首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Within high-density flood flows a prominent mechanism of gravel transport and deposition is by stream-driven, high-density traction carpet (with a rheology similar to grain flow). These gravel carpets are envisaged to form the basal portion of a bipartite high-density flood flow, decoupled from an overlying sand- and silt-laden turbulent flow. Several examples already documented in the literature are reviewed and an additional case from the Lower Old Red Sandstone of southwest Ireland is presented. Two mechanisms of traction carpet initiation are discussed: by rapid entrainment of gravel into suspension on rising stage, followed by settling into the gravel traction carpet at peak and falling stage; and by overconcentration of a ‘normal’, low-density bedload. Gravel entrainment, suspension and traction carpet development are significantly easier if the flood water already carries a high concentration of sand and silt in suspension. Theoretical consideration further shows that gravelly traction carpets can be maintained in channels of relatively low gradient by the shear stress exerted by the high-density, sand-bearing turbulent flood flow above. This tangential shear stress is converted to dispersive pressure, which aids buoyancy and quasi-static grain-to-grain contacts in the support of the clasts within the gravel carpet. The carpet is thought to have a quasi-plastic rheology but behave much like a viscous fluid at high shear rates. Stream-driven gravelly traction carpets are expected to produce sheet-like units of clast- to matrix-supported conglomerate, characterized by a parallel or an a(p)a(i) clast fabric. These units may be ungraded, normally or inversely graded, depending on the rate of shear, the viscosity of the flow and the celerity of deposition.  相似文献   

2.
ROGER HIGGS 《Sedimentology》1990,37(1):83-103
The Honna Formation, of Coniacian age, consists of several hundred metres of polymictic clast-supported conglomerate associated with sandstone and mudstone. Five conglomerate facies are recognized: ungraded beds; inverse graded beds; normal graded beds; inverse-to-normal graded beds; and parallel-stratified beds. These facies are interpreted as the deposits of subaqueous cohesionless debris flows and/or high-density turbidity currents. The depositional environment was a deep-water, gravelly fan that draped a fault-controlled, basin-margin slope. The fan is inferred to have passed upslope directly into an alluvial fan (unpreserved); hence, the name fan delta can be applied to the overall depositional system. This type of fan delta, of which the Brae oilfield in the North Sea is an example, is defined here as a deep-water fan delta. The lack of a shelf is in marked contrast to other types of fan delta. Three facies associations are recognized in the Honna Formation: subaqueous proximal-fan conglomerates, distal-fan turbiditic sandstones, and pro-fan/interfan mudstones with thin sandy turbidites. The proximal fan is envisaged as an unchannelled gravel belt with a downslope length of at least 20 km; such a long subaqueous gravel belt lacks a known modern analogue. The distal fan was an unchannelled sandy extension of the proximal gravel belt. It is postulated that the Honna Formation accumulated in a foreland basin which migrated westwards from the Coast Mountains where the Wrangellia-Alexander terrane was colliding with North America. In this model, the Honna fan delta was sourced by a (west-verging) thrust sheet whose sole-thrust was the Sandspit Fault immediately to the east. Deep-water fan deltas appear to develop preferentially when eustatic sea-level is relatively high, so that the‘feeder’ alluvial fan is small, and gravelly throughout. In petroleum exploration and field development, care should be taken to distinguish deep-water fan deltas from base-of-slope (canyon-fed) submarine fans, because the two systems differ significantly in terms of coarse-sediment distribution.  相似文献   

3.
Lithofacies characteristics and depositional geometry of a sandy, prograding delta deposited as part of the Holocene valley‐fill stratigraphy in the Målselv valley, northern Norway, were examined using morpho‐sedimentary mapping, facies analysis of sediments in exposed sections, auger drilling and ground penetrating radar survey. Various lithofacies types record a broad range of depositional processes within an overall coarsening‐upward succession comprising a lowermost prodelta/bottomset unit, an intermediate delta slope/foreset unit containing steeply dipping clinoforms and an uppermost delta plain/topset unit. Bottomset lithofacies typically comprise sand‐silt couplets (tidal rhythmites), bioturbated sands and silts, and flaser and lenticular bedding. These sediments were deposited from suspension fall‐out, partly controlled by tidal currents and fluvial effluent processes. Delta foreset lithofacies comprise massive, inverse graded and normal graded beds deposited by gravity‐driven processes (mainly cohesionless debris flows and turbidity currents) and suspension fall‐out. In places, delta foreset beds show tidal rhythmicity and individual beds can be followed downslope into bottomset beds. Delta plain facies show an upward‐fining succession with trough cross‐beds at the base, followed by planar, laminated and massive beds indicative of a bedload dominated river/distributary system. This study presents a model of deltaic development that can be described with reference to three styles within a continuum related primarily to water depth within a basin of variable geometry: (i) bypass; (ii) shoal‐water; and (iii) deep‐water deltas. Bypass and deep‐water deltas can be considered as end members, whereas shoal‐water deltas are an intermediate type. The bypass delta is characterized by rapid progradation and an absence of delta slope sediments and low basin floor aggradation due to low accommodation space. The shoal‐water delta is characterized by rapid progradation, a short delta slope dominated by gravity‐flow processes and a prodelta area characterized by rapid sea‐floor aggradation due to intense suspension fallout of sandy material. Using tidal rhythmites as time‐markers, a progradation rate of up to 11 m year?1 has been recorded. The deep‐water delta is characterized by a relatively long delta slope dominated by gravity flows, moderate suspension fall‐out and slow sea‐floor aggradation in the prodelta area.  相似文献   

4.
《Sedimentary Geology》2007,193(1-4):105-129
The blocking of major river valleys in the Leinebergland area by the Early Saalian Scandinavian ice sheet led to the formation of a large glacial lake, referred to as “glacial Lake Leine”, where most of the sediment was deposited by meltwater. At the initial stage, the level of glacial Lake Leine was approx. 110 m a.s.l. The lake level then rose by as much as 100 m to a highstand of approx. 200 m a.s.l.Two genetically distinct ice-margin depositional systems are described that formed on the northern margin of glacial Lake Leine in front of the retreating Scandinavian ice sheet. The Bornhausen delta is up to 15 m thick and characterized by a large-scale tangential geometry with dip angles from 10°–28°, reflecting high-angle foreset deposition on a steep delta slope. Foreset beds consist of massive clast-supported gravel and pebbly sand, alternating with planar-parallel stratified pebbly sand, deposited from cohesionless debris flows, sandy debris flows and high-density turbidity flows. The finer-grained sandy material moved further downslope where it was deposited from low-density turbidity currents to form massive or ripple-cross-laminated sand in the toeset area.The Freden ice-margin depositional system shows a more complex architecture, characterized by two laterally stacked sediment bodies. The lower part of the section records deposition on a subaqueous ice-contact fan. The upper part of the Freden section is interpreted to represent delta-slope deposits. Beds display low- to high-angle bedding (3°–30°) and consist of planar and trough cross-stratified pebbly sand and climbing-ripple cross-laminated sand. The supply of meltwater-transported sediment to the delta slope was from steady seasonal flows. During higher energy conditions, 2-D and 3-D dunes formed, migrating downslope and passing into ripples. During lower-energy flow conditions thick climbing-ripple cross-laminated sand beds accumulated also on higher parts of the delta slope.  相似文献   

5.
一、引言 1987和1988年仲夏,我们中国和联邦德国的地质同行联合对西藏雅鲁藏布江缝合带进行了地质考察,对日喀则地区所出露的第三系磨拉石进行了比较详细的沉积学工作,现将初步研究成果作一个简略介绍。西藏日喀则地区第三系磨拉石主要出露于雅鲁藏布江一带,是一套砾岩、砂岩、泥岩和少量泥灰岩的沉积组合,作为碰撞造山带山前或山间盆地的沉积产物,已被许多学者所认识。本文主要讨论始新—渐新世大竹卡组(钱定宇等,1985)磨拉石沉积,尤其是砾岩的沉积机制,并认为湖相砾质扇三角洲沉积是该磨拉石盆地的最主要沉积类型之一,扇三角洲沉积相带发育齐全,在德日剖面和南卡堆剖面(图1)部有完好的扇三角洲层序,是一种独特的、以突发性片状颗粒流和片状牵引流沉积为代表的扇三角洲类型。在青藏高原羌塘地区(余光明等,1986)和柴达木盆地(邓宏文等,1987)都报道过类似的第三纪沉积。研究此类发育于特定大地构造背景的扇三角洲的沉积特征和形成机制具有重要的理论意义。  相似文献   

6.
Subaqueous liquefied and fluidized sediment flows and their deposits   总被引:3,自引:0,他引:3  
A clear distinction must be made between liquefied and fluidized systems. In liquefied beds and flows, the solids settle downward through the fluid, displacing it upward, whereas, in fluidized beds, the fluid moves upward through the solids, which are temporarily suspended without net downward movement. Many recent references to fluidized sediment gravity flows refer, in fact, to flows of liquefied debris. Most uniformly liquefied beds of well-sorted sand- or gravel-sized sediment will resediment as simple two-layer systems. Liquefied flows can originate either by liquefaction followed by failure, as in many retrogressive flow slides, or by failure followed by liquefaction, as in the case of some slumps. Empirical and theoretical estimates of flow velocity, thickness, and travel distance suggest that natural laminar liquefied flows of fine-grained sand will generally resediment after moving a kilometre or less. Laminar flows of coarse-grained sand will resediment after moving only a few metres. Grain dispersive pressure is thought to be of little significance in the development or maintenance of liquefied flows. Many surficial submarine sand beds are apparently susceptible to liquefaction, including submarine canyon and continental rise deposits. Within submarine canyons and narrow fjords, steep slopes and channels promote the evolution of liquefied flows from slumps by liquefaction after failure and of high density turbidity currents from liquefied flows by the development of turbulence. Upon moving into the lower parts of submarine canyons or into proximal fan channels, liquefied flows will resediment and high density turbidity currents will tend to decline to flows transitional between liquefied flows and turbidity currents. The liquefied, coarser detritus within such transitional flows will be deposited while finer-grained debris will remain in suspension and continue downslope as dilute turbidity currents. Resedimentation of the liquefied portions of such flows may be responsible for the deposition of the A-subdivision of many turbidites and many thick, structureless ‘proximal turbidites’ or ‘fluxoturbidites’. Similar units can originate by liquefaction of the traction deposits of normal turbidity currents. Fluidized flows are probably uncommon, thin, and, where formed, originate through fluidization of the fine-grained tops of liquefied graded beds.  相似文献   

7.
酒西盆地下白垩统下沟组重力流水下扇沉积   总被引:6,自引:1,他引:6  
重力流水下扇由四种岩相组成:1.砾岩相,属水下碎屑流沉积;2.砾质泥岩相,是多成因的;3.砂岩相,系高密度浊流沉积;4.粉砂岩泥岩相,为低密度浊流和正常湖泊沉积。细分为十五种亚相。岩相的空间配置关系表明水下扇是由突变性洪水事件(和水下滑坡)-水下碎屑流-高密度浊流-低密度浊流的重力流系列形成。本文对重力流沉积从层序结构、沉积体形态、岩相变化和构造控制诸方面进行了探讨。  相似文献   

8.
Subaqueous tuff deposits within the lower Miocene Lospe Formation of the Santa Maria Basin, California, are up to 20 m thick and were deposited by high density turbidity flows after large volumes of ash were supplied to the basin and remobilized. Tuff units in the Lospe Formation include a lower lithofacies assemblage of planar bedded tuff that grades upward into massive tuff, which in turn is overlain by an upper lithofacies assemblage of alternating thin bedded, coarse grained tuff beds and tuffaceous mudstone. The planar bedded tuff ranges from 0.3 to 3 m thick and contains 1-8 cm thick beds that exhibit inverse grading, and low angle and planar laminations. The overlying massive tuff ranges from 1 to 10 m thick and includes large intraclasts of pumiceous tuff and stringers of pumice grains aligned parallel to bedding. The upper lithofacies assemblage of thin bedded tuff ranges from 0.4 to 3 m thick; individual beds are 6-30 cm thick and display planar laminae and dewatering structures. Pumice is generally concentrated in the upper halves of beds in the thin bedded tuff interval. The association of sedimentary structures combined with semi-quantitative analysis for dispersive and hydraulic equivalence of bubble-wall vitric shards and pumice grains reveals that particles in the planar bedded lithofacies are in dispersive, not settling, equivalence. This suggests deposition under dispersive pressures in a tractive flow. Grains in the overlying massive tuff are more closely in settling equivalence as opposed to dispersive equivalence, which suggests rapid deposition from a suspended sediment load. The set of lithofacies that comprises the lower lithofacies assemblage of each of the Lospe Formation tuff units is analogous to those of traction carpets and subsequent suspension sedimentation deposits often attributed to high density turbidity flows. Grain distributions in the upper thin bedded lithofacies do not reveal a clear relation for dispersive or settling equivalence. This information, together with the association of sedimentary features in the thin bedded lithofacies, including dewatering structures, suggests a combination of tractive and liquefied flows. Absence of evidence for elevated emplacement temperatures (e.g. eutaxitic texture or shattered crystàls) suggests emplacement of the Lospe Formation tuff deposits in a cold state closely following pyroclastic eruptions. The tuff deposits are not only a result of primary volcanic processes which supplied the detritus, but also of processes which involved remobilization of unconsolidated ash as subaqueous sediment gravity flows. These deposits provide an opportunity to study the sedimentation processes that may occur during subaqueous volcaniclastic flows and demonstrate similarities with existing models for sediment gravity flow processes.  相似文献   

9.
Turbidity currents are turbulent, sediment‐laden gravity currents which can be generated in relatively shallow shelf settings and travel downslope before spreading out across deep‐water abyssal plains. Because of the natural stratification of the oceans and/or fresh water river inputs to the source area, the interstitial fluid within which the particles are suspended will often be less dense than the deep‐water ambient fluid. Consequently, a turbidity current may initially be denser than the ambient sea water and propagate as a ground‐hugging flow, but later reverse in buoyancy as its bulk density decreases through sedimentation to become lower than that of the ambient sea water. When this occurs, all or part of the turbidity current lofts to form a buoyant sediment‐laden cloud from which further deposition occurs. Deposition from such lofting turbidity currents, containing a mixture of fine and coarse sediment suspended in light interstitial fluid, is explored through analogue laboratory experiments complemented by theoretical analysis using a ‘box and cloud’ model. Particular attention is paid to the overall deposit geometry and to the distributions of fine and coarse material within the deposit. A range of beds can be deposited by bimodal lofting turbidity currents. Lofting may encourage the formation of tabular beds with a rapid pinch‐out rather than the gradually tapering beds more typical of waning turbidity currents. Lofting may also decouple the fates of the finer and coarser sediment: depending on the initial flow composition, the coarse fraction can be deposited prior to or during buoyancy reversal, while the fine fraction can be swept upwards and away by the lofting cloud. An important feature of the results is the non‐uniqueness of the deposit architecture: different initial current compositions can generate deposits with very similar bed profiles and grading characteristics, highlighting the difficulty of reconstructing the nature of the parent flow from field data. It is proposed that deposit emplacement by lofting turbidity currents is common in the geological record and may explain a range of features observed in deep‐water massive sands, thinly bedded turbidite sequences and linked debrites, depending on the parent flow and its subsequent development. For example, a lofting flow may lead to a well sorted, largely ungraded or weakly graded bed if the fines are transported away by the cloud. However, a poorly sorted, largely ungraded region may form if, during buoyancy reversal, high local concentrations and associated hindered settling effects develop at the base of the cloud.  相似文献   

10.
The Temburong Fm (Early Miocene), Labuan Island, offshore NW Borneo, was deposited in a lower-slope to proximal basin-floor setting, and provides an opportunity to study the deposits of sustained turbidity currents and their interaction with debrite-related topography. Two main gravity-flow facies are identified; (i) slump-derived debris-flow deposits (debrites) — characterised by ungraded silty mudstones in beds 1.5 to > 60 m thick which are rich in large (> 5 m) lithic clasts; and (ii) turbidity current deposits (turbidites) — characterised by medium-grained sandstone in beds up to 2 m thick, which contain structureless (Ta) intervals alternating with planar-parallel (Tb) and current-ripple (Tc) laminated intervals. Laterally discontinuous, cobble-mantled scours are also locally developed within turbidite beds. Based on these characteristics, these sandstones are interpreted to have been deposited by sustained turbidity currents. The cobble-mantled scours indicate either periods of intense turbidity current waxing or individual flow events. The sustained turbidity currents are interpreted to have been derived from retrogressive collapse of sand-rich mouth bars (breaching) or directly from river effluent (hyperpycnal flow). Analysis of the stratal architecture of the two facies indicates that routing of the turbidity currents was influenced by topographic relief developed at the top of the underlying debrite. In addition, turbidite beds are locally eroded at the base of an overlying debrite, possibly due to clast-related substrate ‘ploughing’ during the latter flow event. This study highlights the difficulty in constraining the origin of sustained turbidity currents in ancient sedimentary sequences. In addition, this study documents the importance large debrites may have in generating topography on submarine slopes and influencing routing of subsequent turbidity currents and the geometry of their associated deposits.  相似文献   

11.
Inclined beds of sand, granules, pebbles and cobbles resembling a glacio-tectonically tilted sequence were shown by sedimentological studies to constitute the 10–12 m thick foreset beds of a glaciolacustrine Gilbert-type delta in Kyndby, North Sjælland, Denmark. The foreset beds are slightly curved, dip 10–28 SE, and display a bundlewise structure with alternating coarse-grained cobble-rich and fine-grained sandy units. The occurrence of ascending megaripple cross-bedding and climbing ripple cross-lamination in the sandy foresets can be ascribed to strong backflow currents formed by the lee-side vortice. The foreset beds are underlain by flat-lying fine-grained sand, silt and clay (bottomset beds), and are overlain transitionally or erosively by 2–3 m of flat-lying sand, pebbles and cobbles (topset beds). In the transition zone between foreset beds and topset beds, various delta distributary channel units occur. The delta probably formed in a partly ice-dammed lake in connection with the general retreat of a Weichselian advance from the north ('Norwegian ice')  相似文献   

12.
为探讨陆相断陷湖盆陡坡带构造活动控制下水下粗碎屑岩沉积特征、搬运机制及其演化规律,以滦平断陷盆地陡坡带下白垩统西瓜园组为研究对象,采用无人机倾斜摄影、实测剖面、砾石定向性定量表征等技术方法,从沉积背景、岩相类型、沉积单元及相序特征等方面开展野外露头解剖工作.滦平盆地西瓜园组沉积时期,近岸水下扇沉积于构造沉降速率大、湖平面上升、深水、古地貌陡峭环境,洪水携带粗碎屑沉积沿陡坡带入湖,底部发育与地震活动相关的砾质碎屑流,伴随发育滑动—滑塌沉积,上部发育高密度浊流.随着沉积物不断供给,斜坡坡度逐渐减小;随着粗碎屑沉积搬运距离不断增加,砂砾质碎屑流中砾石表现出明显定向性,高密度浊流所占厚度比例增加;末端以低密度浊流为主.扇三角洲沉积于构造沉降速率相对较低、水深相对较浅、古地貌相对平缓的环境,发育相对成熟的供源体系,汇水系统长度较长,扇三角洲前缘粗碎屑岩由碎屑流向高密度浊流、牵引流、低密度浊流转换.   相似文献   

13.
Based on the observation and analyses of 97 exploratory well cores in Dongpu sag,four types of gravity flow(including sliding,slumping,debris flow and turbidity current)deposits in lacustrine facies have been recognized within the middle Member 3 of the Paleogene Shahejie Formation. Their main identification marks are outlined as follows: (1)the sliding deposits are characterized by the partial preservation of primary sedimentary structures,the development of small penecontemporaneous fracture or fault in sandstone beds,and steep dip of strata,with Skolithos-Palaeophycus ichnoassemblage and/or Planolites-Taenidium ichnoassemblage,which commonly occurred in the shore and shallow lake environments. (2)General characteristics of slumping deposits mainly are the abrupt contact between sandstone beds(top and bottom)and dark mudstone beds,and development of all kinds of penecontemporaneous soft-sediment deformation structures such as convolution bedding,flame structure,water-escape structure,liquefied vein and tearing debris. (3)The sandy debris flow deposits are mainly marked by the massive sandstone,abrupt contact between sandstone beds(top and bottom)and dark mudstone beds,as well as developing floating gravels near the top of sandstone beds and tearing mudstone debris in the bottom of sandstone beds,sometimes with occurring the mud-coated intraclasts. Meanwhile,slumping and sandy debris flow deposits commonly associated with the Mermoides-Parapaleodictyon ichnoassemblage produced in semi-deep water lake environment. (4)The turbidity deposit is mainly indicated by the complete or incomplete Bouma sequences,normal-graded bedding,and all kinds of sole marks such as scour marks,irregular flute casts and load casts,and the Semirotundichnus-Puyangichnus ichnoassemblage frequently occurred in the middle to upper parts of the turbidite beds that formed in deep-water lake environment. After comprehensive analyses of above four types of gravity flow deposits and water-depth variation reflected by different ichnoassemblages,it can be considered that ichnoassemblage changes appear a zonation with the depth of the lake,which is consistent with variations in gravity flow deposits from sliding-slumping-debris flows to turbidity currents,and the bioturbation generated with gravity flow deposits is enhanced. Therefore,the research of bioturbation structures(ichnofossils)is not only of great significance to study the physical property of sandstone reservoir in lacustrine deposits,but also to provide important ichnological information for discerning various types of gravity flow deposits.  相似文献   

14.
准噶尔盆地玛南地区乌尔禾组砂砾岩储层具较大规模勘探潜力.通过岩心观察、描述与测量,结合粒径及砾石成分微观分析,对玛南乌尔禾组砂砾岩储层进行岩石学特征、沉积序列与模式、沉积微相及展布特征的细化研究.研究表明,乌尔禾组砂砾岩分3种类型:含泥含砂砾岩、泥质砾岩、砂质细砾岩.砾石成分复杂,以基性至中酸性岩浆岩砾石为主,具体分3...  相似文献   

15.
A sequence of graded ophiolitic sandstones, 120 m thick (Sanguigna Formation), outcrops within the Messinian Evaporite Group in a limited area near Gabbro, Fine Basin, western Tuscany.The formation lies between fine-grained sediments laid down under a thin water-cover. The graded beds show, on the other hand, many features typical of proximal turbidites, such as amalgamated layers, scour-and-fill structures, clay flakes and lumps, top-truncated Bouma sequences. Grain-size analyses suggest that they were deposited from high-density turbidity flows.The petrographic composition and the grain fabric indicate that the feeding was from the northeast across the Fine Basin. From the inferred dimensions and depth of the basin, the mean slope should have been less than 1°. The turbidity currents probably originated at a river mouth during flood stages.The Sanguigna graded beds are compared with occurrences of shallow-water turbidites.  相似文献   

16.
碎屑流与浊流的流体性质及沉积特征研究进展   总被引:5,自引:1,他引:4  
受浊流沉积模式(即鲍马序列和浊积扇模式)的驱动和浊积岩思维定势的影响,自1970s浊流与浊积岩的概念逐渐扩大,特别是通过"高密度浊流"术语的引入,以及将水下浊流与陆上河流的错误类比,使得一部分碎屑流与底流的沉积被认为是浊积岩。随着现代观测设备的应用以及详细的岩芯观察,碎屑流(特别是砂质碎屑流)和浊流被重新认识。浊流是一种具牛顿流变性质和紊乱状态的沉积物重力流,其沉积物支撑机制是湍流。碎屑流是一种具塑性流变性质和层流状态的沉积物重力流,其沉积物支撑机制主要是基质强度和颗粒间的摩擦强度。浊流沉积具特征的正粒序韵律结构,底部为突变接触而顶部为渐变接触;碎屑流沉积一般具上、下两层韵律结构,即下部发育具平行碎屑结构的层流段,上部发育具块状层理的"刚性"筏流段。但当碎屑流被周围流体整体稀释改造且改造不彻底时,强碎屑流可变为中—弱碎屑流,相应自下而上可形成逆—正粒序的沉积韵律结构,其中发育有呈漂浮状的石英颗粒和泥质撕裂屑等碎屑颗粒,明显区别于浊流沉积单一的正粒序韵律结构特征。碎屑流沉积顶、底部均为突变接触。浊流的沉积模式为简单的具平坦盆底的坡底模式,而碎屑流则为复杂的斜坡模式。  相似文献   

17.
Four megabeds (I to IV) were recognized throughout the Cerro Bola inlier, a glacially influenced depositional area of the Carboniferous Paganzo Basin, south‐western La Rioja Province, Argentina. Such anomalous thick beds are associated with the collapse of an unstable basin margin after periods of large meltwater discharge and sediment accumulation. Failure of these previously deposited sediments triggered mass flows and associated turbidity currents into the basin. Megabed I is up to 188 m thick and was deposited during a transgressive stage by re‐sedimentation of ice‐rafted debris. Also part of the transgressive stage, Megabeds II, III and IV are up to 9 m thick and are associated with a dropstone‐free period of flooding. Megabeds were subdivided into three divisions (1 to 3) that represent a spectrum of flow properties and rheologies, indicative of a wide range of grain support mechanisms. These divisions are proposed as an idealized deposit that may or may not be completely present; the Cerro Bola megabeds thus display bipartite or tripartite organization, each division inferred to reflect a rheologically distinct phase of flow. Division 1 is a basal layer that consists of clast‐supported and matrix‐supported, pebble conglomerate, rarely followed by weak normally graded to ungraded, very coarse‐ to coarse‐grained sandstone. This lower interval is interpreted to be the deposit of a concentrated density flow and is absent in bipartite megabeds. Division 2 is represented by a mud‐rich sandstone matrix with dispersed granule to pebble‐size crystalline and mudstone clasts. It also includes fragments of sandstone up to boulder size, as well as rafts of cohesive muddy material and wood fragments. Division 2 is interpreted to be a result of debris‐flow deposition. A debrite‐related topography, resulting from the freezing of high yield strength material, captures and partially confines the succeeding upper division 3, which fills the topographic lows and pinches out against topographic highs. Division 3 is rich in mudstone chips and consists of very coarse‐grained, dirty sandstones grading upward to siltstones and mudstones. It is interpreted to be a deposit of a co‐genetic turbidity current. Spectral gamma ray and petrographic analyses indicate that both debrite and co‐genetic turbidite have high depositional mud content and are of similar composition. One of the megabeds is correlated with an initial slump‐derived debris flow, which suggests that the mass flow becomes partitioned both at the top, generating a co‐genetic turbidity current and, at the base, segregating into a concentrated density flow that seems to behave as a gravelly traction carpet.  相似文献   

18.
ABSTRACT Lower Pliocene temperate carbonates exhibit landward‐downlapping beds at the southern margin of the Carboneras Basin in south‐eastern Spain. This rarely documented stratal geometry resulted from the accumulation of bedded bioclastic carbonate sand and gravel by longshore currents along a spit platform located a few hundred metres from the palaeoshoreline. The top of the spit platform was covered by shoals that extended over a gently dipping ramp inclined to the north. On the landward slope of the spit, sediments washed over from the shoal area were deposited in parallel‐laminated beds with a southward dip of 8–11°. These beds aggraded and retrograded after an increase in accommodation space, probably related to an Early Pliocene eustatic sea‐level rise. As a result, the beds downlap onto the underlying unconformity surface in a shoreward direction. Eventually, the depression between the shoreline and the spit platform was filled, and a gentle ramp became established. These Pliocene exposures in the Carboneras Basin and a similar Upper Miocene example in southern Spain suggest that landward‐downlapping stratal geometries can be expected in nearshore temperate carbonates along basin margins, and demonstrate a similarity in sedimentary dynamics to siliciclastic sands and gravels.  相似文献   

19.
The Pleistocene Higashikanbe Gravel, which crops out along the Pacific coast of the Atsumi Peninsula, central Japan, consists of well‐sorted, pebble‐ to cobble‐size gravel beds with minor sand beds. The gravel includes large‐scale foreset beds (5–10 m high) and overlying subhorizontal beds (0·5–3 m thick), showing foreset and topset structure, from which the gravel has previously been interpreted as deposits of a Gilbert‐type delta. However, (1) the gravel beds lack evidence of fluvial activity, such as channels in the subhorizontal beds; (2) the foresets incline palaeolandwards; (3) the gravels fill a fluvially incised valley; and (4) the gravels overlie low‐energy deposits of a restricted environment, such as a bay or an estuary. The foresets generally dip towards the inferred palaeoshoreline, indicating landward accretion of gravel. Reconstruction of the palaeogeography of the peninsula indicates that the Higashikanbe Gravel was deposited as a spit similar to that developed at the western tip of the present Atsumi Peninsula, rather than as a delta. According to the new interpretation, the large‐scale foreset beds are deposits on the slopes of spit platforms and accreted in part to the sides of small islets that are fragments of the submerging spit during relative sea‐level rise. The subhorizontal beds include nearshore deposits on the spit platform topsets and deposits of gravel shoals or bars, which are reworked sediments of the spit beach gravels during a transgression. The lack of spit beach facies in the subhorizontal beds results from truncation by shoreface erosion. Dome structure, which is a cross‐sectional profile of a recurved gravel spit at its extreme point, and sandy tidal channel deposits deposited between the small islets were also identified in the Higashikanbe Gravel. The Higashikanbe Gravel fills a fluvially incised valley and occupies a significant part of a transgressive systems tract, suggesting that gravelly spits are likely to be well developed during transgressions. The large‐scale foreset beds and subhorizontal beds of gravelly spits in transgressive systems tracts contrast with the foreset and topset beds of deltas, characteristic of highstand, lowstand and shelf‐margin systems tracts.  相似文献   

20.
The Marnoso‐arenacea Formation in the Italian Apennines is the only ancient rock sequence where individual submarine sediment density flow deposits have been mapped out in detail for over 100 km. Bed correlations provide new insight into how submarine flows deposit sand, because bed architecture and sandstone shape provide an independent test of depositional process models. This test is important because it can be difficult or impossible to infer depositional process unambiguously from characteristics seen at just one outcrop, especially for massive clean‐sandstone intervals whose origin has been controversial. Beds have three different types of geometries (facies tracts) in downflow oriented transects. Facies tracts 1 and 2 contain clean graded and ungraded massive sandstone deposited incrementally by turbidity currents, and these intervals taper relatively gradually downflow. Mud‐rich sand deposited by cohesive debris flow occurs in the distal part of Facies tract 2. Facies tract 3 contains clean sandstone with a distinctive swirly fabric formed by patches of coarser and better‐sorted grains that most likely records pervasive liquefaction. This type of clean sandstone can extend for up to 30 km before pinching out relatively abruptly. This abrupt pinch out suggests that this clean sand was deposited by debris flow. In some beds there are downflow transitions from turbidite sandstone into clean debrite sandstone, suggesting that debris flows formed by transformation from high‐density turbidity currents. However, outsize clasts in one particular debrite are too large and dense to have been carried by an initial turbidity current, suggesting that this debris flow ran out for at least 15 km. Field data indicate that liquefied debris flows can sometimes deposit clean sand over large (10 to 30 km) expanses of sea floor, and that these clean debrite sand layers can terminate abruptly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号