首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tsunami of 26th December 2004 severely affected Yemen’s Socotra Island with a death at a distance of 4,600 km from the epicenter of the Magnitude 9.0 earthquake. Yemen allowed a detailed assessment of the far-field impact of a tsunami in the main propagation direction. The UNESCO mission surveyed 12 impacted towns on the north and south shores covering from the east to the west tip of Socotra. The international team members were on the ground in Yemen from 11 to 19 October 2006. The team measured tsunami run-up heights and inundation distances based on the location of watermarks on buildings and eyewitness accounts. Maximum run-up heights were typically on the order of 2–6 m. Each measurement was located by means of global positioning systems (GPS) and photographed. Numerous eyewitness interviews were recorded on video. The tsunami impact on Socotra is compared with other locations along the shores of the Indian Ocean.  相似文献   

2.
This paper outlines the field measurements and numerical modelling carried out to develop a high-resolution tsunami inundation map, as a case study, for the city of Trincomalee on the east coast of Sri Lanka, which was devastated by the 2004 tsunami. We employ the deterministic approach together with numerical simulations based on the probable worst-case scenario to derive the inundation map. Linear and non-linear versions of shallow-water equations have been utilized to simulate tsunami propagation and onshore inundation, respectively. The field data considered in the present paper comprise the extent of inundation, the tsunami heights and the arrival times whilst the model results include the spatial distribution of the flow depth, the peak current speeds and the momentum flux. The computed extent of onshore inundation reproduces the observed overall pattern of inundation in most areas barring the south-eastern part of the city. Further, the model simulations suggest maximum flow depths up to about 2 m in most areas of the city whilst patches of flow depths exceeding 2 m can be seen in a narrow strip along the coastline. The computed current speeds also exceed 3 m/s at some locations adjacent to the shoreline.  相似文献   

3.
December 2004 tsunami in the Indian Ocean region has been simulated using MIKE-21 HD model. The vertical displacement of the seabed is incorporated into the numerical simulation by using time-varying bathymetry data. In the open ocean, sea surface height from altimeter observation has been used to validate the model results. To the west of the rupture zone, the crest is observed to precede the trough of the tsunami waves while to the east, trough preceded the crest. The model performance along the coastal region has been validated using de-tided sea levels from tide gauge measurements at Tuticorin, Chennai, Vishakapattanam, and Paradip ports along the east coast of India. Unique coastal characteristics of the tsunami waves, wave height, and wave celerity are reasonably simulated by the numerical model. Spectral analysis of tide gauge observations and corresponding model results has been done, and the distribution of frequency peaks from the analysis of gauge observations and the model results is observed to have a reasonable comparison. Low-frequency waves, contributed from the coastally trapped edge waves, are found to dominate both the tide gauge observations and the model results. The subsequent increase in the tsunami wave height observed at Chennai, Vishakapattanam, and Paradip has been explained on the basis of coastally trapped edge waves. From the validation studies using altimeter data and tide gauge data, it is observed that the model can be used effectively to simulate the tsunami wave height in the offshore as well as in the coastal region with satisfying performance.  相似文献   

4.
The December 26, 2004 Sumatra earthquake and the tsunami that followed killed over 300,000 people. In this paper, we analyze and discuss the geologic causes for this earthquake, the mechanisms that generated it, and follow up with a discussion on ways to prevent this type of disaster in the future.  相似文献   

5.
The December 26, 2004 Sumatra tsunami caused severe damage at the coasts of the Indian ocean. We report results of a sedimentological study of tsunami run-up parameters and the sediments laid down by the tsunami at the coast of Tamil Nadu, India, and between Malindi and Lamu, Kenya. In India, evidence of three tsunami waves is preserved on the beaches in the form of characteristic debris accumulations. We measured the maximum run-up distance at 580 m and the maximum run-up height at 4.85 m. Flow depth over land was at least 3.5 m. The tsunami deposited an up to 30 cm thick blanket of moderately well to well-sorted coarse and medium sand that overlies older beach deposits or soil with an erosional unconformity. The sand sheet thins inland without a decrease of grain-size. The deposits consist frequently of three layers. The lower one may be cross-bedded with foresets dipping landward and indicating deposition during run-up. The overlying two sand layers are graded or parallel-laminated without indicators of current directions. Thus, it remains undecided whether they formed during run-up or return flow. Thin dark laminae rich in heavy minerals frequently mark the contacts between successive layers. Benthic foraminifera indicate an entrainment of sediment by the tsunami from water depths less than ca. 30 m water depth. On the Indian shelf these depths are present at distances of up to 5 km from the coast. In Kenya only one wave is recorded, which attained a run-up height of 3 m at a run-up distance of ca. 35 m from the tidal water line at the time of the tsunami impact. Only one layer of fine sand was deposited by the tsunami. It consists predominantly of heavy minerals supplied to the sea by a nearby river. The sand layer thins landward with a minor decrease in grain-size. Benthic foraminifera indicate an entrainment of sediment by the tsunami from water depths less than ca. 30 m water depth, reaching down potentially to ca. 80 m. The presence of only one tsunami-related sediment layer in Kenya, but three in India, reflects the impact of only one wave at the coast of Kenya, as opposed to several in India. Grain-size distributions in the Indian and Kenyan deposits are mostly normal to slightly positively skewed and indicate that the detritus was entrained by the tsunami from well sorted pre-tsunami deposits in nearshore, swash zone and beach environments.  相似文献   

6.
The 2004 earthquake left several traces of coseismic land deformation and tsunami deposits, both on the islands along the plate boundary and distant shores of the Indian Ocean rim countries. Researchers are now exploring these sites to develop a chronology of past events. Where the coastal regions are also inundated by storm surges, there is an additional challenge to discriminate between the deposits formed by these two processes. Paleo-tsunami research relies largely on finding deposits where preservation potential is high and storm surge origin can be excluded. During the past decade of our work along the Andaman and Nicobar Islands and the east coast of India, we have observed that the 2004 tsunami deposits are best preserved in lagoons, inland streams and also on elevated terraces. Chronological evidence for older events obtained from such sites is better correlated with those from Thailand, Sri Lanka and Indonesia, reiterating their usefulness in tsunami geology studies.  相似文献   

7.
On December 26, 2004 a great earthquake (M W 9.3) occurred off the western coast of Sumatra triggering a series of tsunami waves that propagated across the Indian Ocean causing damage and life loss in 12 countries. This paper summarizes the observations of lifeline performance, building damage and its distribution, and the social and economic impact of the tsunami made by the Earthquake Engineering Field Investigation Team (EEFIT) in Thailand and Sri Lanka. EEFIT operates under the umbrella of the UK’s Institution of Structural Engineers. It is observed that good engineering practice can reduce economic losses, but additional measures are required to reduce risk to life.  相似文献   

8.
The December 2004 Indian Ocean Tsunami (IOT) had a major impact on the geomorphology and sedimentology of the east coast of India. Estimation of the magnitude of the tsunami from its deposits is a challenging topic to be developed in studies on tsunami hazard assessment. Two core sediments (C1 and C2) from Nagapattinam, southeast coast of India were subjected to textural, mineral, geochemical and rock-magnetic measurements. In both cores, three zones (zone I, II and III) have been distinguished based on mineralogical, geochemical and magnetic data. Zone II is featured by peculiar rock-magnetic, textural, mineralogical and geochemical signatures in both sediment cores that we interpret to correspond to the 2004 IOT deposit. Textural, mineralogical, geochemical and rock-magnetic investigations showed that the tsunami deposit is featured by relative enrichment in sand, quartz, feldspar, carbonate, SiO 2, TiO 2, K 2O and CaO and by a depletion in clay and iron oxides. These results point to a dilution of reworked ferromagnetic particles into a huge volume of paramagnetic materials, similar to what has been described in other nearshore tsunami deposits (Font et al. 2010). Correlation analysis elucidated the relationships among the textural, mineral, geochemical and magnetic parameters, and suggests that most of the quartz-rich coarse sediments have been transported offshore by the tsunami wave. These results agreed well with the previously published numerical model of tsunami induced sediment transport off southeast coast of India and can be used for future comparative studies on tsunami deposits.  相似文献   

9.
A case study was conducted for the Thailand Khao Lak coast using a forward numerical model to understand uncertainties associated with interpreting tsunami deposits and relating them to their tsunami sources. We examined possible effects of the characteristics of tsunami source, multiple waves, sediment supply and local land usages. Numerical results showed that tsunami-deposit extent and thickness could be indicative of the slip value in the source earthquake near the surveyed coastal locations, provided that the sediment supply is unlimited and all the deposits are well preserved. Deposit thickness was found to be largely controlled by the local topography and could be easily modified by backwash flows or subsequent tsunami flows. Between deposit extent and deposit thickness, using deposit extent to interpret the characteristics of a tsunami source is preferable. The changing of land usages between two tsunami events could be another important factor that can significantly alter deposit thickness. There is a need to develop inversion models based on tsunami heights and/or run-up data for studying paleotsunamis.  相似文献   

10.
The 2004 Indian Ocean tsunami deposited a sheet of sand with surficial bedforms at the Andaman coast of Thailand. Here we show the recognition of bedforms and the key internal sedimentary structures as criteria of the tsunami supercritical flow condition. The presence of well‐preserved capping bedforms implied a dominant tsunami inflow. Sets of internal sedimentary structures including parallel lamination, seaward and landward inclined‐laminations, and downstream dipping laminae indicated antidune structures that were generated by a supercritical flow current in a depositional stage during the inflow. A set of seaward dipping cross‐laminations containing sand with mud drape on the surface of one depositional layer are a unique indication of an outflow structure. A majority of deposits show normal grading, but in some areas, localized reverse grading was also observed. The recognition of these capping bedforms and determination of the internal sedimentary structures provides new key criteria to help derive a better understanding of tsunami flow conditions.  相似文献   

11.
On 26th December 2004, the world witnessed the devastating power of tsunami, affecting many countries, bordering the Indian Ocean region. This has caused significant changes in the shallow and intertidal regions of the Indian coast, especially the Andaman and Nicobar Islands, Tamil Nadu, Kerala and Pondicherry. The baseline data on biomass availability and distribution of benthic intertidal seaweed species were collected immediately after this catastrophic event by spot surveying 11 selected localities of the above-mentioned regions. In all, 45 species belonging to 31 genera were recorded during the present survey, the maximum number of seaweed species were recorded at Thirumullavarum, Kerala with the minimum at Car Nicobar, Andaman and Nicobar Islands. A very different trend was observed in the case of biomass availability at some locations which was due to the influence of habitat suitability over the tsunami damage. The details of this study have been provided in the present communication  相似文献   

12.
13.
The tsunami of 2004 in the Indian Ocean transported thousands of meters-long boulders shoreward at Pakarang Cape, Thailand. We investigated size, position and long axis orientation of 467 boulders at the cape. Most of boulders found at the cape are well rounded, ellipsoid in shape, without sharp broken edges. They were fragments of reef rocks and their sizes were estimated to be < 14m3 (22.7t). The distribution pattern and orientation of long axis of boulders reflect the inundation pattern and behavior of the tsunami waves. It was found that there is no clear evidence indicating monotonous fine/coarse shoreward trends of these boulders along each transect line. On the other hand, the large boulders were deposited repeatedly along the three arcuate lines at the intertidal zone with a spacing of approximately 136m interval. This distribution pattern may suggest that long-lasting oscillatory flows might have repositioned the boulders and separated the big ones from small. No boulders were found on land, indicating that the hydraulic force of the tsunami wave rapidly dissipated on reaching the land due to the higher bottom friction and the presence of a steep slope. We further conducted numerical calculation of tsunami inundation at Pakarang Cape. According to the calculation, the sea receded and the major part of the tidal bench (area with boulders at present) was exposed above the sea surface before the arrival of the first tsunami wave. The first tsunami wave arrived at the cape from west to east at approximately 130min after the tsunami generation, and then inundated inlands. Our calculation shows that tsunami wave was focused around the offshore by a small cove at the reef edge and spread afterwards in a fan-like shape on the tidal bench. The critical wave velocities necessary to move the largest and average-size boulders by sliding can be estimated to be approximately 3.2 and 2.0m/s, respectively. The numerical result indicates that the maximum current velocity of the first tsunami wave was estimated to be from 8 to 15m/s between the reef edge and approximately 500m further offshore. This range is large enough for moving even the largest boulder shoreward. These suggest that the tsunami waves that were directed eastward, struck the reef rocks and coral colonies, originally located on the shallow sea bottom near the reef edge, and detached and transported the boulders shoreward.  相似文献   

14.
Hydrogeochemical investigation of groundwater has been carried out in the coastal aquifers of southern Tamil Nadu, India. Seventy-nine dug well samples were collected and analyzed for various physicochemical parameters. The result of the geochemical analysis indicates the groundwater in the study area is slightly alkaline with moderate saline water. The cation and anion concentrations confirm most of the groundwater samples belong to the order of Na+ > Mg2+ > Ca2+ > K+ and Cl? > SO4 2? > HCO3 ?. Thereby three major hydrochemical facies (Ca–Cl, mixed Ca–Mg–Cl and Na–Cl) were identified. Based on the US Salinity diagram, majority of the samples fall under medium to very high salinity with low to high sodium hazard. The cross plot of Ca2+ + Mg2+ versus chloride shows 61 % of the samples fall under saline water category. Higher EC, TDS and Cl concentrations were observed from Tiruchendur to Koodankulam coastal zone. It indicates that these regions are significantly affected by saltwater contamination due to seawater intrusion, saltpan deposits, and beach placer mining activities.  相似文献   

15.
A study was made on samples from one core collected immediately after the December 2004 Asian tsunami to know the geochemical nature of the offshore tsunami sediments. The core sample was analyzed for sediment grain size, CaCO3, organic carbon (OC) and major elements (SiO2, TiO2, Al2O3, Fe2O3, CaO, MgO, Na2O, K2O, P2O5, MnO). The results indicate that the core sample can be divided into two parts: (1) upper 0–25 cm, interpreted to be deposited after tsunami (AT), and (2) lower 25–45 cm, interpreted as before tsunami (BT) as evidenced by the sandy nature AT with fluctuating CaCO3 contents. The AT part is devoid of OC suggesting that the sediment could have been transported to deeper regions along with the finer particles. Major elements such as SiO2, TiO2, CaO indicate high values than the other elements in AT part than in the BT part. The BT part contains Al rich alluvium mud associated with finer mud and organic particles. An analysis of the correlation matrix indicates the possible source of elements and transport of heavy minerals in the AT part than the BT part. The overall results suggest that the sediments could possibly have two different origins.  相似文献   

16.
A coupled hydrostatic and morph-dynamic model COMCOT-SED was used to investigate the morphological change in Lhok Nga bay during the 2004 Indian Ocean tsunami, and the coupled model predicted the thickness of tsunami deposits in agreement with the measured ones. The relationship between the characteristics of tsunami deposit and flow hydrodynamics was discussed in details. Phenomena such as landward thinning in deposit thickness, landward fining in grain size, and fining upwards in grain size are commonly used to identify tsunami deposits and were examined in this case study. We also discussed the effects of sediment supplies and the constraints that can be put on the earthquake parameters using the information derived from tsunami deposits. This study shows that the model presented in this paper is capable of simulating extreme tsunami events (tsunami wave height ~30?m) in a large domain and that forward models of tsunami sediment transport can be a promising tool to help tsunami geologists understand tsunami deposits.  相似文献   

17.
We describe here a sequence of soft sediment deformation (SSD) structures at Dive Agar beach near Srivardhan in the west coast of India. The ~120-cm-thick sediment package is represented by a basal undeformed sand (layer A) sharply cut by ~30-cm-thick intermixed beach sand and terrigenous sand (layer B1) followed by complex load structures and convolutions (8?C15?cm) within a coarse sandy layer (B2). The layer B2 is scoured by terrigenous sand (layer C1) which is capped with a silty mud layer (C2). The entire sequence (B2?CC1?CC2) is intruded by sand dykes originating from the lower layer B1. This sediment package is further overlain by a heavy mineral reach marine sand (layer D) with liquefactions long axes inclined southward as a result of forceful long-shore drift. The profile ends up with coarse-grained, poorly sorted sand including angular clasts of terrigenous outwash deposits indicating return of distal inundations. Intense deformation (liquefaction) is restricted to the heavy mineral-rich marine and the intermixed sands (layers B2 and D), whereas the terrigenous sand layers show scoured bases with oscillatory and pebbly tops. The presence of complex load structures injecting into the underlying layers, the top-truncated sand dykes, macro-thrust faults, scouring, and inclusion of coral fragments can explain it as a record of tsunami in the west coast. Occurrence of un-decayed consumer plastic material within the deformed layers suggests it as one of the most recent tsunami events (i.e., 2004 IOT), the only reported event after 1945 in the west coast. Alternative marine and terrigenous sands are characteristic of tsunami run-up and backwash deposits, while the dimensions of SSDs may be related to the <2?m magnitude (height) of the 2004 IOT at Dive Agar.  相似文献   

18.
Monthly-mean wind stress and its longshore and offshore components have been computed using the bulk aerodynamic method for each of a string of 36 two-degree-latitude by two-degree-longitude squares along the coast of the north Indian Ocean. The data source for the computation is the sixty-year mean resultant winds of Hastenrath and Lamb. The main features exhibited by the components, taking the longshore components as positive (negative) when the Ekman transport is away from (towards) the coast, are: (1) Along the coasts of Somalia and Arabia, the magnitude of the wind stress is among the highest in the north Indian Ocean, and its direction is generally parallel to the coastline. This results in a longshore component which is large (as high as 2·5 dyne/cm2) and positive during the southwest monsoon, and weaker (less than 0·6 dyne/cm2) and negative during the northeast monsoon. (2) Though weak (less than 0·2 dyne/cm2) during the northeast monsoon, the monthly-mean longshore component along the west coast of India remains positive throughout the year. The magnitude of the offshore component during the southwest monsoon is much larger than that of the longshore component. (3) The behaviour of the wind stress components along the east coast of India is similar to that along the Somalia-Arabia coast, but the magnitudes are much smaller.  相似文献   

19.
By carrying out the hydraulic experiments in a one-dimensional open channel and two-dimensional basin, we clarified the process of how a landslide on a uniform slope causes the generation of a tsunami. The effect of the interactive force that occurs between the debris flow layer and the tsunami is significant in the generation of a tsunami. The continuous flow of the debris into the water makes the wave period of the tsunami short. The present experiments apply numerical simulation using the two-layer model with shear stress models on the bottom and interface, and the results are compared. The simulated debris flow shows good agreement with the measured results and ensures the rushing process into the water. We propose that the model use a Manning coefficient of 0.01 for the smooth slope and 0.015 for the rough slope, and a horizontal viscosity of 0.01 m2/s for the landslide; an interactive force of 0.2 for each layer is recommended. The dispersion effect should be included in the numerical model for the propagation from the shore.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号