首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution of Late Paleozoic granitoid magmatism in Transbaikalia shows a general tendency for an increase in the alkalinity of successively forming intrusive complexes: from high-K calc-alkaline granites of the Barguzin complex (Angara–Vitim batholith) at the early stage through transitional from calc-alkaline to alkaline granites and quartz syenites (Zaza complex) at the intermediate stage to peralkaline granitoids (Early Kunalei complex) at the last stage. This evolution trend is complicated by the synchronous development of granitoid complexes with different sets and geochemical compositions of rocks. The compositional changes were accompanied by the decrease in the scales of granitoid magmatism occurrence with time. Crustal metaterrigenous protoliths, possibly of different compositions and ages, were the source of granitoids of the Angara–Vitim batholith. The isotopic composition of all following granitoid complexes points to their mixed mantle–crustal genesis. The mechanisms of granitoid formation are different. Some granitoids formed through the mixing of mantle and crustal magmas; others resulted from the fractional crystallization of hybrid melts; and the rest originated from the fractional crystallization of mantle products or the melting of metabasic sources with the varying but subordinate contribution of crustal protoliths. Synplutonic basic intrusions, combined dikes, and mafic inclusions, specific for the post-Barguzin granitoids, are direct geologic evidence for the synchronous occurrence of crustal and mantle magmatism. The geodynamic setting of the Late Paleozoic magmatism in the Baikal folded area is still debatable. Three possible models are proposed: (1) mantle plume impact, (2) active continental margin, and (3) postcollisional rifting. The latter model agrees with the absence of mafic rocks from the Angara–Vitim batholith structure and with the post-Barguzin age of peralkaline rocks of the Vitim province.  相似文献   

2.
The Late Paleozoic intrusive rocks, mostly granitoids, totally occupy more than 200,000 km2 on the territory of Transbaikalia. Isotopic U-Pb zircon dating (about 30 samples from the most typical plutons) shows that the Late Paleozoic magmatic cycle lasted for 55–60 m.y., from ~330 Ma to ~275 Ma. During this time span, five intrusive suites were emplaced throughout the region. The earliest are high-K calc-alkaline granites (330–310 Ma) making up the Angara–Vitim batholith of 150,000 km2 in area. At later stages, formation of geochemically distinct intrusive suites occurred with total or partial overlap in time. In the interval of 305–285 Ma two suites were emplaced: calc-alkaline granitoids with decreased SiO2 content (the Chivyrkui suite of quartz monzonite and granodiorite) and the Zaza suite comprising transitional from calc-alkaline to alkaline granite and quartz syenite. At the next stage, in the interval of 285–278 Ma the shoshonitic Low Selenga suite made up of monzonite, syenite and alkali rich microgabbro was formed; this suite was followed, with significant overlap in time (281–276 Ma), by emplacement of Early Kunalei suite of alkaline (alkali feldspar) and peralkaline syenite and granite. Concurrent emplacement of distinct plutonic suites suggests simultaneous magma generation at different depth and, possibly, from different sources. Despite complex sequence of formation of Late Paleozoic intrusive suites, a general trend from high-K calc-alkaline to alkaline and peralkaline granitoids, is clearly recognized. New data on the isotopic U-Pb zircon age support the Rb-Sr isotope data suggesting that emplacement of large volumes of peralkaline and alkaline (alkali feldspar) syenites and granites occurred in two separate stages: Early Permian (281–278 Ma) and Late Triassic (230–210 Ma). Large volumes and specific compositions of granitoids suggest that the Late Paleozoic magmatism in Transbaikalia occurred successively in the post-collisional (330–310 Ma), transitional (305–285 Ma) and intraplate (285–275 Ma) setting.  相似文献   

3.
We present results of U-Pb (SHRIMP II) geochronological study of the rocks of the Mukhal alkaline massif in the Vitim alkaline province, western Transbaikalia. The available K-Ar and Rb-Sr dates for the alkaline rocks (Saizhen complex) of the Vitim province, including the Mukhal massif, vary over a broad range of values. The obtained age of crystallization of the Mukhal urtites refines the time when the regional alkaline magmatism began. The age of zircons and magmatic processes within the Barguzin area (315–275 Ma) is close to the peak of main events, which occurred between 295 and 275 Ma. These processes took place at the early stage of evolution of the Late Paleozoic rift system in Central Asia, whose activity was associated with the activity of mantle superplume.  相似文献   

4.
Anorogenic magmatic complexes were formed during protoplatformal evolution of the Keivy structure. This evolution ended with development of aluminous schists, which were derived by deep disintegration and redeposition of the rocks from the lower parts of the sequence and surrounding of the structure. The anorogenic rocks of the region are represented by the following magmatic complexes: gabbro-labradorite-latite-monzonite-granites; ophitic gabbro and gabbrodiabases; quartz syenite-alkaline granites; alkaline and nepheline syenites. The magmatic activity of this period, starting from the emplacement of gabbrolabradorite massifs and ending with alkaline and nepheline syenite bodies, was caused by ascent of mantle asthenolith, which destructed the Earth’s crust basement in this area. The anorogenic magmatism of the Keivy structure lasted for no more than few or few tens of million years. The granitoid subcomplex of the gabbro-labradorite-latite-monzonite-granite complex is dated at 2674 ± 6 Ma, which is comparable with an age of alkaline granites of the Ponoy and Beliye Tundry massifs (2673 ± 6 Ma). The considered complexes are separated in time by intrusion of amphibole-biotite plagiomicrocline granites with an age of 2667 ± 8 Ma. Gabbrolabradorites of the Shchuch’e Ozero and Tsaga massifs have close ages (2663 ± 7 and 2668 ± 10 Ma, respectively, Bayanova, 2004), but were formed earlier than granitoids (Bayanova, 2004). Formation of alkaline syenites of the Sakharijok I Massif, which finalized the Neoarchean anorogenic magmatism of the region, falls in the same interval. During Paleoproterozoic transformations, the rocks of the Keivy structure were sheared and uranium was introduced in the contact zones of the alkaline granite massifs, which caused formation of palingenetic melts and subsequent formation of pegmatites in the outer contact zones of the granite bodies.  相似文献   

5.
We present geological, structural, and geochemical data on synmetamorphic granitoids from the Tutai and South Ol’khon plutons of the Ol’khon terrane (Central Asian Fold Belt) with an estimation of the U–Pb zircon age of the Tutai granites. The structural and petrological data suggest the synfolding and synmetamorphic origin of the granitoids. The U–Pb zircon age of the Tutai granites (488.6 ± 8.0 Ma) almost coincides with the previously estimated age of quartz syenites from the South Ol’khon pluton (495 ± 6 Ma). The plutons occupy the same position in the regional structure. The granitoids underwent final deformations and metamorphism at 464 ± 11 Ma. The Tutai pluton consists of moderately potassic granites, whereas the South Ol’khon pluton is made up of quartz syenites and granites. The geochemical characteristics of the granites from both plutons (low Y and Yb contents, fractionated REE patterns) indicate their formation under conditions of garnet crystallization in deep crustal restite. The higher Y and Yb contents of the South Ol’khon quartz syenites as compared with those of the granites suggest the lack of equilibrium between the quartz syenite magmas and garnet parageneses during their formation or evolution. The Tutai and South Ol’khon granites were derived from quartz-feldspar crustal rocks, whereas the South Ol’khon quartz syenites might have originated from a mixed (crust-mantle) source. It is presumed that the granitoids formed within accretion-thickened crust. Early accretion, which has been first identified in the region, affected not only the Pribrezhnaya zone (the zone of the Tutai and South Ol’khon plutons) but also the entire Anga–Satyurty megazone of the Ol’khon terrane. The accretion ended with the convergence and oblique collision of the Ol’khon terrane and Siberian continent, when strike-slip tectonics became ubiquitous.  相似文献   

6.
Geological, petrologeochemical, and geochronological studies of the rocks from the Shivei alkali-granitic pluton were conducted. A pluton about 500 km2 in area is a part of the larger (more than 30 000 km2) Kaakhem magmatic area. The data obtained allow us to characterize the magmatic complex of the Shivei pluton as a bimodal association with picrobasalts, subalkali basalts, and subalkali and alkali granitic rocks differentiated from syenites to leucogranites. The SHRIMP_II zircon dating from quartz syenites and alkali granites indicate the Permian age of the pluton (293.8 ± 3.8 Ma and 297.1 ± 3.8 Ma, respectively). Mafic-alkali-granitic associations similar in age and type, which are traced in the meridional direction along the Eastern Sayan toward the Siberian Platform, were distinguished as the Eastern Sayan zone of the Late Paleozoic alkaline magmatism. Its location corresponds to the western periphery of the Angaro-Vitim batholite and fits well into the zonal structure of the Barguzin magmatic province. We relate the geodynamic position of the Barguzin province with the mantle plume that was overlapped by the edge of the Siberian Pale-ocontinent in the course of its Paleozoic migration above the African hot spot.  相似文献   

7.
Magmatism in central Anatolia is characterized by petrographically and chemically distinct granitic and syenitic rocks. The granitic magmatism comprises C-type (crustal-derived) and H-type (hybrid) monzogranites and monzonites. Garnet-bearing C-type leucogranites represent the oldest magmatic phase, but younger hornblende ± biotite ± K-feldspar H-type plutons dominate the geology of the Central Anatolian Crystalline Complex (CACC). These typically include mafic microgranular enclaves. The granitic magmatism predates syenitic intrusions, among which quartz-bearing syenites were emplaced prior to feldspathoid-bearing ones.

The nature of magmatism in central Anatolia varies through time from peraluminous to metaluminous to alkaline. These different magma types reflect distinct stages of postcollisional magmatism, in which interaction between crust and mantle varied considerably. The C-type granites of the early stages of postcollisional magmatism were likely derived by partial melting of the lower continental crust induced by mafic magma underplating as a result of lithospheric delamination. The H-type granites and syenites of the mature and advanced stages of postcollisional magmatism indicate a significant contribution from mande-derived magma within a continuous or episodic extensional tectonic regime.  相似文献   

8.
祁连山在构造上是一条经历了多期构造旋回叠加的早古生代复合型造山带,花岗质岩浆作用研究对揭示其构造演化具有重要意义。锆石U-Pb年代学统计结果表明,祁连地区花岗质岩浆活动可以分为7个大的阶段,包括古元古代早期(2 470~2 348 Ma)、古元古代晚期(1 778~1 763 Ma)、中元古代晚期-新元古代早期(1 192~888 Ma)、新元古代中期(853~736 Ma)、中寒武世-志留纪(516~419 Ma),泥盆纪-早石炭世(418~350 Ma)以及中二叠世-晚三叠世(271~211 Ma)。其中古元古代早期发育强过铝质高钾钙碱性S型和准铝质低钾拉斑-高钾钙碱性I型花岗岩,记录了早期的陆壳增生及改造事件。古元古代晚期为准铝质-弱过铝质高钾钙碱性-钾玄质A型花岗岩,是Columbia超大陆裂解事件的产物。中元古代晚期-新元古代早期以过铝质-强过铝质钙碱性-钾玄质S型花岗岩为主,新元古代中期以准铝质-强过铝质钙碱性-高钾钙碱性A型花岗岩为主,分别对应Rodinia超大陆的汇聚和裂解事件。中寒武世-志留纪花岗岩是洋陆转换过程中的产物,约440 Ma加厚基性下地壳部分熔融形成的低Mg埃达克岩的广泛出现指示祁连地区全面进入碰撞造山阶段。泥盆纪-早石炭世花岗岩代表后碰撞伸展阶段岩浆岩组合,发育准铝质-强过铝质低钾拉斑-钾玄质等一系列花岗岩。中二叠世-晚三叠世花岗岩以准铝质-弱过铝质钙碱性-高钾钙碱性I型花岗岩为主,有少量弱过铝质高钾钙碱性A型花岗岩,是宗务隆洋俯冲消减以及碰撞后伸展过程的产物。  相似文献   

9.
The Ulaan Tolgoi massif of rare-metal (Ta, Nb, and Zr) granites was formed at approximately 300Ma in the Eastern Sayan zone of rare-metal alkaline magmatism. The massif consists of alkaline salic rocks of various composition (listed in chronologic order of their emplacement): alkaline syenite → alkaline syenite pegmatite → pantellerite → alkaline granite, including ore-bearing alkaline granite, whose Ta and Nb concentrations reach significant values. The evolution of the massif ended with the emplacement of trachybasaltic andesite. The rocks of the massif show systematic enrichment in incompatible elements in the final differentiation products of the alkaline salic magmas. The differentiation processes during the early evolution of the massif occurred in an open system, with influx of melts that contained various proportions of incompatible elements. The magma system was closed during the origin of the ore-bearing granites. Rare-metal granitoids in the Eastern Sayan zone were produced by magmas formed by interaction between mantle melts (which formed the mafic dikes) with crustal material. The mantle melts likely affected the lower parts of the crust and either induced its melting, with later mixing the anatectic and mantle magmas, or assimilated crustal material and generated melts with crustal–mantle characteristics. The origin of the Eastern Sayan zone of rare-metal alkaline magmatism was related to rifting, which was triggered by interaction between the Tarim and Barguzin mantle plumes. The Eastern Sayan zone was formed in the marginal part of the Barguzin magmatic province, and rare-metal magmas in it were likely generated in relation with the activity of the Barguzin plume.  相似文献   

10.
Detailed geochemical, isotope, and geochronological studies were carried out for the granitoids of the Chuya and Kutima complexes in the Baikal marginal salient of the Siberian craton basement. The obtained results indicate that the granitoids of both complexes are confined to the same tectonic structure (Akitkan fold belt) and are of similar absolute age. U–Pb zircon dating of the Kutima granites yielded an age of 2019±16 Ma, which nearly coincides with the age of 2020±12 Ma obtained earlier for the granitoids of the Chuya complex. Despite the close ages, the granitoids of these complexes differ considerably in geochemical characteristics. The granitoids of the Chuya complex correspond in composition to calcic and calc-alkalic peraluminous trondhjemites, and the granites of the Kutima complex, to calc-alkalic and alkali-calcic peraluminous granites. The granites of the Chuya complex are similar to rocks of the tonalite–trondhjemite–granodiorite (TTG) series and are close in CaO, Sr, and Ba contents to I-type granites. The granites of the Kutima complex are similar in contents of major oxides to oxidized A-type granites. Study of the Nd isotope composition of the Chuya and Kutima granitoids showed their close positive values of εNd(T) (+ 1.9 to + 3.5), which indicates that both rocks formed from sources with a short crustal history. Based on petrogeochemical data, it has been established that the Chuya granitoids might have been formed through the melting of a metabasitic source, whereas the Kutima granites, through the melting of a crustal source of quartz–feldspathic composition. Estimation of the PT-conditions of granitoid melt crystallization shows that the Chuya granitoids formed at 735–776 °C (zircon saturation temperature) and > 10 kbar and the Kutima granites, at 819–920 °C and > 10 kbar. It is assumed that the granitoids of both complexes formed in thickened continental crust within an accretionary orogen.  相似文献   

11.
The Yanhu granitoids are located in the west segment of the Bangongco-Nujiang suture in the western Tibetan Plateau. The main rock types of the granitoids are diorite porphyry, quartz diorite, granodiorite, granite and granite porphyry. Here, their zircon LA-ICP-MS U-Pb ages and petrogeochemical data are reported. Three groups of magmatic events can be distinguished from the Yanhu area: group 1 includes samples AK01 and ZK01 of diorite porphyry, and sample D3658 of quartz diorite that yield mean zircon U-Pb ages of 121.0 ± 2.7 Ma, 116.6 ± 2.0 Ma and 116.0 ± 3.9 Ma, respectively; group 2 includes sample D0050 of diorite porphyry, samples D1393 and D3660 of granodiorite and sample D3065 of granite porphyry that yield mean zircon U-Pb ages of 104.9 ± 2.0 Ma, 105.4 ± 3.8 Ma, 104.2 ± 1.9 Ma and 104.2 ± 1.9 Ma, respectively; group 3 includes sample D3093 of granite that yields mean zircon U-Pb ages of 93.6 ± 1.5 Ma. The zircon LA-ICP-MS U-Pb ages suggest that the Yanhu granitoids were emplaced at 121.0–93.6 Ma, representing Cretaceous magmatism in the west segment of the Bangongco-Nujiang suture. The granitoids are composed of SiO2 (56.57 to 76.98 wt.%), Al2O3 (12.20 to 17.90 wt.%), Na2O (3.61 to 4.98 wt.%), K2O (2.06 to 4.71 wt.%) and CaO (0.27 to 5.74 wt.%). The Yanhu granitoids exhibit enrichment in LREE (light REE) and LILE (large ion lithophile elements) such as Rb, Th, U, Pb and K and depletion of HREE (heavy REE), P, Ti, Nb, Ta and Zr. Their A/CNK ratios of 0.85-1.06 are <1.1, implying that they are high-K, metaluminous-weakly peraluminous I-type granites. TheYanhu granitoids were generated mainly by partial melts of the meta-igneous lower crust and some arc-related materials. The Yanhu granitoids probably formed in VAG and syn-COLG tectonic settings related to the southward subduction of the Tethyan Ocean. Diorite porphyry and quartz diorite magmatism from 121.0 Ma to 116.0 Ma may be associated with the southward Bangongco–Nujiang Tethys oceanic crust subduction. Diorite porphyry, granodiorite, and granite porphyry magmatism from 105.4 Ma to 104.2 Ma may be associated with the rising asthenosphere induced by the slab breakoff. Granite magmatism from 93.6 Ma may be related to the crustal thickening induced by the final amalgamation of the Lhasa Terrane and the Qiangtang Terrane.  相似文献   

12.
Postorogenic granitoids of the Litsk-Araguba Complex compose a chain of intrusive bodies around 850 km2 in area, which are confined to the NE-trending deep-seated fault zone. Results of U-Pb zircon dating indicate that the formation of granitoids of the Litsk-Araguba Complex lasted 28 ± 9 Ma. Note that the rocks of the first-fourth phases have similar age within (1774–1762 Ma), while quartz syenites of the fifth phase were formed much later (1746 ± 8 Ma). The study of Sm-Nd isotopic system revealed that the quartz syenites plot in the field of the Nd isotopic evolution of the lower crust represented mainly by the Paleoproterozoic garnet granulites with model ages TNd(DM) = 2.4–2.7 Ga and ?Nd(T) from ?5.6 to ?6.3. It was found that the near-contact syenites of the Litsk Massif contain composite zircons with an age of 1758 ± 9Ma. They differ from zircons in coeval porphyraceous granites in lowered U and Th concentrations, which are close to those in zircons from the lower crustal garnet granulites of this region. These data in combination with internal structure of the crystals determine xenogenic lower-crustal origin of zircons from syenites and confirm geochemical data on the lower crustal input in the formation of granitoid melts.  相似文献   

13.
The paper deals with geological and geochemical studies of granitoids of the Olenek complex in the Olenek uplift of the basement of the northern Siberian craton. The age of these granitoids was earlier estimated at 2036 ± 11 Ma. The granitoids of the Olenek complex correspond in composition to high-alumina quartz diorites, granites, and leucogranites of the normal petrochemical series. According to geochemical and mineralogical characteristics, the quartz diorites can be assigned to granites of the transitional I-S type, and the granites and leucogranites, to S-type granites. The 8Nd(T values in the granites of the Olenek complex vary from -0.2 to + 1.4, and the Nd model age is 2.4-2.5 Ga. The quartz diorite is characterized by 8Nd(T) = + 3.0 and a Nd model age T(DM) = 2.2 Ga. The geochemical characteristics of the granites and leucogranites indicate their formation through the melting of a source of graywacke composition, whereas the quartz diorites resulted, most likely, from the mixing of granitic and basaltic melts. The fact that the granitoids of the Olenek complex intruded the folded rocks of the Eekit Formation but stay virtually undeformed massive bodies suggests that they formed at the postdeformation stage of the regional evolution after the completion of the Paleoproterozoic orogenic events. The intrusion of granitoids marks the completion of the formation of the Early Proterozoic Eekit fold belt on the western (in the recent coordinates) margin of the Birekta terrane of the Olenek superterraine and the final formation of the superterrane structure. At the next stage of magmatism (1.98-1.96 Ga), best pronounced in the uplifts of the basement of the northern Siberian craton, all terranes forming the Anabar and Olenek superterranes assembled into a single structure.  相似文献   

14.
《International Geology Review》2012,54(13):1522-1558
The Melrose Stock in the Dolly Varden Mountains of east-central Nevada is one of the many Mesozoic intrusion s in the Basin and Range Province. It consists of monzonites, quartz monzonites, granodiorites, and granites sharply intruding Mississippian to Triassic units. Phenocrysts of plagioclase (An38–An24) with oscillatory zoning and albitic rims, hornblende ± diopside, and biotite are common. Coexisting phases include orthoclase, quartz and accessory magnetite, apatite, titanite, ilmenite, and allanite. Mineral compositions suggest that the intrusion was emplaced at ~720 ± 40°C and 1.8–2.3 kbar.

All rocks are metaluminous to slightly peraluminous, defining a calcalkalic trend in which the monzonites and syenites are shoshonitic. Rare earth element patterns indicate that all studied rock types are comagmatic. Harker plots show curvilinear trends with some kinks consistent with fractionation, and mixing/assimilation. Major-element modelling and petrographic evidence suggest three stages of fractionation/mixing: Stage 1 marked by the fractionation of diopside and plagioclase; Stage 2 by fractionation of plagioclase, hornblende ± orthoclase ± biotite, accompanied by mixing through convection; and Stage 3 by fractionation of biotite, hornblende, plagioclase, and orthoclase.

Mineralogic, petrographic, and major- and trace-element data demonstrate that all rocks are I-type granitoids, suggesting a significant mantle contribution. Spider diagrams show troughs for Ti, P, and Nb, indicating magma genesis in a subduction-zone setting. Discrimination diagrams classify all rocks as late orogenic. Magma was therefore generated from mantle metasomatized by subduction, differentiated to a monzonitic magma, and emplaced in the thinned continental crust during a period of extension late in the cycle of Elko orogeny.  相似文献   

15.
Haijin Xu  Changqian Ma  Kai Ye   《Chemical Geology》2007,240(3-4):238-259
Two stages of early Cretaceous post-orogenic granitoids are recognized in the Dabie orogen, eastern China, which recorded processes of extensional collapse of the orogen. The early stage granitoids ( 132 Ma) are foliated hornblende quartz monzonites and porphyritic monzogranites. They are of high-K calc-alkaline series and metaluminous to weakly peraluminous, with high K2O and low MgO contents (Mg# values: 32.0–46.0), they contain high Sr, low Y and heavy rare earth elements (HREE), and have high Sr/Y and (La/Yb)N ratios, without clear negative Eu, Sr and Ti anomalies. The early stage deformed granitoids have adakitic geochemical compositions and are equilibrated with residues rich in garnet and poor in anorthite-rich plagioclase, and thus indicate the existence of an over-thickened (> 50 km) crustal root beneath the orogen at  132 Ma. The later stage granitoids ( 128 Ma) are undeformed fine-grained monzogranites, fine-grained K-feldspar granites and coarse-grained K-feldspar granite-porphyry. They belong to a peraluminous and high-K calc-alkaline to shoshonite series, and display a flat HREE pattern and have strong negative Eu, Sr and Ti anomalies, with low Sr/Y and (La/Yb)N ratios. The late stage granitoids are equilibrated with residues rich in anorthite-rich plagioclase, hornblende, ilmenite/titanite and poor in garnet, indicating that the crust of the Dabie orogen became thinner (< 35 km) at  128 Ma. SHRIMP zircon U–Pb ages and changing compositional trends for these two stages of granitoids indicate that the over-thickened crust formed by the Triassic continental subduction/collision under the Dabie orogen remained until the early Cretaceous, and collapsed quickly in a few million years during the early Cretaceous.  相似文献   

16.
Neoproterozoic carbonatites and related igneous rocks, including A-type granites in the Tatarka-Ishimba suture zone of the Yenisey Ridge are confined to a horst-anticlinal structure that was formed in a transpression setting during the oblique collision between the Central Angara terrane and the Siberian craton. The carbonatites, associating mafic (including alkaline) dikes as well as the Srednetatarka nepheline syenites are the oldest igneous formations of the Tatarka active continental margin complex. Geochronological data indicate that magmatic evolution continued in the studied anticline for nearly 100 m.y. On the earliest stage carbonatites were formed and on the last stage — the emplacement of mantle-crustal A-type Tatarka granites took place. According to new U/Pb zircon studies, the earliest rocks in the Tatarka pluton are A-type leucogranites aged 646 ± 8 Ma. The younger 40Ar/39Ar ages of carbonatites obtained for phlogopites (647 ± 7 and 629 ± 6 Ma) are related to the last tectonic events in the studied region of the Tatarka-Ishimba suture zone, which are coeval with the formation of the A-type granitoids (646–629 Ma).  相似文献   

17.
This paper describes the results of geochronological studies (U-Pb method over micro lots and single grains of zircon) of autochtonous and allochtonous granitoids of the Barguzinskii complex of the Angara-Vitim batolite of the petrotypical area in the basin of the Dzhirga and Kovyli rivers (tributaries of the Barguzin River). The age of crystallization of gneissose granitoids is 297 ± 5 Ma, and that of intrusive leucocratic biotite granites is 291 ± 1 Ma. The estimates of the age finalize the discussion on the age of granitoids of the Barguzin complex and cannot be considered as ??rejuvenated.?? The analyses of the geochronological data that have been obtained up to the present for granitoids of the Angara-Vitim batolite with the SHRIMP and U-Pb methods for large samples of zircons show that in the majority of cases they cannot be used for precise estimation of the age of their crystallization. The geochronological data obtained with use of the U-Pb method over micro samples and single grains of zircon allow one to make a conclusion on the formation of granitoids of the described complexes of the Angara-Vitim batholite that occurred within 303 ± 7?C281 ± 1 Ma. Thus, the time length of formation of the largest in the eastern segment of the Central Asian belt of the Angara-Vitim batholite is not more than 22 Ma (minimum 6 Ma), which allows us to consider it as a large granitic province and is a boundary condition for development of the geodynamic models of its formation.  相似文献   

18.
ABSTRACT

We report geochemical data and zircon SHRIMP U-Pb ages for Late Mesozoic granitoids from the western Zhejiang province and southern Anhui province (the WZSA region) from southeast China. In combination with published geochronological and geochemical data, the granitoids in the region can be divided into three stages: 171–141 Ma, 140–121 Ma, and 120–95 Ma. The first stage of these granitoids is mainly composed of granite porphyry and granodiorite which are similar to I-type granitoids, including having weakly negative Eu anomalies with enrichment in light rare earth elements (LREE), Rb, Th, and U. The second stage of granitoids consists of monzogranite, syenogranite, and granite with the characteristics of both A-type and I-type granitoids including strongly negative Eu anomalies; depletion of Ba, Sr, and Ti; and enrichment of K, Rb, and high field strength elements (HFSEs) (such as Th and U). The third stage of granitoids is mainly composed of granite, quartz monzonite, quartz diorite, and mafic rocks with weakly negative Eu anomalies and also enrichment in LREE, Rb, Th, U, and K. From our work, we propose a transition from compressional to extensional magmatism at ~141 Ma. Based on the geochemical characteristics of these granites and coeval mafic rocks, we propose that the formation of the A-type magmatism in the WZSA region formed as the result of lithospheric extension and asthenospheric upwelling during the Early Cretaceous.  相似文献   

19.
The Tagil structure representing a large fragment of the Paleozoic island arc on the eastern slope of the Urals has been sufficiently well studied in its southern part (Middle Urals). In contrast, reliable data on the age and geochemical properties of various, including granitoid, rock complexes available for its northern part are scarce. The first data on the U–Pb LA–ICP–MS age of zircons from quartz diorites of the Man’ya massif of the Petropavlovsk Complex (436 ± 3 Ma, MSWD = 1.3), tonalites of the same complex (439.4 ± 1.3 Ma, MSWD = 1.3), granites of the Yuzhno-Pomur massif of the Severorudnichnyi Complex (422.4 ± 3 Ma, MSWD = 1.5), and titanite of the same massif (423.4 ± 4.4 Ma, MSWD = 0.84) have been obtained. Based on these data combined with the geochemical properties of the host rocks, the conclusion that they were crystallized at the initial stages of the formation of comagmatic volcanic series is supported; by their composition, granitoids correspond to island arc igneous rocks.  相似文献   

20.
We provide new isotope-geochronological evidence for the synchronous occurrence of Late Paleozoic basic and granitoid magmatism in western Transbaikalia; this is a strong argument for the contribution of mantle magmas to granitoid petrogenesis. The Late Paleozoic basic rocks originated from the phlogopite-garnet-bearing lherzolitic mantle, which melted under “hydration conditions.” The specific features of Late Paleozoic magmatism in western Transbaikalia were determined by the combination of the activity of a low-energy mantle plume with the final stage of the Hercynian orogeny in space and time. At the early stage of magmatism, during the formation of the Barguzin granites,the plume had only a thermal influence on the crustal rocks heated as a result of Hercynian fold-thrust deformations. The mixing of mantle basic and crustal salic magmas at different levels marked the transition from crustal to mixed (mantle-crustal) granites, which include all post-Barguzin complexes (probably, except for alkali granites). In the geologic evolution of Transbaikalia, the Late Paleozoic magmatism was postorogenic, but it was initiated and influenced by the mantle plume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号