首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  The diffusivity of water has been investigated for a haplogranitic melt of anhydrous composition Qz28Ab38Or34 (in wt %) at temperatures of 800–1200°C and at pressures of 0.5–5.0 kbar using the diffusion couple technique. Water contents of the starting glass pairs varied between 0 and 9 wt %. Concentration-distance profiles for the different water species (molecular water and hydroxyl groups) were determined by near-infrared microspectroscopy. Because the water speciation of the melt is not quenchable (Nowak 1995; Nowak and Behrens 1995; Shen and Keppler 1995), the diffusivities of the individual species can not be evaluated directly from these profiles. Therefore, apparent chemical diffusion coefficients of water (D water) were determined from the total water profiles using a modified Boltzmann-Matano analysis. The diffusivity of water increases linearly with water content <3 wt % but exponentially at higher water contents. The activation energy decreases from 64 ± 10 kJ/mole for 0.5 wt % water to 46 ± 5 kJ/mole for 4 wt % water but remains constant at higher water contents. A small but systematic decrease of D water with pressure indicates an average activation volume of about 9 cm3/mole. The diffusivity (in cm2/s) can be calculated for given water content (in wt %), T (in K) and P (in kbar) by
in the ranges 1073 K ≤ T ≤ 1473 K; 0.5 kbar ≤ P≤ 5␣kbar; 0.5 wt % ≤ C water ≤ 6 wt %. The absence of alkali concentration gradients in the glasses after the experiments shows that interdiffusion of alkali and H+ or H3O+ gives no contribution to the transport of water in aluminosilicate melts. The H/D interdiffusion coefficients obtained at 800°C and 5 kbar using glass pieces with almost the same molar content of either water or deuterium oxide are almost identical to the chemical diffusivities of water. This indicates that protons are transported by the neutral component H2O under these conditions. Received: 26 March 1996 / Accepted: 23 August 1996  相似文献   

2.
Water-saturated and water-undersaturated experiments (a H2 O = 1.0 and 0.5) were performed in the temperature range 780–1040°C at 2 and 5 kbar in order to determine the upper thermal stability of phlogopite in granitic melts. Starting compositions were: (A) subaluminous mixtures of 20 wt % synthetic phlogopite and 80 wt % synthetic anhydrous haplogranitic glass; (B) peraluminous mixtures (normative corundum  = 4 %) of 20 wt % synthetic phlogopite and 80 wt % synthetic anhydrous peraluminous haplogranitic glass. The molar quartz: albite: orthoclase ratio of the glasses of the 2␣kbar runs was 35:39:26 and that of the 5 kbar runs 30:42:28. In the subaluminous system, phlogopite is stable up to 820°C at a H2 O = 1.0 and up to 780°C at a H2 O = 0.5. At higher temperatures, it is replaced by enstatite. In the peraluminous system phlogopite has a remarkably higher thermal stability (up to 1000°C at 5 kbar and a H2 O = 1.0) and there is a temperature interval of 80°C at a H2 O = 1.0, and 90–100°C at a H2 O = 0.5 between the first appearance of enstatite and the disappearance of phlogopite. In the peraluminous system, phlogopite is a solid solution (ss) of phlogopite, muscovite, talc and eastonite components. The crystalline product of the phlogopitess breakdown reaction is an aluminous enstatite. The MgO-content of the melt depends on the normative corundum content of the starting material and the run temperature. It is independent of pressure. In the subaluminous system, the MgO-content ranges between 0.05 and 0.3 wt % in the temperature interval 780–880°C at both investigated water activities. The MgO-content of the peraluminous melts at a H2 O = 1.0 ranges between 0.4 and 1.7 wt % and at a H2 O = 0.5 between 0.2 and 1.4 wt % in the temperature range 780–980°C. Received: 28 August 1995 / Accepted: 6 August 1996  相似文献   

3.
The water solubility in haplogranitic melts (normative composition Ab39Or32Qz29) coexisting with H2O-H2 fluids at 800 and 950 °C and 1, 2 and 3 kbar vapour pressure has been determined using IR spectroscopy. The experiments were performed in internally heated pressure vessels and the hydrogen fugacity (f H2) was controlled using the double capsule technique and oxygen buffer assemblages (WM and IW). Due to the limited lifetimes of these oxygen buffers the water solubility was determined from diffusion profiles (concentration-distance profiles) measured with IR spectroscopy in the quenched glasses. The reliability of the experimental strategy was demonstrated by comparing the results of short- and long-duration experiments performed with pure H2O fluids. The water solubility in Ab39Or32Qz29 melts equilibrated with H2O-H2 fluids decreases progressively with decreasing f H2O, as f H2 (or X H2) increases in the fluid phase. The effect of H2 on the evolution of the water solubility is similar to that of CO2 or another volatile with a low solubility in the melt and can be calculated in a first approximation with the Burnham water solubility model. Recalculation of high temperature water speciation for AOQ melts coexisting with H2O-H2 fluids at 800 °C, 2 kbar suggests that the concentrations of molecular H2O are proportional to f H2O (calculated using available mixing models), indicating Henrian behaviour for the solubility of molecular H2O in haplogranitic melts. Received: 29 June 1998 / Accepted: 10 March 1999  相似文献   

4.
Textural and geochemical studies of inclusions in topaz from greisens in the Hensbarrow topaz granite stock (St. Austell, Cornwall) are used to constrain the composition of fluids responsible for late stage greisening and mineralisation. The topaz contains an abundant and varied suite of inclusions including aqueous liquid + vapour (L + V), quartz, zinnwaldite, albite, K-feldspar, muscovite, ilmenorutile, apatite, columbite, zircon, varlamoffite [(Sn, Fe)(O, OH)2] and qitianlingite [(Fe+2,Mn+2)2(Nb,Ta)2W+6O10]. Primary L + V inclusions in topaz show relatively high T h (mainly 300 to >500 °C) and a narrow range of salinities (23–30 wt % NaCl equivalent) compared with those in greisen quartz (150–450 °C, 0–50 wt % NaCl equivalent). Textures indicate that topaz formed earlier than quartz and the fluid inclusion data are interpreted as indicating a cooling of the hydrothermal fluids during greisenisation, mixing with meteoric waters and a decrease in pressure causing intermittent boiling. The presence of early-formed albite and K-feldspar as inclusions in the topaz is likely to indicate that the greisen-forming fluid became progressively more acid during greisenisation. The most distinctive inclusions in the topaz are wisp- and bleb-shaped quartz, < 50 μm in size, which show textural characteristics indicating former high degrees of plasticity. They often have multiple shrinkage bubbles at their margins rich in Sn, Fe, Mn, S and Cl and, more rarely, contain euhedral albite, K-feldspar, stannite or pyrrhotite crystals up to 40 μm in size. The quartz inclusions show similar morphologies to inclusions in topaz from quartz-topaz rocks elsewhere which have been interpreted as trapped “silicate melt”. Their compositions are, however, very different to those expected for late stage topaz-normative granitic melts. From their textural and chemical characteristics they are interpreted as representing crystallised silica colloid, probably trapped as a hydro gel during greisenisation. There is also evidence for the colloidal origin of inclusions of varlamoffite in the topaz. These occurrences offer the first reported evidence in natural systems for the formation of colloids in high temperature hydrothermal fluids. Their high ore carrying potential is suggested by the presence of varlamoffite and the occurrence of stannite, pyrrhotite and SnCl within the quartz inclusions. Received: 9 April 1996 / Accepted: 12 November 1996  相似文献   

5.
 The growth rates of enstatite rims produced by reaction of Fo92 and SiO2 were determined at 250–1500 MPa and 900–1100°C for a wide range of water contents. Growth rates were also determined for forsterite rims between MgO and Mg2Si2O6 and between MgO and SiO2. Rim growth rates are parabolic indicating diffusion-controlled growth of the polycrystalline rims which are composed of ˜ 2 μm diameter grains. Rim growth rates were used to calculate the product of the grain boundary diffusion coefficient (D'A) times the effective grain boundary thickness (δ) assuming in turn that MgO, SiO2, and Mg2Si−1 are the diffusing components (coupled diffusion of a cation and oxygen or interdiffusion of Mg and Si). The values for D'MgOδ, D', and D' for enstatite at 1000°C and 700 MPa confining pressure with about 0.1 wt %  water are about five times larger than the corresponding D'Aδ values for samples initially vacuum dried at 250°C. Most of the increase in D'Aδ occurs with the first 0.1 wt %  water. The activation energy for diffusion through the enstatite rims (1100–950°C) is 162 ± 30 kJ/mole. The diffusion rate through enstatite rims is essentially unchanged for confining pressures from 210–1400 MPa, but the nucleation rate is greatly reduced at low confining pressure (for  ≤ 1.0 wt % water present) and limits the conditions at which rim growth can be measured. The corresponding values for D'Aδ through forsterite rims are essentially identical for the two forsterite-producing reactions when 0.1 wt % water is added and similar to the D'Aδ values for enstatite at the same conditions. The D'Aδ values for forsterite are ˜ 28 times larger for samples starting with 0.1 wt %  water compared to samples that were first vacuum dried. Thus water enhances these grain boundary diffusion rates by a factor of 5–30 depending on the mineralogy, but the total range in D'Aδ is only slightly more than an order of magnitude for as wide a range of water contents as expected for most crustal conditions. Received: 1 July 1995 / Accepted: 1 August 1996  相似文献   

6.
Magnesium self-diffusion coefficients were determined experimentally for diffusion parallel to each of the three crystallographic directions in natural orthoenstatite (En88Fs12). Experiments were conducted at 1 atm in CO-CO2 gas mixing furnaces, which provided oxygen fugacities equivalent to the iron-wüstite buffer. Diffusion of 25Mg was induced in polished samples of oriented orthoenstatite using a film of isotopically enriched 25MgO as the source material. Very short (<0.15 μm) diffusional penetration profiles were measured by ion microprobe depth profiling. The diffusion coefficients determined for four temperatures (900, 850, 800, 750 °C) provide the activation energies, E a , and frequency factors, D o, where D = D o exp (−E a /RT) for Mg self-diffusion parallel to each crystallographic direction: a-axis, E a  = 360 ± 52 kJ/mole and D o = 1.10 × 10−4 m2/s; b-axis, E a  = 339 ± 77 kJ/mole and D o = 6.93 × 10−6 m2/s and c-axis, E a  = 265 ± 66 kJ/mole and D o = 4.34 × 10−9 m2/s. In this temperature range, any possible anisotropy of cation diffusion is very small, however the activation energy for diffusion parallel to the c-axis (001) is the lowest and the activation energies for diffusion parallel to the a-axis (100) and b-axis (010) are higher. Application of these diffusion results to the silicate phases of the Lowicz mesosiderite meteorite provides cooling rates for the silicate portion of the meteorite (4–11 °C/100 years) that are similar, although slower, to previous estimates. These silicate cooling rates are still several orders of magnitude faster than the cooling rates (0.1 °C/106 years) for the metal portions. Received: 22 January 1997 / Accepted: 2 October 1997  相似文献   

7.
Mineral inclusions in pyrope crystals from Garnet Ridge in the Navajo Volcanic Field on the Colorado Plateau are investigated in this study with emphasis on the oxide minerals. Each pyrope crystal is roughly uniform in composition except for diffusion halos surrounding some inclusions. The pyrope crystals have near constant Ca:Fe:Mg ratios, 0.3 to 5.7 wt% Cr2O3, and 20 to 220 ppm H2O. Thermobarometric calculations show that pyrope crystals with different Cr contents formed at different depths ranging from 50 km (where T ≈ 600 °C and P = 15 kbar) to 95 km (where T ≈ 800 °C and P = 30 kbar) along the local geotherm. In addition to previously reported inclusions of rutile, spinel and ilmenite, we discovered crichtonite series minerals (AM21O38, where A = Sr, Ca, Ba and LREE, and M mainly includes Ti, Cr, Fe and Zr), srilankite (ZrTi2O6), and a new oxide mineral, carmichaelite (MO2−x(OH)x, where M = Ti, Cr, Fe, Al and Mg). Relatively large rutile inclusions contain a significant Nb (up to 2.7 wt% Nb2O5), Cr (up to ∼6 wt% Cr2O3), and OH (up to ∼0.9 wt% H2O). The Cr and OH contents of rutile inclusions are positively related to those of pyrope hosts, respectively. Needle- and blade-like oxide inclusions are commonly preferentially oriented. Composite inclusions consisting mainly of carbonate, amphibole, phlogopite, chlorapatite, spinel and rutile are interpreted to have crystallized from trapped fluid/melt. These minerals in composite inclusions commonly occur at the boundaries between garnet host and large silicate inclusions of peridotitic origin, such as olivine, enstatite and diopside. The Ti-rich oxide minerals may constitute a potential repository for high field strength elements (HFSE), large ion lithophile elements and light rare earth elements (LREE) in the upper mantle. The composite and exotic oxide inclusions strongly suggest an episode of metasomatism in the depleted upper mantle beneath the Colorado Plateau, contemporaneous with the formation of pyrope crystals. Our observations show that mantle metasomatism may deplete HFSE in metasomatic fluids/melts. Such fluids/melts may subsequently contribute substantial trace elements to island arc basalts, providing a possible mechanism for HFSE depletion in these rocks. Received: 20 December 1997 / Accepted: 15 October 1998  相似文献   

8.
Liquidus phase relations have been experimentally determined in the systems Qz-Ab-Or-(H2O), Qz-Ab-(H2O) and Qz-Or-(H2O) at H2O-undersaturated conditions (a H2O = 0.07) and P = 5 kbar. Starting materials were homogeneous synthetic glasses containing 1 wt% H2O. The liquidus temperatures were bracketed by crystallization and dissolution experiments. The results of kinetic studies showed that crushed glasses are the best starting materials to overcome undercooling and to minimize the temperature difference between the lowest temperature of complete dissolution (melting) and the highest temperature at which crystallization can be observed. At P = 5 kbar and a H2O = 0.07, the Qz-Ab eutectic composition is Qz32Ab68 at 1095 °C (±10 °C) and the Qz-Or eutectic is Qz38Or62 at 1030 °C (±10 °C). The minimum temperature of the ternary system Qz-Ab-Or is 990 °C (±10 °C) and the minimum composition is Qz32Ab35‐ Or33. The Qz content of the minimum composition in the system Qz-Ab-Or-H2O remains constant with changing a H2O. The normative Or content, however, increases by approximately 10 wt% with decreasing a H2O from 1 to 0.07. Such an increase has already been observed in the system Qz-Ab-Or-H2O-CO2 at high a H2O and it is concluded that the use of CO2 to reduce water activities does not influence the composition of the minima in quartz-feldspar systems. The determined liquidus temperature in melts with 1 wt% H2O is very similar to that obtained in previous nominally “dry” experiments. This discrepancy is interpreted to be due to problems in obtaining absolutely dry conditions. Thus, the hitherto published solidus and liquidus temperatures for “dry” conditions are probably underestimated. Received: 27 March 1997 / Accepted: 1 October 1997  相似文献   

9.
Fluorine-, boron- and phosphorus-rich pegmatites of the Variscan Ehrenfriedersdorf complex crystallized over a temperature range from about 700 to 500 °C at a pressure of about 1 kbar. Pegmatite quartz crystals continuously trapped two different types of melt inclusions during cooling and growth: a silicate-rich H2O-poor melt and a silicate-poor H2O-rich melt. Both melts were simultaneously trapped on the solvus boundaries of the silicate (+ fluorine + boron + phosphorus) − water system. The partially crystallized melt inclusions were rehomogenized at 1 kbar between 500 and 712 °C in steps of 50 °C by conventional rapid-quench hydrothermal experiments. Glasses of completely rehomogenized inclusions were analyzed for H2O by Raman spectroscopy, and for major and some trace elements by EMP (electron microprobe). Both types of melt inclusions define a solvus boundary in an XH2O–T pseudobinary system. At 500 °C, the silicate-rich melt contains about 2.5 wt% H2O, and the conjugate water-rich melt about 47 wt% H2O. The solvus closes rapidly with increasing temperature. At 650 °C, the water contents are about 10 and 32 wt%, respectively. Complete miscibility is attained at the critical point: 712 °C and 21.5 wt% H2O. Many pegmatites show high concentrations of F, B, and P, this is particularly true for those pegmatites associated with highly evolved peraluminous granites. The presence of these elements dramatically reduces the critical pressure for fluid–melt systems. At shallow intrusion levels, at T ≥ 720 °C, water is infinitely soluble in a F-, B-, and P-rich melt. Simple cooling induces a separation into two coexisting melts, accompanied with strong element fractionation. On the water-rich side of the solvus, very volatile-rich melts are produced that have vastly different physical properties as compared to “normal” silicate melts. The density, viscosity, diffusivity, and mobility of such hyper-aqueous melts under these conditions are more comparable to an aqueous fluid. Received: 15 September 1999 / Accepted: 10 December 1999  相似文献   

10.
 One well-defined OH Raman band at 3651 ± 1 cm−1 and one weak feature near 3700 ± 5 cm−1 are recognized for the hydrous γ-phase of Mg2SiO4. Like the hydrous β-phase, the H2O content in the γ-phase shifts most of the corresponding silicate modes towards lower frequencies. Variations in Raman spectra of the hydrous γ-phase were investigated up to about 200 kbar at room temperature and in the range 81–873 K at atmospheric pressure. Unlike the anhydrous γ-phase, which remains intact up to at least 873 K, the hydrous γ-phase sometimes converts to a defective forsterite structure above 800 K. Although the hydrous γ-phase remains intact up to at least 800 K, Raman signals of the OH bands disappear completely above 423 K. The Raman frequency of the well-defined OH band decreases linearly with increasing temperature between 81 and 423 K. In the region of the silicate vibrations, the Raman frequencies of the two most intense bands increase nonlinearly with increasing pressure, and decrease with increasing temperature. The frequencies for all other weak bands, however, decreased linearly with increasing temperature. The latter most likely reflects the larger scatter of the data for the weak bands. Received: 27 April 2001 / Accepted: 12 September 2001  相似文献   

11.
Water partitioning between mantle minerals from peridotite xenoliths   总被引:1,自引:1,他引:1  
The speciation and amount of water dissolved in nominally anhydrous silicates comprising eight different mantle xenoliths has been quantified using synchrotron micro-FTIR spectroscopy. Samples studied are from six geographic localities and represent a cross-section of the major upper mantle lithologies from a variety of tectonic settings. Clinopyroxene contains between 342 and 413 ppm H2O. Orthopyroxene, olivine and garnet contain 169–201, 3–54 and 0 to <3 ppm H2O, respectively. Pyroxenes water contents and the distribution of water between ortho- and clinopyroxene is identical regardless of sample mineralogy (D watercpx/opx = 2.1 ± 0.1). The total water contents of each xenolith are remarkably similar (113 ± 14 ppm H2O). High-resolution spectroscopic traverses show that the concentration and speciation of hydrous defects dissolved in each phase are spatially homogeneous within individual crystals and identical in different crystals interspersed throughout the xenolith. These results suggest that the amount of water dissolved in the silicate phases is in partial equilibrium with the transporting melt. Other features indicate that xenoliths have also preserved OH signatures of equilibrium with the mantle source region: Hydroxyl stretching modes in clinopyroxene show that garnet lherzolites re-equilibrated under more reducing conditions than spinel lherzolites. The distribution of water between pyroxenes and olivine differs according to xenolith mineralogy. The distribution of water between clinopyroxene and olivine from garnet peridotites (D watercpx/oliv(gnt) = 22.2 ± 24.1) is a factor of four greater than mineral pairs from spinel-bearing xenoliths (D watercpx/oliv(sp) = 88.1 ± 47.8). Such an increase in olivine water contents at the spinel to garnet transition is likely a global phenomenon and this discontinuity could lead to a reduction of the upper mantle viscosity by 0.2–0.7 log units and a reduction of its electrical resistivity by a factor of 0.5–0.8 log units.  相似文献   

12.
The influence of water on melting of mantle peridotite   总被引:47,自引:8,他引:39  
This experimental study examines the effects of variable concentrations of dissolved H2O on the compositions of silicate melts and their coexisting mineral assemblage of olivine + orthopyroxene ± clinopyroxene ± spinel ± garnet. Experiments were performed at pressures of 1.2 to 2.0 GPa and temperatures of 1100 to 1345 °C, with up to ∼12 wt% H2O dissolved in the liquid. The effects of increasing the concentration of dissolved H2O on the major element compositions of melts in equilibrium with a spinel lherzolite mineral assemblage are to decrease the concentrations of SiO2, FeO, MgO, and CaO. The concentration of Al2O3 is unaffected. The lower SiO2 contents of the hydrous melts result from an increase in the activity coefficient for SiO2 with increasing dissolved H2O. The lower concentrations of FeO and MgO result from the lower temperatures at which H2O-bearing melts coexist with mantle minerals as compared to anhydrous melts. These compositional changes produce an elevated SiO2/(MgO + FeO) ratio in hydrous peridotite partial melts, making them relatively SiO2 rich when compared to anhydrous melts on a volatile-free basis. Hydrous peridotite melting reactions are affected primarily by the lowered mantle solidus. Temperature-induced compositional variations in coexisting pyroxenes lower the proportion of clinopyroxene entering the melt relative to orthopyroxene. Isobaric batch melting calculations indicate that fluid-undersaturated peridotite melting is characterized by significantly lower melt productivity than anhydrous peridotite melting, and that the peridotite melting process in subduction zones is strongly influenced by the composition of the H2O-rich component introduced into the mantle wedge from the subducted slab. Received: 7 April 1997 / Accepted: 9 January 1998  相似文献   

13.
Liquidus phase relations in the system diopside–kalsilite–forsterite–quartz with 3 wt% F were examined at 1 bar and the locations of important invariant points were determined at 18 kbar. At all pressures within this range a large liquidus field for fluorphlogopite (Phl) exists, and has a large influence on both melting and fractionation processes. One eutectic point was found to the silica-rich side of the plane Lc–Fo–Di at Di1Ks30Fo2Qz67, where a melt coexists with San, Qz, Phl and Di at 840 °C and 1 bar. Another eutectic point must exist in the silica-poor part of the system because the phase topology determines that thermal barriers must exist. At this point a feldspathoid, either Lc or Ks, must coexist with Fo, Phl and a Ca-bearing phase such as Di. The exact location and phase assemblage were not determined, but the equilibrium melt must have a composition rich in Di (>29 wt%) and extremely poor in Qz (<8 wt%). The composition of the first eutectic moves towards lower SiO2 contents with increasing pressure (Di3Ks40Fo1Qz56 at 18 kbar), whereas the second does not exist at 18 kbar due to the disappearance of Lc as a stable liquidus phase. Liquids which coexist with mafic minerals such as En, Fo, Phl and Di are important for the genesis of potassium-rich mafic rocks by partial melting in the mantle and for the early stages of fractional crystallisation. The equilibrium melt at the invariant point Fo + En + Phl + Di + L at 1125 °C is very poor in Fo and Di components at atmospheric pressure (Di5Ks37Fo5Qz53), whereas at 18 kbar the melt contains large amounts of Fo and Di (Di19Ks31- Fo28Qz21), and has a composition close to that of natural lamproites. Kamafugites do not correspond to melts in this system under any of the studied conditions, and appear to require CO2 in the source. Fractionation processes from primitive potassic basanite melts are controlled principally by the size (and not the mere presence) of the liquidus phase field for phlogopite: at high pressures where the Phl field is large, olivine is eliminated early from the fractionating assemblage and Cpx + Phl fractionation may lead to relatively silica-rich rock differentiates such as trachytes. At low pressures, extensive olivine and restricted Phl crystallisation prevents silica enrichment in the melt, resulting in phonolitic differentiates. Later crystallisation of alkali feldspar accentuates the trends laid down in the early stages of fractionation. Received: 2 February 1999 / Accepted: 14 October 1999  相似文献   

14.
In order to define the conditions for the formation of immiscible carbonatite magmas in the lithosphere and in the crust, we have conducted phase equilibrium experiments to determine the effect of pressure and temperature on the silicate-carbonate liquid miscibility gap in bulk compositions appropriate for magmas in the upper mantle. A primitive (magnesian) nephelinite (NEPH) was used as a starting material, mixed with carbonates. Experiments were made with mixtures in the joins NEPH-dolomite-Na2CO3 (NEPH-Dol-NC) at 1.0 to 2.5 GPa, and NEPH-calcite (NEPH-CC) at 1.0 GPa. The miscibility gap was intersected by the join NEPH-Dol-NC (liquids with olivine), but not by NEPH-CC. Together with previous results for the Mg-free system (Na2O-CaO-Al2O3-SiO2-CO2), it was established that the size of the miscibility gap for magnesian compositions increases with decreasing pressures from depths of ˜100 km to ˜ 35 km; it increases further as compositions are changed by decreasing Mg/Ca. The maximum CaCO3 in liquids associated with the miscibility gap is 50 wt % for Mg-bearing liquids, and 80 wt % for Mg-free liquids. There is no experimental evidence for nearly pure-CaCO3 immiscible liquids, but abundant evidence for the precipitation of rounded calcite crystals from carbonate-rich liquids. The join NEPH-CC locates a piercing point on the liquidus field boundary for coprecipitation of olivine and calcite at NEPH50CC50 (wt %), part of the silicate-carbonate liquidus field boundary which defines the locus of liquids formed from carbonate-peridotites. The miscibility gap results are compared with magmas formed during partial fusion of CO2-bearing mantle peridotites, and during fractional crystallization of mantle-derived magmas. None of the probable magma paths in mantle processes intersects the miscibility gap. CO2-bearing mantle-derived alkalic magmas such as nephelinites and melilitites may fractionate during uprise through the mantle and crystallization within the crust. The compositions of these evolved nephelinites and phonolites approach the silicate side of the miscibility gap, confirming the probable generation of immiscible, alkalic carbonate-rich liquids at crustal pressures. Received: 29 January 1996 / Accepted: August 14, 1996  相似文献   

15.
 Spectroscopic measurements of water in glass inclusions in pyroxene from boninite samples from the Bonin Islands conclusively document the high (2.8–3.2 wt %) primary water contents of boninite magmas. Associated quenched glass from pillow lava rims have slightly lower (2.2–2.4 wt %) water contents, suggesting that minor amounts of degassing occurred between the time of melt entrapment in the orthopyroxenes and subsequent eruption on the sea floor. Some zonation of molecular water contents in pillow rim glasses was observed. OH contents of the host orthopyroxene phenocrysts were also measured, allowing for the calculation of partition coefficients for water between boninite melt and orthopyroxene. These values (0.003–0.004) for water partitioning between orthopyroxene and mafic melts may help constrain petrogenetic models of mantle-derived magmas. Received: 20 September 1993 / Accepted: 26 June 1994  相似文献   

16.
Roméite (Ca, Fe, Mn, Na)2(Sb5+, Ti4+)2(O, OH, F)7 is a rare mineral found in metamorphic iron-manganese deposits and in hydrothermal Sb-bearing veins. It is isostructural with the pyrochlore-group minerals of the general formula A2–mB2X6–wY1–n · pH2O. The pyrochlore-group minerals are important Nb and Ta ores, and are also used as an actinide host phase in␣radioactive waste. The crystal chemistry of roméite from the type locality Praborna (Italy), from Massiac (France), and from four newly discovered localities in␣the Swiss Alps, and of “lewisite”, a questionable species related to roméite from Tripuhy (Brazil), is compared to that of pyrochlore. A wide range of substitutions has been observed including (1) independent substitutions on the A- and B-sites, and (2) coupled substitutions between the A- and B- and between the A- and Y- sites. Only the roméite from Massiac, derived from weathering of stibnite, contains significant H2O (up to 14 wt %). The A-site vacancies in roméite appear to be controlled by the primary conditions of crystallization, and not by post-crystallization alteration. The Y-site chemistry of roméite varies from locality to locality; it can be dominated by F, OH, or be fully vacant. The “lewisite” octahedral crystals studied are a sub-microscopic mixture of roméite with a mineral structurally related to pyrochlore, which grows at the expense of roméite. Received: 5 March 1996 / Accepted: 18 October 1996  相似文献   

17.
An experimental study has been carried out to determine the partition coefficients of tungsten between aqueous fluids and granitic melts at 800 °C and 1.5 kb with natural granite as the starting material. The effects of the solutions on the partition coefficients of tungsten show a sequence of P > CO 3 2− > B > H2O. The effects are limited (generallyK D < 0.3) and the tungsten shows a preferential trend toward the melt over the aqueous fluid. The value ofK D increases with increasing concentration of phosphorus; theK D increases first and then reduces with the concentration of CO 3 2− when temperature decreases, theK D between the solution of CO 3 2− and the silicate melt increases, and that between the solution of B4O 7 2− and the silicate melt decreases. The partition coefficients of phosphorus and sodium between fluids and silicate melts have been calculated from the concentrations of the elements in the melts. TheK D value for phosphorus is 0.38 and that for sodium is 0.56. Evidence shows that the elements tend to become richer and richer in the melts.  相似文献   

18.
 A thermoelastic model for calculating the high-pressure and high-temperature properties of isotropic solids is presented by extending the formalism by Thomsen and combining the resulting one with the Vinet model for static lattice and the Debye model for lattice vibration. Applying it to polycrystalline corundum, we have shown that the calculated values of entropy and heat capacity at constant pressure are in agreement with literature values to 2325 K at zero pressure and that the calculated values of thermal expansivity agree reasonably with experimental data to 1100 K at zero pressure. The model reproduces experimental data of sound velocities v p and v s of compressional and shear waves to 1825 K at zero pressure and those to 62 GPa at room temperature, and it reproduces also experimental shock-wave equation of state to 150 GPa. The velocity correlation (∂ln v s /∂ln v p ) S was found to have weak pressure and temperature dependences and the results under lower mantle conditions are compared with those of magnesian and calcium silicate perovskites and magnesiowüstite, and the PREM values of the Earth's lower mantle. Received: 12 February 2000 / Accepted: 15 July 2000  相似文献   

19.
To interpret the degassing of F-bearing felsic magmas, the solubilities of H2O, NaCl, and KCl in topaz rhyolite liquids have been investigated experimentally at 2000, 500, and ≈1 bar and 700° to 975 °C. Chloride solubility in these liquids increases with decreasing H2O activity, increasing pressure, increasing F content of the liquid from 0.2 to 1.2 wt% F, and increasing the molar ratio of ((Al + Na + Ca + Mg)/Si). Small quantities of Cl exert a strong influence on the exsolution of magmatic volatile phases (MVPs) from F-bearing topaz rhyolite melts at shallow crustal pressures. Water- and chloride-bearing volatile phases, such as vapor, brine, or fluid, exsolve from F-enriched silicate liquids containing as little as 1 wt% H2O and 0.2 to 0.6 wt% Cl at 2000 bar compared with 5 to 6 wt% H2O required for volatile phase exsolution in chloride-free liquids. The maximum solubility of Cl in H2O-poor silicate liquids at 500 and 2000 bar is not related to the maximum solubility of H2O in chloride-poor liquids by simple linear and negative relationships; there are strong positive deviations from ideality in the activities of each volatile in both the silicate liquid and the MVP(s). Plots of H2O versus Cl in rhyolite liquids, for experiments conducted at 500 bar and 910°–930 °C, show a distinct 90° break-in-slope pattern that is indicative of coexisting vapor and brine under closed-system conditions. The presence of two MVPs buffers the H2O and Cl concentrations of the silicate liquids. Comparison of these experimentally-determined volatile solubilities with the pre-eruptive H2O and Cl concentrations of five North American topaz and tin rhyolite melts, determined from melt inclusion compositions, provides evidence for the exsolution of MVPs from felsic magmas. One of these, the Cerro el Lobo magma, appears to have exsolved alkali chloride-bearing vapor plus brine or a single supercritical fluid phase prior to entrapment of the melt inclusions and prior to eruption. Received: 6 November 1995 / Accepted: 29 January 1998  相似文献   

20.
The solubility behavior of phosphorus in glasses and melts in the system Na2O-Al2O3-SiO2-P2O5 has been examined as a function of temperature and Al2O3 content with microRaman spectroscopy. The Al2O3 was added (2, 4, 5, 6, and 8 mol% Al2O3) to melts with 80 mol% SiO2 and ∼2 mol% P2O5. The compositions range from peralkaline, via meta-aluminous to peraluminous. Raman spectra were obtained of both the phosphorus-free and phosphorous-bearing glasses and melts between 25 and 1218 °C. The Raman spectrum of Al-free, P-bearing glass exhibits a characteristic strong band near 940 cm−1 assigned to P=O stretching in orthophosphate complexes together with a weaker band near 1000 cm−1 assigned P2O7 complexes. With increasing Al content, the proportion of P2O7 initially increases relative to PO4 and is joined by AlPO4 complexes which exhibit a characteristic P-O stretch mode slightly above 1100 cm−1. The latter complex appears to dominate in meta-aluminosilicate glass and is the only phosphate complex in peraluminous glasses. When P-bearing peralkaline silicate and aluminosilicate glasses are transformed to supercooled melts, there is a rapid decrease in PO4/P2O7 so that in the molten state, PO4 units are barely discernible. The P2O7/AlPO4 abundance ratio in peralkaline compositions increases with increasing temperature. This decrease in PO4/P2O7 with increasing temperature results in depolymerization of the silicate melts. Dissolved P2O5 in peraluminous glass and melts forms AlPO4 complexes only. This solution mechanism has no discernible influence on the aluminosilicate melt structure. There is no effect of temperature on this solution mechanism. Received: 7 October 1997 / Accepted: 11 May 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号