首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A comprehensive review of new data on geology and geochronology of Precambrian terranes in the western Central Asian Orogenic Belt reveals new insights into its evolution. At the present surface, these terranes mostly consist of Meso- to Neoproterozoic sedimentary, magmatic and metamorphic assemblages, with insignificant Paleoproterozoic rocks. Archean material is represented exclusively by detrital and xenocrystic zircons in younger strata. Meso- to Neoproterozoic felsic magmatic rocks were mostly sourced from Neoarchean and Paleoproterozoic continental crust, indicating its reworking and potential wider presence at deeper crustal levels. Most Meso- to Neoproterozoic assemblages are of intraplate origin. The supra-subduction assemblages of Neoproterozoic and Mesoproterozoic ages are of limited extent.We propose to recognize the Issedonian and Ulutau-Moyunkum groups of terranes, separated by early Paleozoic Z-shaped ophiolitic suture, based on their different tectono-magmatic evolution in the Mesoproterozoic and Neoproterozoic. Distinctly different are the Mesoproterozoic and early Neoproterozoic assemblages, with lithological variations at the beginning of the late Neoproterozoic and practically no differences at the end of the Neoproterozoic.The Issedonian group of terranes could be part of a Mesoproterozoic (ca. 1100 Ma) orogen between the Siberian, North China and Laurentian cratons. The pre-Mesoproterozoic crust of these terranes was completely reworked during the younger events. The Ulutau-Moyunkum group of terranes appear to be lithologically and geochronologically similar to the Tarim craton. Both the Issedonian and Ulutau-Moyunkum groups of terranes were metamorphosed during the Ulutau-Moyunkum event at 700 ± 25 Ma.The breakup into currently mappable Precambrian terranes took place during end-Ediacaran to early Paleozoic times after opening of oceanic basins, whose relics are preserved in numerous Paleozoic ophiolitic sutures.  相似文献   

2.
Studies of gneisses from the Yenisei regional shear zone (YRSZ) provide the first evidence for Mesoproterozoic tectonic events in the geologic history of the South Yenisei Ridge and allowed the recognition of several stages of deformation and metamorphism spanning from Late Paleoproterozoic to Vendian. The first stage (~ 1.73 Ga), corresponding to the period of granulite-amphibolite metamorphism at P = 5.9 kbar and T = 635 °C, marks the final amalgamation of the Siberian craton to the Paleo-Mesoproterozoic Nuna supercontinent. During the second stage, corresponding to a hypothesized breakup of Nuna as a result of crustal extension, these rocks underwent Mesoproterozoic dynamic metamorphism (P = 7.4 kbar and T = 660 °C) with three peaks at 1.54, 1.38, and 1.25 Ga and the formation of high-pressure blastomylonite rocks in shear zones. Late-stage deformations during the Mesoproterozoic tectonic activity in the region, related to the Grenville-age collision processes and assembly of Rodinia, took place at 1.17-1.03 Ga. The latest pulse of dynamic metamorphism (615–600 Ma) marks the final stage of the Neoproterozoic evolution of the Yenisei Ridge, which is associated with the accretion of island-arc terranes to the western margin of the Siberian craton. The overall duration of identified tectonothermal processes within the South Yenisei Ridge during the Riphean (~ 650 Ma) is correlated with the duration of geodynamic cycles in the supercontinent evolution. A similar succession and style of tectonothermal events in the history of both the southern and the northern parts of the Yenisei Ridge suggest that they evolved synchronously within a single structure over a prolonged time span (1385–600 Ma). New data on coeavl events identified on the western margin of the Siberian craton contradict the hypothesis of a mantle activity lull (from 1.75 to 0.7 Ga) on the southwestern margins of the Siberian craton during the Precambrian. The synchronous sequence and similar style of tectonic events on the periphery of the large Precambrian Laurentia, Baltica, and Siberia cratons suggest their spatial proximity over a prolonged time span (1550–600 Ma). The above conclusion is consistent with the results of modern paleomagnetic reconstructions suggesting that these cratons represented the cores of Nuna and Rodinia within the above time interval.  相似文献   

3.
The Derba block is one of the largest Precambrian terranes of the Sayan-Yenisei accretionary belt in the southwestern margin of the Siberian Platform. It is composed of metamorphosed terrigenous-carbonate rocks of the Sayan Group, injected by granitoids. The geochemical features of gneiss-schist associations indicate the low maturity of their sedimentary protoliths corresponding in composition mainly to graywackes and terrigenous-carbonate rocks (marls). According to the results of U-Pb (LA-ICP-MS) dating of detrital zircons from gneisses and schists, the sedimentary protolith formed in the Vendian. Neoproterozoic subduction complexes were probably the major provenance for terrigenous material, and Early Precambrian rocks made a limited contribution. The Ar-Ar and U-Pb isotope data testify to nearly coeval and multistage events of metamorphism (up to the amphibolite facies) and granitoid magmatism (~ 510-500 and 480-465 Ma) in the Derba block. These processes were reflective of the Early Caledonian orogenic processes in the structures of the Central Asian Orogenic Belt. The similarity in the composition, time of sedimentation, and provenances of metaterrigenous-carbonate complexes of the Derba block (Sayan Group), West Sangilen block of the Tuva-Mongolian massif (Erzin and Moren complexes), and the Khamar-Daban terrane (Slyudyanka Group) suggests that these structures were a single Vendian continental margin with lateral variations in depositional environments and the sources of terrigenous material.  相似文献   

4.
We investigate extension events in the southern Siberian craton between 1.8 and 0.7 Ga. Signature of Late Paleoproterozoic within-plate extension in the Northern Baikal region is found in 167  29 Ma dike swarms. A Mesoproterozoic extension event was associated with intrusion of the 1535 ± 14 Ma Chernaya Zima granitoids into the Urik-Iya graben deposits. Neoproterozoic extension recorded in the Sayan-Baikal dike belt (740-780 Ma dike complexes) was concurrent with the breakup of the Rodinia supercontinent and the initiation of the Paleoasian passive margin along the southern edge of the Siberian craton. The scale of rifting-related magmatism and the features of the coeval sedimentary complexes in the southern Siberian craton indicate that Late Paleoproterozoic and Early Mesoproterozoic extension did not cause ocean opening, and the Paleoasian Ocean opened as a result of Neoproterozoic rifting.  相似文献   

5.
Comprehensive studies of zircon xenocrysts from kimberlites of the Kuoika field (northeastern Siberian craton) and several kimberlite fields of the eastern Anabar shield, along with data compilation on the age of kimberlite-hosting terranes, reveal details of the evolution of the northern Siberian craton. The age distribution and trace element characteristic of zircons from the Kuoika field kimberlites (Birekte terrane) provide evidence of significant basic and alkaline–carbonatite magmatism in northern Siberia in the Paleozoic and Mesozoic periods. The abundance of 1.8–2.1 Ga zircons in both the Birekte and adjacent Hapchan terranes (the latter hosting kimberlites of the eastern Anabar shield) supports the Paleoproterozoic assembly and stabilization of these units in the Siberian craton and the supercontinent Columbia. The abundance of Archean zircons in the Hapchan terrane reflects the input of an ancient source other than the Birekte terrane and addresses the evolution of the terrane to west (Magan and Daldyn terranes of the Anabar shield). The present study has also revealed the oldest known remnant of the Anabar shield crust, whose 3.62 Ga age is similar to that of another ancient domain of Siberia, the Aldan shield. The first Hf isotope data for the Anabar shield coupled with the U–Pb systematics indicate three stages of crustal growth (Paleoproterozoic, Neoarchean and Paleoarchean) and two stages of the intensive crustal recycling in the Paleoproterozoic and Neoarchean. Intensive reworking of the existing crust at 2.5–2.8 Ga and 1.8–2.1 Ga is interpreted to provide evidence for the assembly of Columbia. The oldest Hf model age estimation provides a link to Early Eoarchean (3.7–3.95 Ga) and possibly to Hadean crust. Hence, some of the Archean cratonic segments of the Siberian craton could be remnants of the Earth's earliest continental crust.  相似文献   

6.
Collisional granitoid magmatism caused by the Early Neoproterozoic orogeny in the west of the Siberian craton is considered. New data on the petrogeochemical composition, U-Pb (SHRIMP II), Ar-Ar, and Sm-Nd isotopic ages of the Middle Tyrada granitoid massif in the northwestern Yenisei Ridge are presented. Plagiogranites, granodiorites, and quartz diorites of the massif are of calcareous and calc-alkalic composition. The elevated alumina contents and presence of accessory garnet permit them to be assigned to S-type granitoids. Their spidergrams show Rb, Ba, and Th enrichment, minimum Nb, P, and Ti contents, and no Sr depletion. The granitoids formed through the melting of plagioclase-enriched graywacke source, obviously Paleoproterozoic metaterrigenous rocks of the Garevka Formation and Teya Group (TNd(DM) = 2.0-2.5 Ga), judging from the isotope composition of the granitoids (TNd(DM-2st) = 2200 Ma and 8Nd(T) = − 6.0) and the presence of ancient zircon cores (1.80-1.85 Ga). Formation of granitoids took place in the final epoch of the Grenville collision events in the late Early Neoproterozoic (U-Pb zircon age is 857.0 ± 9.5 Ma). In the Late Neoproterozoic, the granitoids underwent tectonothermal reworking caused by Vendian accretion and collision events on the southwestern margin of the Siberian craton, which explain the younger K-Ar biotite age, 615.5 ± 6.3 Ma.  相似文献   

7.
We present U–Pb (LA-ICP-MS) data on detrital zircon from the Late Precambrian terrigenous rocks of the Baikal Group and Ushakovka Formation, western Cisbaikalia (southern flank of the Siberian craton). The sources of clastic material for the studied sediments are interpreted. The youngest group of detrital zircon grains from the upper Baikal Group and Ushakovka Formation permits assigning these sediments to the Vendian. The lack of Mesoproterozoic detrital zircon in most of the analyzed samples confirms the hypothesis of a global (~ 1 Gyr) break in endogenic activity within the southern flank of the Siberian craton through the Precambrian. The abundance of Neoproterozoic zircon in sandstones from the upper horizons of the Baikal Group and the Ushakovka Formation might be due to the shrinkage of the ocean basin as a result of the convergence of the craton with the microcontinents and island arcs within the Paleoasian ocean.  相似文献   

8.
O. M. Turkina 《Petrology》2010,18(2):158-176
Newly obtained U-Pb and Sm-Nd isotopic data on Early Precambrian metamorphic and granitoid complexes in the southwestern margin of the Siberian craton (Sharyzhalgai basement uplift) are synthe-sized in order to elucidate the crustal evolution starting at the Paleoarchean (∼3.6 Ga) to Late Paleoproterozoic (∼1.85 Ga), evaluate the lateral extent of the Paleo-Mesoarchean crust, and identify major stages in its growth and recycling. Two crustal growth stages were determined in the Onot and Bulun granite-greenstone terranes: at 3.6–3.3 and 2.8–2.9 Ga. The earliest recycling processes (at ∼3.4 and 3.2 Ga) involved partial melting, metamorphism, and migmatization and produced a stable continental crust. Crustal growth in the Mesoarchean (∼2.8–2.9 Ga) due to basaltoid magmatism was associated with the recycling of the Paleoarchean crust, which served as a source of felsic melts and of detrital material for terrigenous sediments. The Archean crust of the Irkut granulite-gneiss terrane was formed by two pulses of intermediate-felsic and basic volcanism at ∼3.6-3.4 and ∼2.7 Ga. In the terminal Archean (at ∼2.55 Ga), the preexisting crust was involved in metamorphic and magmatic processes. Traces of recycling of the Paleoproterozoic crust are identified in the isotopic parameters of the intermediate-felsic granulites. Two discrete stages in the influx of juvenile material are identified in the Paleoarchean: at ∼2.0 and 1.88–1.85 Ga, with the latter stage associated with the large-scale recycling of the Archean crust during the origin of granitoids.  相似文献   

9.
The North Tianshan orogenic belt in Kyrgyzstan consists predominantly of Neoproterozoic to early Paleozoic assemblages and tectonically interlayered older Precambrian crystalline complexes and formed during early Paleozoic accretionary and collisional events. One of the oldest continental fragments of late Mesoproterozoic (Grenvillian) age occurs within the southern part of the Kyrgyz North Tianshan. Using SHRIMP zircon ages, we document two magmatic events at ~ 1.1 and ~ 1.3 Ga. The younger event is characterized by voluminous granitoid magmatism between 1150 and 1050 Ma and is associated with deformation and metamorphism. The older event is documented by ~ 1.3 Ga felsic volcanism of uncertain tectonic significance and may reflect a rifting episode. Geochemical signatures as well as Nd and Hf isotopes of the Mesoproterozoic granitoids indicate melting of still older continental crust with model ages of ca 1.2 to 2.4 Ga.The Mesoproterozoic assemblages are intruded by Paleozoic diorites and granitoids, and Nd and Hf isotopic systematics suggest that the diorites are derived from melts that are mixtures of the above Mesoproterozoic basement and mantle-derived material; their source is thus distinct from that of the Mesoproterozoic rocks. Emplacement of these plutons into the Precambrian rocks occurred between 461 and 441 Ma. This is much younger than previously assumed and indicates that small plutons and large batholiths in North Tianshan were emplaced virtually synchronously in the late Ordovician to early Silurian.The Mesoproterozoic rocks in the North Tianshan may be remnants of a once larger continental domain, whose fragments are preserved in adjacent blocks of the Central Asian Orogenic Belt. Comparison with broadly coeval terranes in the Kokchetav area of northern Kazakhstan, the Chinese Central Tianshan and the Tarim craton point to some similarities and suggests that these may represent fragments of a single Mesoproterozoic continent characterized by a major orogenic event at ~ 1.1 Ga, known as the Tarimian orogeny.  相似文献   

10.
New data are reported on the content of radioactive elements in the Precambrian Na-K granitoids from the southwestern margin of the Siberian Craton, Aldan and Ukrainian shields, and Kursk-Voronezh Massif. Analytical data on other regions were generalized for comparison. Two global epochs of Na-K granitoid magmatism bearing elevated contents of radioactive elements (U, Th, K) were distinguished in the Early Precambrian (in Ga): Neoarchean (2.8-2.6) and Late Paleoproterozoic (1.9-1.75). Mesoarchean (3.1-2.8 Ga) epoch of Na-K granite formation has been additionally distinguished at the Australian, South African, and Canadian shields. These epochs of granitization provided high maturity of the crust: geochemical differentiation of the oldest continental blocks and their geochemical and metallogenic specialization for trace elements and RAE. In the southern margin of the Siberian Craton, the most intense granite formation occurred in the Late Paleoproterozoic. The extended South Siberian belt of collisional and within-plate Na-K granitoids is characterized by intense influx of RAE and other trace elements in the upper crustal shell. The southwestern margin of the craton (Yenisei Range) was spanned by repeated Late Neoproterozoic Na-K granite formation, with wide development of collisional and within-plate Na-K granites having elevated Th content and [Th]/[U] ratio. The higher RAE concentrations are typical of within-plate Paleo and Neoproterozoic granitoids. The highest uranium content was found in the postcollisional and within-plate Na-K granites and subalkaline leucogranites. Uranium ore concentrations were formed at the riftogenic stages of evolution of these crustal blocks, when within-plate subalkaline acid magmatism and accompanying hydrothermal metamorphism overprinted granitized crystalline massifs, including high-U sedimentary and volcanic complexes. Areas with the most favorable geological-geochemical environments for the formation of uranium mineralization were distinguished in the southern margin of the Siberian Craton and its nearest folded framing.  相似文献   

11.
The Borborema Province of NE Brasil comprises the central part of a wide Pan-African-Brasiliano orogenetic belt that formed as a consequence of late Neoproterozoic convergence and collision of the São Luis-West Africa craton and the São Francisco-Congo-Kasai cratons. New Sm/Nd and U/Pb results from the eastern part of this province help to define the basic internal architecture and pre-collisional history of this province, with particular emphasis on delineating older cratonic terranes, their fragmentation during the Mesoproterozoic, and their assembly into West Gondwana during the Pan African-Brasiliano orogeny at ca. 600 Ma.The region can be divided into three major geotectonic domains: a) Rio Piranhas-Caldas Brandão massif, with overlying Paleoproterozoic to Neoproterozoic supracrustal rocks, north of the Patos Lineament; b) the Archean to Paleoproterozoic São Francisco craton (SFC) to the south; and c) a complex domain of Paleoproterozoic to Archean basement blocks with several intervening Mesoproterozoic to Neoproterozoic fold belts in the center (south of Patos Lineament and north of SFC). The northern and central domains comprise the Borborema Province.Archean basement gneiss and Transamazonian granulite of northern SFC are exposed in the southern part of the central domain, underlying southern parts of the Sergipano fold belt. Basement in the Rio Piranhas massif appears to consist mostly of Transamazonian (2.1 to 2.2 Ga) gneissic rocks; Nd model ages (TDM) of ca. 2.6 Ga for 2.15 Ga gneisses indicate a substantial Archean component in the protoliths to these gneisses. The Caldas Brandão massif to the east yields both Transamazonian and Archean U/Pb zircon and Nd (TDM) ages, indicating a complex architecture. Metasedimentary rocks of the Jucurutu Formation yield detrital zircons with original crystallization ages as young as 1.8 Ga, indicating that these rocks may be late Paleoproterozoic and correlate with other ca. 1.8 Ga cratonic supracrustal rocks in Brazil such as the Roraima Group and Espinhaço Group.Most metavolcanic and pre-Brasiliano granitic units of the Sergipano (SDS), Pajeú-Paraíba (SPP), Riacho Pontal (SRP), and Piancó-Alto Brígida (SPAB) fold belts in the central domain formed ˜ 1.0 ± 0.1 Ga, based on U/Pb ages of zircons. Nd model ages (TDM) for these same rocks, as well as Brasiliano granites intruded into them and large parts of the Pernambuco-Alagoas massif, are commonly 1.3–1.7 Ga, indicating that rocks of the fold belts were not wholly derived from either older (> 2.1 Ga) or juvenile (ca. 1.0 Ga) crust, but include mixtures of both components. A simple interpretation of Brasiliano granite genesis and the Nd data implies that there is no Transamazonian or Archean basement underlying large parts of these fold belts or of the Pernambuco-Alagoas massif. An exception is a belt of syenitic Brasiliano plutons (Syenitoid Line) and host gneisses between SPAB and SPP that clearly has a Transamazonian (or older) source. In addition, there are several smaller blocks of Archean to Transamazonian gneiss that can be defined within and among these fold belts. These blocks do not appear to constitute a continuous basement complex, but appear to be isolated older crustal fragments.Our data support a model in which ca. 1.0 Ga rifting was an important tectonic and crust-forming event along the northern edge of the São Francisco craton. Our data also show that significant parts of the Borborema Province are not remobilized Transamazonian to Archean crust, but that Mesoproterozoic crust is a major feature of the Province. There are several small remnants of older crust within the area dominated by Mesoproterozoic crust, suggesting that the rifting event created several small continental fragments that were later incorporated into the Brasiliano collisional orogen. We cannot at present determine if the Rio Piranhas-Caldas Brandão massifs and the older crustal blocks of the central domain were originally part of the São Francisco craton or whether some (or all) of them came from more exotic parts of the Proterozoic Earth. Finally, our data have not yet revealed any juvenile terranes of either Transamazonian or Brasiliano age.  相似文献   

12.
We present results of combined in situ U–Pb dating of detrital zircons and zircon Hf and whole-rock Nd isotopic compositions for high-grade clastic metasedimentary rocks of the Slyudyansky Complex in eastern Siberia. This complex is located southwest of Lake Baikal and is part of an early Paleozoic metamorphic terrane in the eastern part of the Central Asian Orogenic Belt (CAOB). Our new zircon ages and Hf isotopic data as well as whole-rock Nd isotopic compositions provide important constraints on the time of deposition and provenance of early Paleozoic high-grade metasedimentary rocks as well as models of crustal growth in Central Asia. Ages of 0.49–0.90 Ga for detrital zircons from early Paleozoic high-grade clastic sediments indicate that deposition occurred in the late Neoproterozoic and early Paleozoic, between ca. 0.62–0.69 and 0.49–0.54 Ga. Hf isotopic data of 0.82–0.69 Ga zircons suggest Archean and Paleoproterozoic (ca. 2.7–2.8 and 2.2–2.3 Ga; Hfc = 2.5–3.9 Ga) sources that were affected by juvenile 0.69–0.82 Ga Neoproterozoic magmatism. An additional protolith was also identified. Its zircons yielded ages of 2.6–2.7 Ga, and showed high positive εHf(t) values of +4.1 to +8.0, and Hf model ages tHf(DM) = tHfc = 2.6–2.8 Ga, which is nearly identical to the crystallization ages. These isotopic characteristics suggest that the protolith was quite juvenile. The whole-rock Nd isotopic data indicate that at least part of the Slyudyansky Complex metasediments was derived from “non-Siberian” provenances. The crustal development in the eastern CAOB was characterized by reworking of the early Precambrian continental crust in the early Neoproterozoic and the late Neoproterozoic–early Paleozoic juvenile crust formation.  相似文献   

13.
Geological data on the Precambrian basic complexes of the Siberian Craton and their isotopic age are considered. The three main episodes of Precambrian basic magmatism of Siberia correspond to certain stages of the geodynamic evolution of the craton and the Earth as a whole. In the Late Paleoproterozoic, largely in the south and the north of the craton, the basic rocks were emplaced against the background of post-collision extension, which followed the preceding collision-accretion stage responsible for the formation of the craton. In the Mesoproterozoic, primarily in the north of the craton, basic magmatism was controlled by dispersed within-plate extension apparently caused by the impact of a mantle plume. Neoproterozoic basic magmatism widespread in the southern and southeastern parts of the craton was caused by rifting, which accompanied breakdown of the Rodinia supercontinent and opening of the Paleoasian ocean along the southern margin of the Siberian Craton.  相似文献   

14.
New data on the age, composition, sources, and formation conditions of the Early Precambrian granitoids of the Batomga inlier of the southeastern Siberian Platform basement are discussed. Geochronological SRHIMP II U–Pb study of the zircons reveals that the calc-alkaline granitoids of the Khoyunda Complex are 2056–2057 Ma in age and their formation was related to the Early Proterozoic stage in the development of the Batomga granite–greenstone domain. It is established that the primary melts for these rocks formed in subduction settings through melting of the depleted mantle source with some contribution of ancient crustal material. In terms of temperature, partial melting followed by crystallization of the granitoids under peak metamorphic conditions corresponds to the transition between amphibolite and granulite facies at elevated pressure; high temperature and high-grade metamorphism are subduction-related phenomena reflected in the back-arc settings of the active continental margin. The protoliths of calc-alkaline metavolcanics of the Batomga Group are found to be chronologically and compositionally analogous to the subduction granitoids of the Khoyunda and Dzhagdakan complexes; i.e., these granitoids are coeval with the Batomga island arc. The lower age limit of the Batomga Group is estimated at 2.2 Ga and its upper age limit is defined by the age of the intruded Khoyunda granitoids. The formation of the rocks of the Batomga Group and associated granitoids of the Khoyunda and Dzhagdakan complexes reflects the formation of the continental crust at the Early Paleoproterozoic stage of the evolution of the Batomga lithosphere block (2.2–2.0 Ga ago).  相似文献   

15.
《Gondwana Research》2014,25(1):103-125
We argue that the production of mantle-derived or juvenile continental crust during the accretionary history of the Central Asian Orogenic Belt (CAOB) has been grossly overestimated. This is because previous assessments only considered the Palaeozoic evolution of the belt, whereas its accretionary history already began in the latest Mesoproterozoic. Furthermore, much of the juvenile growth in Central Asia occurred in late Permian and Mesozoic times, after completion of CAOB evolution, and perhaps related to major plume activity. We demonstrate from zircon ages and Nd–Hf isotopic systematics from selected terranes within the CAOB that many Neoproterozoic to Palaeozoic granitoids in the accreted terranes of the belt are derived from melting of heterogeneous Precambrian crust or through mixing of old continental crust with juvenile or short-lived material, most likely in continental arc settings. At the same time, juvenile growth in the CAOB occurred during the latest Neoproterozoic to Palaeozoic in oceanic island arc settings and during accretion of oceanic, island arc, and Precambrian terranes. However, taking together, our data do not support unusually high crust-production rates during evolution of the CAOB. Significant variations in zircon εHf values at a given magmatic age suggest that granitoid magmas were assembled from small batches of melt that seem to mirror the isotopic characteristics of compositionally and chronologically heterogeneous crustal sources. We reiterate that the chemical characteristics of crustally-derived granitoids are inherited from their source(s) and cannot be used to reconstruct tectonic settings, and thus many tectonic models solely based on chemical data may need re-evaluation. Crustal evolution in the CAOB involved both juvenile material and abundant reworking of older crust with varying proportions throughout its accretionary history, and we see many similarities with the evolution of the SW Pacific and the Tasmanides of eastern Australia.  相似文献   

16.
《Precambrian Research》2001,105(2-4):289-314
The Lapland–Kola Orogen (LKO; former Kola craton) in the northern Fennoscandian Shield comprises a collage of partially reworked late Archaean terranes with intervening belts of Palaeoproterozoic juvenile crust including the classic Lapland Granulite Terrane. Rifting of Archaean crust began at c 2.5–2.4 Ga as attested by layered mafic and anorthositic intrusions developed throughout the northernmost Fennoscandian Shield at this time. Oceanic separation was centred on the Lapland Granulite, Umba Granulite (UGT) and Tersk terranes within the core zone of the orogen. Importantly, SmNd data show that Palaeoproterozoic metasedimentary and metaigneous rocks within these terranes contain an important, generally dominant, juvenile component over a strike length of at least 600 km. Evidently, adjacent Archaean terranes, with negative εNd signatures, contributed relatively little detritus, suggesting a basin of considerable extent. Subduction of the resulting Lapland–Kola ocean led to arc magmatism dated by the NORDSIM ion probe at c 1.96 Ga in the Tersk Terrane in the southern Kola Peninsula. Accretion of the Tersk arc took place before c 1.91 Ga as shown by ion probe UPb zircon dating of post-D1, pre-D2 pegmatites cutting the Tersk arc rocks, juvenile metasediments as well as Archaean gneisses in the footwall of the orogen. Deep burial during collision under high-pressure granulite-facies conditions was followed by exhumation and cooling between 1.90 and 1.87 Ga based on SmNd, UPb and ArAr data. Lateral variations in deep crustal velocity and Vp/Vs ratio, together with reflections traversing the entire crust observed in reprocessed seismic data from the Polar Profile, may be interpreted to image a trans-crustal structure — possibly a fossilised subduction zone — supporting an arc origin for the protoliths of the Lapland Granulite, UGT and Tersk terranes and the location of a major lithospheric suture — the Lapland–Kola suture.  相似文献   

17.
An important role of the early Neoproterozoic juvenile crustal growth in the formation of the Khangai group of Precambrian terranes in the Central Asian Orogenic Belt was demonstrated by the example of the Holbo Nur Zone of the Songin Block. Magmatic complexes of this zone correspond to different settings of the Early Neoproterozoic ocean: oceanic islands, mid-ocean ridges, intraoceanic island arcs, and turbidite basins. Obtained data on volcanic rocks and associated granitoids constrain a timing of the island-arc magmatic complexes, at least within the interval of 888–859 Ma. The comparison of structures of the Songino and Tarbagatai blocks of the Khangai group of terranes showed that they share many common features in their geology and evolution and may be united into the single Songino–Tarbagatai terrane. This terrane was formed owing to the Early Neoproterozoic (~800 Ma) accretion of the ocean island, spreading, island-arc, and turbidite complexes of the oceanic plate to a stable continental massif represented by the Early Neoproterozoic Ider Complex of the Tarbagatai Block. The involvement of the Dzabkhan terrane into a Khangai collage of terranes is constrained between the formation of the volcanic rocks of the Dzabkhan Formation (~770–755 Ma), which are unknown in the Songino–Tarbagatai terrane, and the Tsagaan-Olom carbonate cover (~630 Ma), overlying both the Dzabkhan and Songino–Tarbagatai terranes. It was proposed that the formation of the Precambrian terranes of the Central Asian Orogenic Belt began from the Early Neoproterozoic accretion to the Rodinia supercontinent. The fragmentation of the latter above a mantle superplume at the end of the Early Neoproterozoic spanned also the newly formed fold area. This led to the formation of terranes, which included both fragments of the Paleoproterozoic craton and Early Neoproterozoic structures. Subsequent amalgamation of these Precambrian crustal fragments into composite terranes possibly occurred at the end of the early Baikalian tectonic phase.  相似文献   

18.
库鲁克塔格是新疆前寒武纪出露较全的地区,然而该区区域成矿规律研究程度非常低.通过对研究区已有资料进行总结分析,系统阐述研究区矿床类型,并对其成矿系列进行划分.研究区从太古代到早古生代形成了7个主要的岩浆构造演化阶段:古太古代陆核形成阶段(3.3~3.0 Ga)、新太古代-古元古代陆壳增生改造阶段(2.6~2.3 Ga)、古元古代中晚期陆壳改造阶段(2.1~1.8 Ga)、中元古代晚期-新元古代早期造山运动阶段(1.1~0.86 Ga)、新元古代中期后碰撞伸展阶段(830~800 Ma)、新元古代中晚期陆内裂解阶段(770~600 Ma)和早古生代造陆运动阶段.成矿作用主要发生在古元古代、新元古代及早古生代.依据各构造演化阶段、含矿建造特征及矿床成因特征,将库鲁克塔格成矿作用类型总结为以下6个主要成矿系列,即形成于古元古代陆壳增生改造环境下的Fe-P-Cu-Au系列、新元古代俯冲碰撞环境下的Cu-Au系列、新元古代后碰撞环境下的Cu-Mo-Au-Fe-P-REE系列、新元古代裂解环境下的Cu-Ni系列、早古生代沉积盆地中Ag-V-Mo-Au-U-P系列和早古生代俯冲岛弧环境下的Cu-Au系列.   相似文献   

19.
We present results of study of the trace-element and Lu–Hf isotope compositions of zircons from Paleoproterozoic high-grade metasedimentary rocks (paragneisses) of the southwestern margin of the Siberian craton (Irkut terrane of the Sharyzhalgai uplift). Metamorphic zircons are represented by rims and multifaceted crystals dated at ~ 1.85 Ga. They are depleted in either LREE or HREE as a result of subsolidus recrystallization and/or synchronous formation with REE-concentrating garnet or monazite. In contrast to the metamorphic zircons, the detrital cores are enriched in HREE and have high (Lu/Gd)n ratios, which is typical of igneous zircon. The weak positive correlation between 176Lu/177Hf and 176Hf/177Hf in the zircon cores evidences that their Hf isotope composition evolved through radioactive decay in Hf = the closed system. Therefore, the isotope parameters of these zircons can give an insight into the provenance of metasedimentary rocks. The Paleoproterozoic detrital zircon cores from paragneisses, dated at ~ 2.3–2.4 and 2.0–1.95 Ga, are characterized by a wide range of εHf values (from + 9.8 to –3.3) and model age T C 2.8–2.0 Ga. The provenance of these detrital zircons included both rocks with juvenile isotope Hf parameters and rocks resulted from the recycling of the Archean crust with a varying contribution of juvenile material. Zircons with high positive εHf values were derived from the juvenile Paleoproterozoic crustal sources, whereas the lower εHf and higher T C values for zircons suggest the contribution of the Archean crustal source to the formation of their magmatic precursors. Thus, at the Paleoproterozoic stage of evolution of the southwestern margin of the Siberian craton, both crustal recycling and crustal growth through the contribution of juvenile material took place. On the southwestern margin of the Siberian craton, detrital zircons with ages of ~ 2.3–2.4 and 1.95–2.0 Ga are widespread in Paleoproterozoic paragneisses of the Irkut and Angara–Kan terranes and in terrigenous rocks of the Urik–Iya graben, which argues for their common and, most likely, proximal provenances. In the time of metamorphism (1.88–1.85 Ga), the age of Paleoproterozoic detrital zircons (2.4–2.0 Ga), and their Lu–Hf isotope composition (εHf values ranging from positive to negative values) the paragneisses of the southwestern margin of the Siberian craton are similar to the metasedimentary rocks of the Paleoproterozoic orogenic belts of the North China Craton. In the above two regions, the sources of detrital zircons formed by both the reworking of the Archean crust and the contribution of juvenile material, which is evidence for the crustal growth in the period 2.4–2.0 Ga.  相似文献   

20.
The paper summarizes paleomagnetic results obtained from the Neoproterozoic rocks of the western margin of the Siberian craton. On the basis of the obtained paleomagnetic poles and available paleomagnetic data for the Precambrian of Siberia, a new version of the Neoproterozoic segment of the apparent polar wandering path (APWP) is proposed for the craton and is compared with the Laurentian APWP. The superposition of these paths suggests that in the Neoproterozoic the southern margin of the Siberian craton (in modern coordinates) faced the Canadian margin of Laurentia. Most likely, in the end of the Mesoproterozoic and during the Neoproterozoic the Siberian craton and Laurentia were connected to form the supercontinent Rodinia. At 1 Ga the western margin of the Siberian craton was a northern (in modern coordinates) continuation of the western margin of Laurentia. The available paleomagnetic data on Laurentia and continental blocks of Eastern Gondwana (Australia, Antarctica, India, South China) and the proposed APWP trend allowed a new model for the breakup of this segment of Rodinia. Analysis of a total of the data available suggests that strike-slip movements on the background of the progressive opening of the oceanic basin between Siberia and Laurentia were predominant in the south of the Siberian craton during the Neoproterozoic. Similar kinematics is typical of the western margin of Laurentia, where strike-slip motions are probably associated with the progressive opening of the ocean basin between Laurentia and eastern Gondwana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号