首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have produced synoptic maps from daily images of the solar corona on the disk obtained with the Nançay Radioheliograph at 169 MHz during June–August 1984. We discuss briefly the structures seen on the synoptic maps and we compare the location of radio sources with photospheric neutral lines and Ha filaments derived from synoptic charts from Meudon, Boulder, and Stanford. We measured the distance of radio sources from these optical features and compared their distribution with computed random distributions. A criterion of confidence is proposed which, when applied to our data, shows that the metric radio sources of thermal origin are best associated with the large-scale neutral lines shown on the low resolution Stanford magnetograms. This association indicates that the emission comes from arcades of moderately dense loops spanning the neutral line. However, the radio sources are not usually located directly above or very close to neutral lines, but their distribution peaks at distances between 4 and 6°. Our results show no statistically significant association with Meudon filaments.  相似文献   

2.
We present meterwave maps of the solar corona made with the Clark Lake Radioheliograph at 30.9, 50, and 73.8 MHz for one solar rotation. We compare and contrast them with optical data: 10830 Å maps, white-light coronagraph images (SOLWIND and Mauna Loa K coronameter) and forbidden line scans. Most of the sources in the radio maps persist for two days or more, and appear to rotate approximately with the solar rate. A coronal hole seen against the disk at all three frequencies shows interesting similarities and significant differences with the optical signatures of the hole. Elongated features of the 50 MHz corona correspond rather well to the azimuthal position of white light streamers seen in SOLWIND images. Synoptic charts made from the radio maps show overall similarities to synoptic charts constructed from (limb) coronagraph data. Some of the differences may result from the different weightings given by the radio and optical data to density and temperature, or by the different sensitivities to non-radial geometries. We show that the combined use of meter wave and optical images provide considerable new insights into the three-dimensional structure of the low to middle corona.  相似文献   

3.
Using KPNO helium 10830 Å synoptic charts of Carrington rotations 1716 through 1739, and by assembling a time sequence representing single latitude zone, rotational properties of coronal holes for five zones of latitudes (±10°, ±20° – ±40°, and ±40° – ±60°) have been examined. It seems that the rotation period of coronal holes is a function of latitude, thus reflecting differential rotation of coronal holes.  相似文献   

4.
The positions of X-ray coronal transients outside of active regions observed during Skylab were superposed on H synoptic charts and coronal hole boundaries for seven solar rotations. We confirmed a detailed spatial association between the transients and neutral lines. We found that most of the transients were related to large-scale changes in coronal hole area and tended to occur on the borders of evolving equatorial holes.Skylab Solar Workshop Post-Doctoral Appointee, 1975–1977.  相似文献   

5.
Observations of solar radio emission at 3 cm wavelength have been made at Japal-Rangapur Observatory for 1980–1981, the solar maximum year using the 3 m radio telescope. The correlation between microwave solar emissions and the sunspot activity on monthly basis has been found to be high during the maximum phase and in the high cm wavelength band. The basic component has been estimated statistically for successive solar rotations using the data obtained at Japal-Rangapur Observatory. Further, this was compared with the data obtained at other cm wavelengths during 1980–1981 and the solar minimum period 1975–1976 of the 21st cycle. The comparison showed pronounced dips in flux levels at different wavelengths during the summer months of the solar maximum year which may be attributed to the presence of coronal holes in the various levels of the solar atmosphere. The computed basic component values showed pronounced variation at high cm wavelengths for the solar maximum period with dissimilar variations at different wavelengths. During the solar minimum period the variations were negligibly small and showed more or less constant level of activity.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   

6.
Observations of coronal holes, solar wind streams, and geomagnetic disturbances during 1973–1976 are compared in a 27-day pictorial format which shows their long-term evolution. The results leave little doubt that coronal holes are related to the high-speed streams and their associated recurrent geomagnetic disturbances. In particular, these observations strongly support the hypothesis that coronal holes are the solar origin of the high-speed streams observed in the solar wind near the ecliptic plane.Visiting Scientist, Kitt Peak National Observatory, Tucson, Arizona.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

7.
Microwave maps of solar active region NOAA 8365 are used to derive the coronal magnetograms of this region. The technique is based on the fact that the circular polarization of a radio source is modified when microwaves pass through the coronal magnetic field transverse to the line of sight. The observations were taken with the Siberian Solar Radio Telescope (SSRT) on October 21 – 23 and with the Nobeyama Radio Heliograph (NoRH) on October 22 – 24, 1998. The known theory of wave mode coupling in quasi-transverse (QT) region is employed to evaluate the coronal magnetograms in the range of 10 – 30 G at the wavelength 5.2 cm and 50 – 110 G at 1.76 cm, taking the product of electron density and the scale of coronal field divergence to be constant of 1018 cm–2. The height of the QT-region is estimated from the force-free field extrapolations as 6.2 × 109 cm for the 20 G and 2.3 × 109 cm for 85 G levels. We find that on large spatial scale, the coronal magnetograms derived from the radio observations show similarity with the magnetic fields extrapolated from the photosphere.  相似文献   

8.
Models of open magnetic structures on the Sun are presented for periods near solar minimum (CR 1626–1634) and near solar maximum (CR 1668–1678). Together with previous models of open magnetic structures during the declining phase (CR 1601–1611) these calculations provide clues to the relations between open structures, coronal holes, and active regions at different times of the solar cycle. Near solar minimum the close relation between active regions and open structures does not exist. It is suggested that near solar minimum the systematic emergence of new flux with the proper polarity imbalance to maintain open magnetic structures may occur primarily at very small spatial scales. Near solar maximum the role of active regions in maintaining open structures and coronal holes is strong, with large active regions emerging in the proper location and orientation to maintain open structures longer than typical active region lifetimes. Although the use of He I 10830 Å spectroheliograms as a coronal hole indicator is shown to be subject to significant ambiguity, the agreement between calculated open structures and coronal holes determined from He I 10830 Å spectroheliograms is very good. The rotation properties of calculated open structures near solar maximum strongly suggest two classes of features: one that rotates differentially similar to sunspots and active regions and a separate class that rotates more rigidly, as was the case for single large coronal holes during Skylab.  相似文献   

9.
Solar radio maps obtained by our group and others over a wide wavelength range (millimeter to meter) and over a considerable time span (1973–1978) have allowed us to compute the radio spectrum of an average coronal hole, i.e., the brightness temperature inside a coronal hole normalized by the brightness temperature of the quiet Sun outside the coronal hole measured at several different radio wavelengths. This radio spectrum can be used to obtain the changes of the quiet Sun atmosphere inside coronal holes and also as an additional check for coronal hole profiles obtained by other methods. Using a standard solar atmosphere and a computer program which included ray tracing, we have tried to reproduce the observed radio spectrum by computing brightness temperatures at many different wavelengths for a long series of modifications in the electron density, neutral particle density and temperature profiles of the standard solar atmosphere. This analysis indicates that inside an average coronal hole the following changes occur: the upper chromosphere expands by about 20% and its electron density and temperature decrease by about 10%. The transition zone experiences the largest change, expanding by a factor of about 6, its electron density decreases by a similar factor, and its temperature decreases by about 50%. Finally in the corona the electron density decreases by about 20% and the temperature by about 15%.  相似文献   

10.
11.
The differential rotation of the corona as indicated by coronal holes   总被引:1,自引:0,他引:1  
The rotation of the corona can be determined either directly by using Doppler methods or indirectly by using tracers, i.e., structures within the corona. In this study the rotational characteristics of the corona are determined using coronal holes as tracers, for the period 1978–1991. The coronal data used here are from an atlas of coronal holes mapped in Hei 10830 data. A comparison is made between our results and previous determinations of the coronal rotation rate, e.g., by Sime (1986), using white-light K-coronameter observations, by Timothy, Krieger, and Vaiana (1975), using soft X-ray observations, and by Shelke and Pande (1985) and Navarro-Peralta and Sanchez-Ibarra (1994), using Hei 10830 data. For the atlas of coronal holes used in this study the nature of the coronal hole distributions in number and latitude, in yearly averages, has been determined. These distributions show that at solar minimum the polar coronal holes dominate and the few non-polar holes are confined to a narrow band near the equator. At solar maximum, however, mid-latitude coronal holes dominate, with a large spread in latitudes. Given these distributions we consider the differential rotation data only as an average over a solar cycle. This removes spurious effects caused by having only a small number of coronal holes contributing to the results, or by having a narrow latitude band for the observations, thus limiting the results to that narrow latitude band. By considering these coronal holes as tracers of the differential rotation we show that the mid-latitude corona rotates more rigidly than the photosphere, but still exhibits significant differential rotation, with an equatorial rate of 13.30 ± 0.04° day–1, and at 45° latitude a rate of 12.57 ± 0.13° day–1. These results are comparable, within errors, to the Sime (1986) results which have an equatorial rate of approximately 13.2 ± 0.2° day–1 and a rate of approximately 12.9 ± 0.3° day–1 at 45° latitude.  相似文献   

12.
We analysed multifrequency 2-dimensional maps of the solar corona obtained with the Nançay radioheliograph during two solar rotations in 1986. We discuss the emission of the quiet Sun, coronal holes and local sources and its association with chromospheric and coronal features as well as with large-scale magnetic fields. The brightness temperature of the quiet Sun was 5 to 5.5 × 105 K at 164 MHz and 4.5 to 5 × 105 K at 408 MHz. A coronal hole, also detected in the 10830 Å He i line, had a brightness temperature of 4.5 × 105 at 164 and 2.5 × 105 at 408 MHz. We give statistics of source brightness temperatures (on the average 8% above the background at 164 MHz and 14% at 408 MHz), as well as distributions in longitude and latitude. Although we found no significant center-to-limb effect in the brightness temperature, the sources were not visible far from the central meridian (apparently a refraction effect). The brightest sources at 164 MHz were near, but not directly above active regions and had characteristics of faint type I continua. At 408 MHz some sources were observed directly above active regions and one was unambiguously a type I continuum. The majority of the fainter sources showed no association with chromospheric features seen on H synoptic charts, including filaments. Most of them were detected at one frequency only. Sources identified at three frequencies (164, 327, and 408 MHz) were located in regions of enhanced large-scale magnetic field, some of them at the same location as decayed active regions visible one rotation before on synoptic H charts. Multifrequency sources are associated with maxima of the green line corona. The comparison with K-corona synoptic charts shows a striking association of the radio sources with dense coronal regions, associated with the coronal neutral sheet. Furthermore, we detected an enhanced brightness region which surrounds the local sources and is stable over at least one solar rotation. We call this feature a coronal plateau and we identify it with the radio counterpart of the coronal neutral sheet.  相似文献   

13.
Using Stanford large-scale magnetic field synoptic charts of rotation 1676 to 1739 and by delineating LLUMR, i.e., long-lived unipolar magnetic regions of both polarities surviving at least for four solar rotations, the semi-regular nature of their photospheric magnetic field pattern and their rotational properties have been examined. The investigation demonstrates the existence of regularities in the background field patterns as shown from the regular patterns of LLUMR rows and streams. This confirms the results of Bumba and Howard concerning regularities in large-scale photospheric magnetic field patterns. LLUMR streams seem to be arranged in a wave pattern of alternating polarities. Coronal holes and associated sections of photospheric field patterns suffer differential rotation. The rotation rates of the background field patterns which are not associated with the coronal holes are different from those which are.  相似文献   

14.
The presence of solar coronal holes can be inferred from one-dimensional east-west scans at 692 and 1415 MHz. The scans indicate that coronal holes are stable structures with low-emissive characteristics and with lifetimes which can span several solar rotations, in agreement with observations using other techniques. This work focuses on the first half of 1973. The 1415 MHz data presented for this period show the radio analogues of two coronal holes, commonly referred to as CH1 and CH3. These holes were observed at soft X-ray and XUV wavelengths with the Skylab satellite and at EUV with the OSO-7 satellite. The analysis is then extended to cover the period from 1968 to 1974 with a central meridian passage date and a subjective classification being assigned to each coronal hole observation. This information is tabulated and provides a consistent set of coronal hole observations during the maximum and declining phases of solar cycle 20.  相似文献   

15.
Bogod  V. M.  Grebinskij  A. S. 《Solar physics》1997,176(1):67-86
We present here the results of emission tomography studies, based on a new differential deconvolution method (DDM) of Laplace transform inversion, which we use for reconstruction of the coronal emission measure distributions in the quiet Sun, coronal holes and plage areas. Two methods are explored. The first method is based on the deconvolution of radioemission brightness spectra in a wide wavelength range (1 mm–100 cm) for temperature profile reconstructions from the corona to the deeper chromosphere. The second method uses radio brightness measurements in the cm–dm range to give a coronal column emission measure (EM).Our results are based on RATAN-600 observations in the range 2.0–32 cm supplemented by the data of other observatories during the period near minimum solar activity. This study gives results that agree with known estimates of the coronal EM values, but reveals the absence of any measurable quantities of EM in the transition temperature region 3 × 104 –105 K for all studied large-scale structures. The chromospheric temperature structure (T e = 20,000–5800 K) is quite similar for all objects with extremely low-temperature gradients at deep layers.Some refraction effects were detected in the decimeter range for all Types of large-scale structures, which suggests the presence of dense and compact loops (up to N e =(1–3)× 109 cm-3 number density) for the quiet-Sun coronal regions with temperature T e > 5× 10-5 K.  相似文献   

16.
Daily magnetogram observations of the large-scale photospheric magnetic field have been made at the John M. Wilcox Solar Observatory at Stanford since May of 1976. These measurements provide a homogeneous record of the changing solar field through most of solar cycle 21.Using the photospheric data, the configuration of the coronal and heliospheric fields can be calculated using a Potential Field - Source Surface model. This provides a three - dimensional picture of the heliospheric field evolution during the solar cycle.In this note we announce the publication of UAG Report No. 94, an Atlas containing the complete set of synoptic charts of the measured photospheric magnetic field, the computed field at the source surface, and the coefficients of the multipole expansion of the coronal field. The general underlying structures of the solar and heliospheric fields, which determine the environment for solar-terrestrial relations and provide the context within which solar activity related events occur, can be approximated from these data.  相似文献   

17.
He i 10830 Å synoptic maps, obtained at the Kitt Peak National Observatory during 1974–1979, show that the Sun's polar coronal holes have contracted significantly during 1977–1978. Prior to the accelerated increase of sunspot activity in mid-1977, the area of each polar cap was on the order of 8% of the Sun's total surface area (4R 2), whereas toward the end of 1978 these areas fell below 2% of 4R 2. Synoptic polar plots show that the vestigual holes had irregular shapes and were often well removed from the poles themselves. These results are consistent with the changes that one would expect when the polar magnetic fields are weakening just prior to sunspot maximum.  相似文献   

18.
Belenko  Irina A. 《Solar physics》2001,199(1):23-35
Spatial and temporal distributions of coronal holes for the rising phase of the solar cycle during 1996–1999 are considered. Connections between the number of non-polar coronal holes on the solar disk and the Wolf number, the mean solar photospheric magnetic field, and the solar flux density at 2800 mHz are analyzed. Peculiarities of the photospheric magnetic field structure of the regions corresponding to coronal hole locations and comparison with `clear' ones are discussed.  相似文献   

19.
Sýkora  J.  Badalyan  O.G.  Obridko  V.N. 《Solar physics》2003,212(2):301-318
Observations of ten solar eclipses (1973–1999) enabled us to reveal and describe mutual relations between the white-light corona structures (e.g., global coronal forms and most conspicuous coronal features, such as helmet streamers and coronal holes) and the coronal magnetic field strength and topology. The magnetic field strength and topology were extrapolated from the photospheric data under the current-free assumption. In spite of this simplification the found correspondence between the white-light corona structure and magnetic field organization strongly suggests a governing role of the field in the appearance and evolution of local and global structures. Our analysis shows that the study of white-light corona structures over a long period of time can provide valuable information on the magnetic field cyclic variations. This is particularly important for the epoch when the corresponding measurements of the photospheric magnetic field are absent.  相似文献   

20.
Extreme ultraviolet observations of coronal holes   总被引:2,自引:0,他引:2  
Extreme-ultraviolet Skylab and ground-based solar magnetic field data have been combined to study the origin and evolution of coronal holes. It is shown that holes exist only within the large-scale unipolar magnetic cells into which the solar surface is divided at any given time. A well-defined boundary zone usually exists between the edge of a hole and the neutral line which marks the edge of its magnetic cell. This boundary zone is the region across which a cell is connected by magnetic arcades with adjacent cells of opposite polarity. Three pieces of observational evidence are offered to support the hypothesis that the magnetic lines of force from a hole are open. Kitt Peak magnetograms are used to show that, at least on a relative scale, the average field strengths within holes are quite variable, but indistinguishable from the field strengths in other quiet parts of the Sun's surface.Finally it is shown that the large, equatorial holes characteristic of the declining phase of the last solar cycle during Skylab (1973–74) were all formed as a result of the mergence of bipolar magnetic regions (BMR's), confirming an earlier hypothesis by Timothy et al. (1975). Systematic application of this model to the different aspects of the solar cycle correctly predicts the occurrence of both large, equatorial coronal holes (the M-regions which cause recurrent geomagnetic storms) and the polar cap holes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号