首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ability of beach users to identify rip currents at Pensacola Beach, Florida   总被引:3,自引:2,他引:1  
Quasi-permanent rip current hot spots at Pensacola Beach, Florida, pose a significant hazard to beach users, largely because the hot spots are located at or close to the primary access points. While an increase in the number of lifeguards has led to a decrease in the number of drownings since 2004, the number of rescues and contacts has increased to over a 30,000 year. Despite warning signs at access points along the beach, it is not clear whether beach users are able to identify a rip channel or an active rip current. To assess beach users’ knowledge of rip currents and their ability to identify rip channels and currents, 97 surveys were conducted between June and September of 2010 at Pensacola Beach. Beach users were asked to identify rip channels in oblique photographs taken on green, yellow and red flag days when the potential for rip currents is low, medium and high, respectively. A majority of participants suggested that they could identify a rip channel or current (if present), but less than 20 % of beach users were able to identify the rip channels and currents. The majority of participants identified heavy surf areas as the location of the rips versus the relatively flat water of the current or the darker color water of the channel. Results further suggest that most beach users, and particularly local participants, are overconfident in their ability to identify rip channels and currents. The focus of beach users on heavy surf as an indication of the rip current potential and the overconfidence in identifying a rip channel or current affects the spatial distribution of beach users and to some degree the location of rescues and drownings. While it can be quite difficult for the average beach user to identify rip channels and active rip currents, the results of the study suggest a need for further education efforts to reduce the rip hazard, particularly in areas where lifeguards are not permanently stationed.  相似文献   

2.
Evaluation of swimmer-based rip current escape strategies   总被引:2,自引:1,他引:1  
Rip currents are the primary hazard on surf beaches, and early studies described them as fast, shore-normal flows that extended seaward of the surf zone. Based on this traditional view, commonly promoted safety advice was to escape a rip current by swimming parallel to the beach. However, recent studies have shown dominant rip current re-circulation within the surf zone and have endorsed floating as an appropriate escape strategy. Here, a first quantitative assessment of the efficacy of various rip current escape strategies, with a focus on the underlying physical processes, is presented. A field study was conducted at Shelly Beach, NSW, Australia, measuring three rip currents (two open beaches, one topographic) over 3 days in varying wave conditions. Floating was found to be a longer duration, more variable escape strategy ( $ \overline{t} $  = 3.8 min, σ = 2.4 min), than swimming parallel ( $ \overline{t} $  = 2.2 min, σ = 1.0 min). Neither of the scenarios is 100 % foolproof, and both fail in some scenarios, making simplified safety recommendations difficult. Swim parallel failures are related to swimming against the alongshore current of the rip circulation. Float failures related to surf zone exits, with the highest exit rate occurring in the topographic rip. Float failures also occurred due to multiple re-circulations without the person attaining safe footing on the bar. The variable spatial and temporal behaviour of rip currents suggests that a single escape strategy safety message is inappropriate. Instead, a combined approach and scenario-specific safety advice should be considered by beach safety practitioners to promote to the public.  相似文献   

3.
Alongshore variation in the rip current hazard at Pensacola Beach, Florida   总被引:2,自引:1,他引:1  
Many drowning and near drownings at Pensacola Beach, Florida are attributed to rip currents, the strong seaward-flowing currents that extend from the shoreline to the line of breakers and sometimes beyond. While surf forecasts assume that the rip hazard is uniform alongshore and that the (erosion) rips are ephemeral features, evidence is presented to suggest that the rip hazard at Pensacola Beach is not uniform alongshore. Rather the rip current “hotspots” develop as a consequence of an alongshore variation in the surf similarity parameter and nearshore state on the order of ~1,450 m. The variation is forced by transverse ridges on the inner shelf that force wave refraction and focusing at the ridge crests. This creates a more dissipative, rhythmic bar and beach morphology at the ridges and rougher surf. Between ridges, where wave heights and periods are smaller and the outermost bar is forced closer to the shoreline, the nearshore is in a (more reflective) bar and rip state during red flag conditions. Drownings between 2000 and 2009 are shown to be clustered between transverse ridges and in the years following a hurricane or tropical storm (2000–2003 and 2005–2008) when the bar and rip morphology first develops as the shore face recovers. This continues until the innermost bar attaches to the beach face unless the bar system is reset by another tropical storm or hurricane. It is argued that the rip hazard is dependent on the alongshore covariation of the environmental forcing with the individual and group behavior in both time and space, even on what appears to be a relatively uniform beach environment.  相似文献   

4.
Surf zones, regions of breaking waves, are at the interface between the shore and coastal ocean. Surf zone hydrodynamics may affect delivery of phytoplankton subsidies to the intertidal zone. Over a month of daily sampling at an intermediate surf zone with bathymetric rip currents and a reflective surf zone, we measured surf zone hydrodynamics and compared concentrations of coastal phytoplankton taxa in the surf zones to concentrations offshore. At the intermediate surf zone, ~80% of the variability in the concentration of coastal phytoplankton taxa within the surf zone was explained by their variation offshore; however, concentrations were much higher and lower than those offshore in samples from a bathymetric rip current and over the adjacent shoal, respectively. Hydrodynamics at this intermediate surf zone did not hinder the delivery of coastal phytoplankton to the surf zone, but the bathymetric rip current system appeared to redistribute phytoplankton concentrating them within eddies. At the reflective shore, we sampled surf zones at a beach and two adjacent rocky intertidal sites. Concentrations of typical coastal phytoplankton taxa were usually an order of magnitude or more lower than those offshore, even when offshore samples were collected just 20 m beyond the breakers. The phytoplankton assemblages inside and outside the surf zone often appeared to be disconnected. Surf zone hydrodynamics at the steep, reflective shore coupled with low phytoplankton concentrations in near-surface water appeared to limit delivery of phytoplankton subsidies to the surf zone. Surf zone hydrodynamics may be a key factor in the alongshore variation in phytoplankton subsidies to coastal communities.  相似文献   

5.
Considering the diversity of rip currents based on the classification of Castelle et al. (2016), it is crucial to study the characteristics of each individual rip current type, which are classified based on different dominant controlling forces and physical driving mechanisms. In this study, an analytical model was presented to predict the spacing of channel rip currents \((S_{\mathrm{rip}})\) in intermediate beaches using the equations of continuity and momentum. Then, the analytical model predictions were compared with the results of numerical simulations calibrated with field studies of other researchers, that showed good agreements. The main results of this study showed that rip spacing was simultaneously related to the characteristics of wave and bed in the surf zone. In addition, it was shown that due to inevitable changes of the hydrodynamic and morphological conditions of rip channel in the beach, the parameter \(H_{b0}/h_{c}\) (where \(H_{b0}\) is the wave height before approaching the sand bar and \(h_{c}\) is channel depth) is an important factor in predicting the rip current situation and the changes of the beach state with time.  相似文献   

6.
Lagrangian flow of two rip currents was measured using human drifters to understand how variations in surf zone circulation affect exit positions of floating swimmers. Based on these results, two escape strategies were assessed, ‘do nothing’ and ‘swim parallel to the beach’. The drifter paths and exit positions were analysed to determine the best escape strategy for passive swimmers in each scenario. Of the two methods, doing nothing to allow the rip current to take a swimmer is the most effective strategy. More than 75% of rip current flow scenarios could hinder chances of escape of swimmers if the wrong direction was chosen to swim parallel to the beach to safety. This is because in many situations a swimmer encounters not only a rip current flowing offshore but also a longshore current flowing parallel to the beach. The best education campaign for the public, in addition to only swimming on a patrolled beach, would be to promote the ‘do nothing’ rip current escape strategy, as it covers all flow scenarios without reducing a swimmer’s chance of survival.  相似文献   

7.
Rip currents are fast moving, offshore flows that have the ability to move even the strongest swimmers into deeper waters. Miami Beach, Florida is one of the most visited beaches in the USA and a sought after destination for citizens and international tourists alike. It is also known to be a rip current “hot spot.” These factors greatly increase the risk of drowning; however, no previous research has focused on beachgoer perception of rip-related risks in South Florida. Over a 12-month period, 203 public surveys were collected to determine the rip current knowledge of beachgoers at Miami Beach based on factors such as swimming ability and frequency of beach visits. The responses were analyzed by constructing a normalized component factor to determine the respondent’s comprehensive knowledge of rips, and multiple regression models were used to assess the net influences of sociodemographic and behavioral characteristics on the responses. A significant proportion of the survey respondents showed insufficient knowledge, indicating they are at risk of drowning in a rip current. Frequent beachgoer’s exposure to the beach environment, maturation, and nativity is identified as the main contributors to knowledge net of other sociodemographic compositions. The most at-risk groups were determined to be young adults, foreign tourists, poor swimmers, and those who infrequently visited the beach. Miami Beach needs to initiate a rip current safety campaign to target these at-risk beachgoers, where interventions beyond familial and educational institutions should be introduced.  相似文献   

8.
Endo  Shintaro  Shimada  Ryo  Ishikawa  Toshinori  Komine  Tsutomu 《Natural Hazards》2022,110(3):2017-2033

Drowning accidents at beach in Japan are caused by rip currents. To reduce these accidents, a new technology that can detect rip currents and notify beachgoers by using the Internet of Things (IoT) and Artificial Intelligence (AI) was proposed. However, studies on the effect of visualizing rip currents or considering the effect of optimism bias have not been conducted. This study investigates if visualization of rip currents might help in preventing drowning accidents, while considering the effect of optimism bias. The participants were 90 Japanese beachgoers. They were asked to answer questions based on their knowledge of the beach and rip currents, their optimism bias regarding rip currents, and awareness with or without visualization. The results of the analyses suggest that despite optimism bias, the visualization of rip currents increases the tendency of beachgoers to perceive and avoid rip currents. As described above, it was found that by visualizing the rip current, beachgoers were able to perceive and avoid rip currents. In addition, an understanding of rip currents is positively related to the intent to avoid rip currents even when rip currents are visualized. Therefore, it is necessary not only to enhance the avoidance tendency by visualizing rip currents, but also to further enhance knowledge of beachgoers to deepen the understanding of rip currents including the danger associated and methods to avoid them.

  相似文献   

9.
This study analyzes fatalities caused by rip currents in important locations along east and west coasts of India for the period 2000–2010. Results include the frequency of fatalities from rip currents, their cause, and their spatial distributions. Rip current fatalities are most common in the southeastern India, with a non-uniform spatial distribution. August and October are identified as most favorable for rip current generation. In India, rip current-related drowning is estimated as 39 per year during the last decade. East coast of India averaged 30–40 drownings, and west coast of India averaged 5–10 drownings per year. In coastal Andhra Pradesh, more than 350 people had been drowned due to rip currents and only 10 people were rescued. Visakhapatnam recorded highest drowning (293); R. K. beach is the most vulnerable potential rip current zones. From 2007 onward, rip current deaths increased at an alarming rate. The frequency of rip current drownings increased markedly during shore-normal wave incidence and mid-low tidal stages. A new empirical forecasting technique has been developed for prediction of rip current risk in India for the first time. FORTRAN-based software was developed to generate automatic rip current forecast report for any given location. The scale’s performance was tested with field data and by using different statistical methods. The new predictive scale is predicting rip current occurrences reasonably well.  相似文献   

10.
Bick  Ian Avery  Bardhan  Ronita  Beaubois  Terry 《Natural Hazards》2018,93(3):1317-1335
Surf zone injuries (SZIs) are common worldwide, yet limited data are available for many geographical regions, including Europe. This study provides the first preliminary overview of SZIs along approximately 230 km of hazardous surf beaches in SW France during the summer season. A total of 2523 SZIs over 186 sample days during the summers of 2007, 2009 and 2015 were analysed. Documented injury data included date and time; beach location; flag colour; outside/inside of the bathing zone; age, gender, country and home postal code of the victim; activity; cause of injury; injury type and severity. Injuries sustained ranged from mild contusion to fatal drowning, including severe spinal injuries, wounds and luxation. While the most severe injuries (drowning) were related to rip currents, a large number of SZIs occurred as a result of shore-break waves (44.6%; n = 1125) and surfing activity (31.0%; n = 783) primarily inside and outside of lifeguard-patrolled bathing zones, respectively. Victims were primarily French living more than 40 km from the beach (75.9% of the reported addresses; n = 1729), although a substantial number of victims originated from Europe (14.7% of the addresses reported; n = 335), including the Netherlands (44.2%; n = 148), Germany (26.3%; n = 88) and Belgium (12.5%; n = 49). The predominant age group involved in the incidents was between 10 and 25 years (54.5%; n = 1376) followed by between 35 and 50 years (22.6%; n = 570), with the majority of SZIs involving males (69.6%, n = 1617). Despite the large predominance (74.1%; n = 33) of males involved in the most severe drowning incidents, all of which occurred outside the bathing zone, a surprisingly large proportion of females (48.0%; n = 133) experienced milder drowning incidents involving only minor to moderate respiratory impairment, peaking at 58.2% (n = 85) within the age group 10–25. The spine/cervical injury population is very young, with 58.5% (n = 313) within the age group 10–20. Specific injuries tended to occur in clusters (e.g. rip-current drowning or shore-break injury) with particular days prone to rip-current drowning or hazardous shore-break waves, suggesting the potential to predict the level of risk to beachgoers based on basic weather and marine conditions. This study calls for increased social-based beach safety research in France and the development of more effective public awareness campaigns to highlight the surf zone hazards, even within a supervised bathing zone. These campaigns should be targeted towards young males and females, in order to reduce the number of injuries and drownings occurring on beaches in SW France.  相似文献   

11.
This study shows the feasibility of obtaining hazardous hot spot information on landslide and debris flow from crowdsourced data. Historical hazard or disaster photographs were voluntarily uploaded by the public to a Web photograph album. A total of 2245 hazard photographs from 1973 to 2015 were crowdsourced, and each photograph was tagged with geographical coordinates. After the removal of outliers, 96% of the photograph points were found within the 4 km potential debris flow buffer of existing databases, and none was found along the steep slopes with a mean of 14°. The photograph hot spot analysis using local Moran’s I or G i * was identified statistically significant without subjective judgment. The DBSCAN model was also used to detect hot spot clusters effectively. The model parameters were nearly automatically generated on the basis of the count plot and the nearest neighbor distance graph. The results of these approaches were generally consistent with the hazardous hot spot maps and strongly related to central and southern Taiwan from the crowdsourced photograph data. Results reveal that the hot spot areas are found in areas with faults and near the potentially weak and fractured rocky regions. The majority of the landslides occur near the fault line because the strong ground motions triggered by an earthquake propagated along the fault rupture plane. Hot spot mapping using crowdsourced data can be used to estimate where debris flow will frequently occur and show how large the debris flow will be. Potentially hazardous areas can be effectively determined by the hot spot analysis of crowdsourced data.  相似文献   

12.
Houser  Chris  Vlodarchyk  Brent  Wernette  Phil 《Natural Hazards》2019,97(3):1395-1405
Natural Hazards - Informing and warning beach users about the danger posed by the rip current hazard remain a difficult challenge. Recent evidence suggests that warning signs and flags alone have...  相似文献   

13.
Sandy beach surf zones serve as alternative nursery habitats for juvenile Chinook salmon (0 age) during their early marine residency, a period considered critical due to high and variable mortality rates. Despite the importance of early marine residence, the extent of juvenile salmon surf zone use and movement along sandy beaches is not well understood. Juvenile Chinook salmon distribution and movement were studied in shallow surf zone habitats by sampling from 2006 to 2010 with a beach seine 11 beaches adjacent and distant to four estuary mouths in Oregon and Washington, USA. The estuary of origin of each juvenile was determined using genetic stock identification methods and coded wire tags. Surf zones sampled were within littoral cells, which are stretches of the coastline bordered by rocky headlands, and included estuaries with and without Chinook salmon populations. Juvenile salmonids were only collected at littoral cells with Chinook-inhabited watersheds. Most juveniles (95 %) were present at sandy beaches adjacent (<500 m from estuary mouth) to their estuary of origin. Few Chinook salmon (5 %) were collected at littoral cells that contained non-natal estuaries. These results indicate that juvenile Chinook salmon inhabiting surf zones mostly use beaches adjacent to their estuaries of origin, but some juveniles may reside in beaches distant from their point of ocean entry.  相似文献   

14.
An examination of rip current fatalities in the United States   总被引:1,自引:1,他引:0  
This study analyzes fatalities caused by rip currents in the conterminous United States for the period 1994–2007. Results include the frequency of fatalities from rip currents, their cause, and their unique spatial distributions. An analysis of historical hazard event data illustrate that, on average, 35 people reportedly die from rip currents each year in the United States. Also, similar to other hazard events where unique differences in gender vulnerability have been found, men are over six times more likely to fall victim to a deadly rip current than females. Rip current fatalities are most common in the southeastern United States, with a nonuniform spatial distribution along other Atlantic, Pacific, and Great Lakes coastlines. Physical vulnerabilities are suggested as the primary cause for the unique fatality distribution found. Temporally, summer season weekends are shown to have the more fatalities than any other time of the year. A classification scheme was developed to categorize synoptic-scale weather conditions present during deadly rip current events. More than 70% of all rip current fatalities are associated with onshore winds. Specifically, a rip current fatality is most likely when a surface high pressure system creates these onshore winds. The quality of the fatality reporting database available for researchers is also assessed.  相似文献   

15.
The response of a rocky beach to different possible combinations of hydrodynamic conditions (tides, waves, oceanic currents) has been little studied. In this work, the morphodynamic response to different hydrodynamic forcing is evaluated from sedimentological and geomorphological analysis in seasonal and medium term (19 years) scale in Palmeras beach, located in the southwest of Gorgona Island National Natural Park (NNP), a mesotidal rocky island on the Colombian Pacific continental shelf. Palmeras is an important nesting area of two types of marine turtles, with no anthropogenic stress. In the last years, coastal erosion has reduced the beach width, restricting the safe areas for nesting and conservation of these species. Until now, the sinks, sources, reservoirs, rates, and paths of sediments were unknown, as well as their hydrodynamic forcing. The beach seasonal variability, from October 2010 to August 2012, was analyzed based on biweekly or monthly measurements of five beach profiles distributed every 200 m along the 1.2 km of beach length. The main paths for sediment transport were defined from the modeling of wave currents with the SMC model (Coastal Modeling System), as well as the oceanic currents, simulated for the dry and wet seasons of 2011 using the ELCOM model (Estuary and Lake COmputer Model). Extreme morphologic variations over a time span of 19 years were analyzed with the Hsu and Evans beach static equilibrium parabolic model, from one wave diffraction point which dominates the general beach plan shape. The beach lost 672 m3/m during the measuring period, and erosional processes were intensified during the wet season. The beach trends responded directly to a wave mean energy flux change, resulting in an increase of up to 14 m in the width northward and loss of sediments in the beach southward. This study showed that to obtain the integral morphodynamic behavior of a rocky beach it is necessary to combine information of hydrodynamic, sedimentology and geomorphology in different time scales.  相似文献   

16.
Thiruchendur coast of southern Tamilnadu, India has been studied for grain-size spectrum and textural parameters namely mean, sorting, skewness and kurtosis. The grain-size spectrum shows a marked variation in the berm, high tide line (HTL) and low tide line (LTL) stretches. Variation in energy condition is controlled by geomorphology of the sedimentary beach. Textural pattern shows complicated profile as a result of the fluctuation in the physicochemical conditions due to the sediments and the marine interactions. Abundance of the medium sand to fine sand shows the prevalence of comparatively moderate- to low-energy condition in the Thiruchendur area. Linear discriminate function of the samples indicates an aeolian, shallow marine deposition environment and less influence of fluvial (7 %) process. CM diagram (C = one percentile in microns M = medium in microns) of Thiruchendur coast sediments suggests that deposition takes place by (1) rolling, (2) bottom suspension, (3) graded suspension. This is also supported by the wave energy in different stretches in beach line and also tractive current figure implies the sediments disturbed by the tractive and turbidity currents. The heavy minerals are concentrated in the berm (average, 11.8 %) and high tide line (average, 11.2 %) because of high-energy condition and aeolian action. Quartz microtextures show the mechanical action due to high-energy condition in Manapad and Kuduthalai areas, the chemical action because of to low-energy condition along the Thiruchendur, Kallamozhi areas.  相似文献   

17.
平直沙坝海岸叠加波浪的裂流试验   总被引:1,自引:0,他引:1       下载免费PDF全文
王彦  邹志利 《水科学进展》2015,26(1):123-129
为研究叠加波浪场的裂流特征,在平直沙坝海岸地形进行了叠加波浪形成的沿岸波高周期性变化的裂流试验研究。试验中叠加波浪是由波浪在垂直岸线的丁坝反射所形成的两列交叉波浪叠加产生,交叉波浪是具有等频率但入射角相反的两波列。通过对叠加波浪节腹点垂直岸线位置浪高的测量和沙坝范围内沿岸布置的声学多普勒测速仪流速测量结果来分析沙坝海岸丁坝反射波形成的裂流特性,讨论了波浪节腹点对裂流位置和裂流空间尺度的影响。对不同周期情况在x=5 m沙坝顶处的速度剖面对比,分析了不同周期对裂流的影响。  相似文献   

18.
Velegrakis  A. F.  Trygonis  V.  Chatzipavlis  A. E.  Karambas  Th.  Vousdoukas  M. I.  Ghionis  G.  Monioudi  I. N.  Hasiotis  Th.  Andreadis  O.  Psarros  F. 《Natural Hazards》2016,83(1):201-222
This contribution presents the results of a study on the shoreline variability of a natural perched urban beach (Ammoudara, N. Crete, Greece). Shoreline variability was monitored in high spatio-temporal resolution using time series of coastal video images and a novel, fully automated 2-D shoreline detection algorithm. Ten-month video monitoring showed that cross-shore shoreline change was, in some areas, up to 8 m with adjacent sections of the shoreline showing contrasting patterns of beach loss or gain. Variability increased in spring/early summer and stabilized until the end of the summer when partial beach recovery commenced. Correlation of the patterns of beach change with wave forcing (as recorded at an offshore wave buoy) is not straightforward; the only discernible association was that particularly energetic waves from the northern sector can trigger changes in the patterns of shoreline variability and that increased variability might be sustained by increases in offshore wave steepness. It was also found that the fronting beachrock reef exerts significant geological control on beach hydrodynamics. Hydrodynamic modelling and observations during an energetic event showed that the reef can filter wave energy in a highly differential manner, depending on its local architecture. In some areas, the reef allows only low-energy waves to impinge on the shoreline, whereas elsewhere penetration of higher waves is facilitated by the low elevation and limited width of the reef or by the presence of an inlet. Wave/reef interaction can also generate complex circulation patterns, including rip currents that appeared to be also constrained by the reef architecture.  相似文献   

19.
为研究斯托克斯漂移对近岸污染物输移的影响,首先建立波导流和考虑斯托克斯漂移的对流扩散数值模型,通过数模结果与实验结果的比较,研究平直斜坡地形下规则波入射时斯托克斯漂移对污染物输移的影响,波导流模型中波浪场基于波能守恒方程来模拟,波导流场基于Longuet-Higgins提出的辐射应力来模拟,污染物对流扩散模型考虑了斯托克斯漂移的影响。其次,利用一个算例来验证对流扩散模型,结果表明数值模型计算结果与解析解吻合良好。最后,利用该模型模拟了两个实验工况下污染物的输移,数值模拟结果与实验结果吻合良好,表明斯托克斯漂移对近岸污染物向岸线方向的输移有比较明显的影响。  相似文献   

20.
Withers  Archie  Maldonado  Sergio 《Natural Hazards》2021,108(2):1449-1467

Rip currents represent significant hazards to swimmers all around the world. The danger arises when a misinformed swimmer uses an inadequate strategy to escape the rip, such as fighting the current directly. This can lead to fatigue, panic, and in some cases drowning. There exists a range of strategies put forward by experts (both lifeguards and scientists) to escape rip currents. However, these recommendations are based on a limited number of scientific studies and there is still much discrepancy surrounding the best strategy to escape a rip. Thus, here we present a simple, physics-based theoretical model aimed at assessing different escape strategies in terms of their associated ‘energetic cost’ (in work and power) for any given rip current and swimmer’s proficiency level. Many combinations of swimmers and rips are considered, including both idealised and a realistic rip current. Our quantitative results back the common knowledge that swimming against the rip (which is strongly discouraged by lifeguards) is almost universally the worst possible strategy, especially when compared against strategies favoured by experts, such as floating with the current before attempting to swim back to the shore. For a realistic rip, our results suggest that swimming directly against the rip can require several times more power from the swimmer than other strategies advised by lifeguards, thus lending further scientific support to experts’ recommendations. This study may help promote education around the dangers posed by rip currents and how best to address them.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号