the frequency river floods in winter as well as the frequency of extreme river low flows in summer.  相似文献   

16.
17.
This paper deals with coping and adaptation processes to natural hazards and (potential) climate change impacts. Selected response measures to natural hazards are critically reviewed with respect to the actual and potential consequences that these measures might imply for additional adaptation needs and changes within social-ecological systems. In this context, the author introduces the concept of first- and second-order adaptation processes in order to underline the cascade process that adaptation implies, the potentials for failure, and the limits of adaptation. Important aspects of first- and second-order adaptation processes as well as the issue of the limits of adaptation are illustrated based on observations and empirical work conducted in Vietnam. In its final part, the paper discusses the findings in light of selected theoretical approaches that might help to understand how stabilization and destabilization processes are influenced or even triggered by adaptation measures.  相似文献   

18.
Forest fire can modify and accelerate the hydrological response of Mediterranean basins submitted to intense rainfall: during the years following a fire, the effects on the hydrological response may be similar to those produced by the growth of impervious areas. Moreover, climate change and global warming in Mediterranean areas can imply consequences on both flash flood and fire hazards, by amplifying these phenomena. Based on historical events and post-fire experience, a methodology to interpret the impacts of forest fire in terms of rainfall-runoff model parameters has been proposed. It allows to estimate the consequences of forest fire at the watershed scale depending on the considered burned area. In a second stage, the combined effect of forest fire and climate change has been analysed to map the future risk of forest fire and their consequence on flood occurrence. This study has been conducted on the Llobregat river basin (Spain), a catchment of approximately 5,000 km2 frequently affected by flash floods and forest fires. The results show that forest fire can modify the hydrological response at the watershed scale when the burned area is significant. Moreover, it has been shown that climate change may increase the occurrence of both hazards, and hence, more frequent severe flash floods may appear.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号