首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The spatial distribution of carbon and nitrogen isotopes and of nitrogen concentrations is studied in detail in three gem quality cubic diamonds of variety II according to Orlov’s classification. Combined with the data on composition of fluid inclusions our results point to the crystallization of the diamonds from a presumably oxidized carbonate fluid. It is shown that in the growth direction δ13C of the diamond becomes systematically lighter by 2–3‰ (from –13.7 to –15.6‰ for one profile and from –11.7 to –14.1‰ for a second profile). Simultaneously, we observe substantial decrease in the nitrogen concentration (from 400–1000 to 10–30 at ppm) and a previously unrecognized enrichment of nitrogen in light isotope, exceeding 30‰. The systematic and substantial changes of the chemical and isotopic composition can be explained using the Burton-Prim-Slichter model, which relates partition coefficients of an impurity with the crystal growth rate. It is shown that changes in effective partition coefficients due to a gradual decrease in crystal growth rate describes fairly well the observed scale of the chemical and isotopic variations if the diamond-fluid partition coefficient for nitrogen is significantly smaller than unity. This model shows that nitrogen isotopic composition in diamond may result from isotopic fractionation during growth and not reflect isotopic composition of the mantle fluid. Furthermore, it is shown that the infra-red absorption at 1332 сm-1 is an integral part of the Y-defect spectrum. In the studied natural diamonds the 1290 сm-1 IR absorption band does not correlate with boron concentration.  相似文献   

2.

It has been demonstrated for the first time that the isotopic compositions of carbon (δ13C) in magmatic calcites from the Udachnaya–East pipe kimberlite groundmass varies from–2.5 to–1.0‰ (V-PDB), while those of oxygen (δ18O) range from 15.0 to 18.2‰ (V-SMOW). The obtained results imply that during the terminal late magmatic and postmagmatic stages of the kimberlite pipe formation, the carbonates in the kimberlite groundmass became successively heavier isotopically, which indicates the hybrid nature of the carbonate component of the kimberlite: it was formed with contributions from mantle and sedimentary marine sources.

  相似文献   

3.
The first data are reported on the carbon isotopic composition of diamond crystals from the Grib pipe kimberlite deposit of the Archangelsk diamond province (ADP). The δ13C value of the crystals ranges from ?2.79 to ?9.61‰. The isotopic composition of carbon was determined in three zoned crystals (δ13C of ?5.8 ?6.96 ‰, ?5.64/ ?5.85 ‰, and ?5.94/ ?5.69 ‰), two “diamond in diamond” samples (diamond inclusion with δ13C of ?4.05 and ?6.34 ‰ in host diamond crystals with δ13C of ?8.05 and ?7.54 ‰, respectively), and two samples of coated diamonds (cores with δ13C of ?6.98 and ?6.78‰ and coats with δ13C of ?7.51 and ?8.01 ‰, respectively). δ13C values were obtained for individual diamond crystals from bort-type aggregates (δ13C of ?4.24/ ?4.05 ‰, ?6.58/ ?7.48 ‰, and ?5.48/ ?6.08 ‰). Correlations were examined between the carbon isotopic composition of diamonds and their crystal morphology; the color; the concentration of nitrogen, hydrogen, and platelet defects; and mineral inclusions content. It was supposed that the observed δ13C variations in the crystals are most likely related to the fractionation of carbon isotopes rather than to the heterogeneity of carbon sources involved in diamond formation. The isotopic characteristics of diamonds from the Grib pipe were compared with those of previously investigated diamonds from the Lomonosov deposit. It was found that diamonds from these relatively closely spaced kimberlite fields are different; this also indicates the existence of spatially localized peculiarities of isotope fractionation in processes accompanying diamond formation.  相似文献   

4.
The paper presents data on the composition of olivine macrocrysts from two Devonian kimberlite pipes in the Arkhangelsk diamond province: the Grib pipe (whose kimberlite belongs to type I) and Pionerskaya pipe (whose kimberlite is of type II, i.e., orangeite). The dominant olivine macrocrysts in kimberlites from the two pipes significantly differ in geochemical and isotopic parameters. Olivine macrocrysts in kimberlite from the Grib pipe are dominated by magnesian (Mg# = 0.92–0.93), Ti-poor (Ti < 70 ppm) olivine possessing low Ti/Na (0.05–0.23), Zr/Nb (0.28–0.80), and Zn/Cu (3–20) ratios and low Li concentrations (1.2–2.0 ppm), and the oxygen isotopic composition of this olivine δ18O = 5.64‰ is higher than that of olivine in mantle peridotites (δ18O = 5.18 ± 0.28‰). Olivine macrocrysts in kimberlite from the Pionerskaya pipe are dominated by varieties with broadly varying Mg# = 0.90–0.93, high Ti concentrations (100–300 ppm), high ratios Ti/Na (0.90–2.39), Zr/Nb (0.31–1.96), and Zn/Cu (12–56), elevated Li concentrations (1.9–3.4 ppm), and oxygen isotopic composition δ18O = 5.34‰ corresponding to that of olivine in mantle peridotites. The geochemical and isotopic traits of low-Ti olivine macrocrysts from the Grib pipe are interpreted as evidence that the olivine interacted with carbonate-rich melts/fluids. This conclusion is consistent with the geochemical parameters of model melt in equilibrium with the low-Ti olivine that are similar to those of deep carbonatite melts. Our calculations indicate that the variations in the δ18O of the olivine relative the “mantle range” (toward both higher and lower values) can be fairly significant: from 4 to 7‰ depending on the composition of the carbonate fluid. These variations were formed at interaction with carbonate fluid, whose δ18O values do not extend outside the range typical of mantle carbonates. The geochemical parameters of high-Ti olivine macrocrysts from the Grib pipe suggest that their origin was controlled by the silicate (water–silicate) component. This olivine is characterized by a zoned Ti distribution, with the configuration of this distribution between the cores of the crystals and their outer zones showing that the zoning of the cores and outer zones is independent and was produced during two episodes of reaction interaction between the olivine and melt/fluid. The younger episode (when the outer zone was formed) likely involved interaction with kimberlite melt. The transformation of the composition of the cores during the older episode may have been of metasomatic nature, as follows from the fact that the composition varies from grain to grain. The metasomatic episode most likely occurred shortly before the kimberlite melt was emplaced and was related to the partial melting of pyroxenite source material.  相似文献   

5.
A unique xenolith of eclogite, 23×17×11 cm in size and 8 kg in weight, was found in the Udachnaya kimberlite pipe. One hundred twenty-four diamond crystals recovered from it were analyzed by a number of methods. The diamonds differ in morphology, internal structure, color, size, and composition of defects and impurities. The xenolith contains diamonds of octahedral and cubooctahedral habits. In cathodoluminescence, the octahedral crystals have a brightly glowing core with octahedral zones of growth and a weakly glowing rim. In the cores of these crystals the N impurity is mostly present in the B1 form (30 to 60%). At the same time, N in the rim is chiefly in the A form. The cubooctahedral crystals show a weak luminescence. The content of nitrogen and degree of its aggregation are close to those in the rim of octahedral crystals. The diversity of morphology and impurity composition of diamonds from the xenolith can be explained by their formation in two stages. At the first stage, the diamonds formed which became the cores of octahedra. After a long-time interruption, at the second stage of diamond formation crystals of cubooctahedral habit appeared and the octahedral crystals were overgrown. Wide variations in nitrogen contents in the xenolith crystals allowed their use to estimate the kinetics of aggregated nitrogen. The data obtained show that the aggregation of A centers into B1 centers in the diamonds is described by a kinetic reaction of an order of 1.5.  相似文献   

6.
FTIR microspectroscopic data were used to construct two-dimension maps showing the distribution of structural impurities and mineral microinclusions in cubic and coated octahedral diamond crystals from the Udachnaya kimberlite pipe in Yakutia. Elevated concentrations of hydrogen and total nitrogen are detected in parts corresponding to the early growth of single-episode growth regions of diamond crystals. These concentrations decrease toward the peripheral portions of these regions. The microinclusions contain water and polyphase mineral associations that preserve a high residual pressure. Microinclusions in the coats of octahedral diamond crystals are dominated by silicates, in which the intensity of IR spectral bands increases toward the peripheries, whereas the cubes posses irregularly distributed domains rich in these phases. The carbonate phases of the microinclusions are distributed according to growth zones of the crystals, and their distribution is often not correlated with the concentrations of structural impurities. The facts that microinclusions in the diamond cuboids are dominated by carbonates and that the rims of the octahedra are dominated by silicates suggest that the diamonds crystallized from dominantly carbonate and silicate fluids/ melts, respectively. The chemical composition of the microinclusions point to an eclogitic paragenesis of the crystals. Facts are obtained that provide support for the earlier hypothesis that cubic diamond crystals and coated octahedral crystals grow at metasomatic interaction between deep fluids and eclogitic rocks in the lithospheric mantle.  相似文献   

7.
《China Geology》2020,3(4):602-610
Thirty-nine crude oils and twenty-one rock samples from Niger Delta Basin, Nigeria have been characterized based on their isotope compositions by elemental analysis-isotope ratio mass spectrometry and gas chromatography-isotope ratio mass spectrometry. The bulk carbon isotopic values of the whole rock extracts, saturate and aromatic fractions range from –28.7‰ to –26.8‰, –29.2‰ to –27.2 ‰ and –28.5 ‰ to –26.7 ‰, respectively while the bulk carbon isotopic values of the whole oils, saturate and aromatic fractions range from –25.4 ‰ to –27.8 ‰, –25.9 ‰ to –28.4 ‰ and –23.5 ‰ to –26.9 ‰, respectively. The average carbon isotopic compositions of individual alkanes (nC12-nC33) in the rock samples range from –34.9‰ to –28.2‰ whereas the average isotopic values of individual n-alkanes in the oils range from –31.1‰ to –23.8‰. The δ13C isotope ratios of pristane and phytane in the rock samples range from –29.2 ‰ to –28.2 ‰ and –30.2 ‰ to –27.4 ‰ respectively while the pristane and phytane isotopic values range from –32.1‰ to –21.9‰ and –30.5‰ to –26.9‰, respectively. The isotopic values recorded for the samples indicated that the crude oils were formed from the mixed input of terrigenous and marine organic matter and deposited under oxic to sub-oxic condition in lacustrine-fluvial/deltaic environments. The stable carbon isotopic compositions were found to be effective in assessing the origin and depositional environments of crude oils in the Niger Delta Basin.  相似文献   

8.
We report new δ13C ‐values data and N‐content and N‐aggregation state values for microdiamonds recovered from peridotites and chromitites of the Luobusa ophiolite (Tibet) and chromitites of the Ray‐Iz ophiolite in the Polar Urals (Russia). All analyzed microdiamonds contain significant nitrogen contents (from 108 up to 589 ± 20% atomic ppm) with a consistently low aggregation state, show identical IR spectra dominated by strong absorption between 1130 cm?1 and 1344 cm?1, and hence characterize Type Ib diamond. Microdiamonds from the Luobusa peridotites have δ13C ‐PDB‐values ranging from ‐28.7‰ to ‐16.9‰, and N‐contents from 151 to 589 atomic ppm. The δ13C and N‐content values for diamonds from the Luobusa chromitites are ‐29‰ to ‐15.5‰ and 152 to 428 atomic ppm, respectively. Microdiamonds from the Ray‐Iz chromitites show values varying from ‐27.6 ‰ to ‐21.6 ‰ in δ13C and from 108 to 499 atomic ppm in N. The carbon isotopes values bear similar features with previously analyzed metamorphic diamonds from other worldwide localities, but the samples are characterized by lower N‐contents. In every respect, they are different from diamonds occurring in kimberlites and impact craters. Our samples also differ from the few synthetic diamonds; we also analyzed showing enhanced δ13C ‐variability and less advanced aggregation state than synthetic diamonds. Our newly obtained N‐aggregation state and N‐content data are consistent with diamond formation over a narrow and rather cold temperature range (i.e. <950°C), and in a short residence time (i.e. within several million years) at high temperatures in the deep mantle.  相似文献   

9.
Distribution of water among the main rock-forming nominally anhydrous minerals of mantle xenoliths of peridotitic and eclogitic parageneses from the Udachnaya kimberlite pipe, Yakutia, has been studied by IR spectroscopy. The spectra of all minerals exhibit vibrations attributed to hydroxyl structural defects. The content of H2O (ppm) in minerals of peridotites is as follows: 23–75 in olivine, 52–317 in orthopyroxene, 29–126 in clinopyroxene, and 0–95 in garnet. In eclogites, garnet contains up to 833 ppm H2O, and clinopyroxene, up to 1898 ppm (~ 0.19 wt.%). The obtained data and the results of previous studies of minerals of mantle xenoliths show wide variations in H2O contents both within different kimberlite provinces and within the Udachnaya kimberlite pipe. Judging from the volume ratios of mineral phases in the studied xenoliths, the water content varies over narrow ranges of values, 38–126 ppm. At the same time, the water content in the studied eclogite xenoliths is much higher and varies widely, 391–1112 ppm.  相似文献   

10.
Forty-one diamonds sourced from the Juina-5 kimberlite pipe in Southern Brazil, which contain optically identifiable inclusions, have been studied using an integrated approach. The diamonds contain <20 ppm nitrogen (N) that is fully aggregated as B centres. Internal structures in several diamonds revealed using cathodoluminescence (CL) are unlike those normally observed in lithospheric samples. The majority of the diamonds are composed of isotopically light carbon, and the collection has a unimodal distribution heavily skewed towards δ13C ~ ?25 ‰. Individual diamonds can display large carbon isotope heterogeneity of up to ~15 ‰ and predominantly have isotopically lighter cores displaying blue CL, and heavier rims with green CL. The light carbon isotopic compositions are interpreted as evidence of diamond growth from abiotic organic carbon added to the oceanic crust during hydrothermal alteration. The bulk isotopic composition of the oceanic crust, carbonates plus organics, is equal to the composition of mantle carbon (?5 ‰), and we suggest that recycling/mixing of subducted material will replenish this reservoir over geological time. Several exposed, syngenetic inclusions have bulk compositions consistent with former eclogitic magnesium silicate perovskite, calcium silicate perovskite and NAL or CF phases that have re-equilibrated during their exhumation to the surface. There are multiple occurrences of majoritic garnet with pyroxene exsolution, coesite with and without kyanite exsolution, clinopyroxene, Fe or Fe-carbide and sulphide minerals alongside single occurrences of olivine and ferropericlase. As a group, the inclusions have eclogitic affinity and provide evidence for diamond formation at pressures extending to Earth’s deep transition zone and possibly the lower mantle. It is observed that the major element composition of inclusions and isotopic compositions of host Juina-5 diamonds are not correlated. The diamond and inclusion compositions are intimately related to subducted material and record a polybaric growth history across a depth interval stretching from the lower mantle to the base of the lithosphere. It is suggested that the interaction of slab-derived melts and mantle material combined with subsequent upward transport in channelised networks or a buoyant diapir explains the formation of Juina-5 diamonds. We conclude that these samples, despite originating at great mantle depths, do not provide direct information about the ambient mantle, instead, providing a snapshot of the Earth’s deep carbon cycle.  相似文献   

11.
Mosaic diamonds from the Zarnitsa kimberlite (Daldyn field, Yakutian diamondiferous province) are morphologicaly and structurally similar to dark gray mosaic diamonds of varieties V and VII found frequently in placers of the northeastern Siberian craton. However, although being similar in microstructure, the two groups of diamonds differ in formation mechanism: splitting of crystals in the case of placer diamonds (V and VII) and growth by geometric selection in the Zarnitsa kimberlite diamonds. Selective growth on originally polycrystalline substrates in the latter has produced radial micro structures with grains coarsening rimward from distinctly polycrystalline cores. Besides the formation mechanisms, diamonds of the two groups differ in origin of mineral inclusions, distribution of defects and nitrogen impurity, and carbon isotope composition. Unlike the placer diamonds of varieties V and VII, the analyzed crystals from the Zarnitsa kimberlite enclose peridotitic minerals (olivines and subcalcic Cr-bearing pyropes) and have total nitrogen contents common to natural kimberlitic diamonds (0 to 1761 ppm) and typical mantle carbon isotope compositions (-1.9 to -6.2%c 513C; -4.2%c on average). The distribution of defect centers in the Zarnitsa diamond samples fits the annealing model implying that nitrogen aggregation decreases from core to rim.  相似文献   

12.
40Ar/39Ar dating of phlogopite from kelyphitic rims around garnet grains from the Udachnaya–Vostochnaya kimberlite pipe in the Sakha (Yakutia) Republic (Russia) revealed that when this mineral has contact with a kimberlite melt its age corresponds (within error limits) to that of the formation of the kimberlite pipe, thus indicating that the method may be used for dating kimberlites and related rocks. In mantle xenoliths, kelyphitic phlogopites rimming garnet grains partially lose radiogenic Ar, which results in a complex age spectrum. Rejuvenation of the K/Ar system in them is determined by the thermal impact of the kimberlite melt on captured rocks.  相似文献   

13.
Noncarbonate (combustion) and carbonate (acid decomposition) carbon were separately analyzed in 18 granitic rocks from a group of related Tertiary intrusions near Crested Butte, Colorado, and 14 mafic and ultramafic rocks from various localities in the western United States. Among the granites, carbonate carbon ranges from nil to 0.76 per cent with δC13-values from ?5.6 to ? 9.0‰ (vs PDB); noncarbonate carbon varies from 32–360 ppm with δC13-values from ?19.7 to ?26.6‰, The mafic and ultramafic rocks have carbonate carbon contents ranging from 53 ppm to about 2 per cent with δC13-values from + 2.9 to ?10.3‰; noncarbonate carbon varies from 26 to 150 ppm with δC13-values of ?22.2 to ? 27.l‰ For these samples, carbonate carbon ranges from 12.0 to 29.4‰ heavier than coexisting noncarbonate carbon. This consistent difference between δC13 of carbonate and noncarbonate carbon may be an isotopic fractionation effect. Because the specific indigenous form of noncarbonate (combustion) carbon is in doubt, conclusive interpretations regarding isotopic equilibration and fractionation cannot be made.These results have bearing on the assessment of the isotopic composition of mantle carbon and consequently are germane to the question of the origin (source) and history of crustal carbon. If mantle carbon is isotopically similar to noncarbonate (combustion) carbon, i.e. δC13-values from ?19.7 to ? 27.1‰, then a simple mantle degassing source for crustal carbon is improbable. Such a result would indicate an additional source of crustal carbon such as from a primitive atmosphere or extra-terrestrial accretion.  相似文献   

14.
New carbon and oxygen isotopic compositions of carbonates from 14 carbonatite and 11 kimberlite occurrences are reported. A review of the available data on the carbon isotopic composition ranges of carbonatite and kimberlite carbonates shows that they are similar and overlap that of diamonds. The mean carbon isotopic composition of carbonates from 22 selected carbonatite complexes (?5.1%., s = ±l.4%.vsPDB) is indistinguishable from that of 13 kimberlite pipes (?4.7%. s = ±1.2%.) as well as that of 60 individual diamond analyses (?5.8%., s = 1.8%.). The oxygen isotopic compositions of kimberlite carbonates, however, are enriched in O18 by several permil with respect to those of carbonates from the subvolcanic type of carbonatite.The data suggest that not all carbonatite, kimberlite and diamond occurrences have the same average carbon isotopic composition and that significant differences exist between them. Carbon isotopic composition measurements available for the East African Rift system suggest geographic and/or tectonic groupings e.g. carbonate lavas, tuffs and intusive carbonatites associated with the Eastern Rift yield a range of δC13 values from ?5.8 to ?7.4%., similar to that of the carbonate rocks associated with the Western Rift volcanism (?5.8 to ?7.9%.). In contrast the interrift area encompassing Lakes Victoria, Malawi (Nyasa) and Chilwa, apparently are characterized by carbonatitic carbonates of higher C13 content (?2.4 to ?4.4%.).If carbonatite and kimberlite carbonates as well as diamonds represent deep seated carbon, the mean isotopic composition of this carbon is estimated as ?5.2%. and the range is ?2 to ?8%. The selection of any particular value within this range to be used as a criterion of deep-seated origin is at the moment not warranted. Indeed, the choice of any specific composition for such carbon may be meaningless, as the source of kimberlite, carbonatite and diamond carbon may not be isotopically uniform.  相似文献   

15.
By applying the 40Ar/39Ar-dating method, age estimates for phlogopites of mantle xenoliths with different parageneses from the Udachnaya and Mir kimberlite pipes (Yakutia, Russia) were obtained. The oldest ages determined are 2.6–2.3 Ga, which far transcends the Paleozoic age of kimberlite entrainment. The phlogopite formation of these ages reflects ancient metasomatic events following rearrangement processes in the mantle in the Archean-Early Proterozoic, particularly during and after accretion of the Pangea-0 super-continent. A multistep age spectrum of UV162/09 was obtained from several generations of phlogopite and indicates a later multistage metasomatic process taking place in the mantle under Udachnaya pipe. Several stages of mantle metasomatism of various ages and scales are detected within the Siberian platform.  相似文献   

16.
Strontium isotopic studies of kimberlites reveal no significant differences between the respective whole-rock Sr87/Sr86 ratios of fissure and pipe kimberlites. Kimberlites from the Swartruggens fissure (calcareous micaceous kimberlite) have Sr87/Sr86 ratios of from 0.709 to 0.716, whilst those from the Wesselton pipe have Sr87/Sr86 ratios of from 0.708 to 0.715. Other kimberlites range from 0.706 to 0.715. Samples are considered to be late Cretaceous to early Tertiary and thus the ratios are approximately initial ratios. The Sr87/Sr86 ratios bear no relation to the Rb or Sr content of individual kimberlite bodies. The high initial ratios are not due to bulk assimilation of granitic material in either a kimberlite or carbonatitic magma. Rb-Sr data for garnet peridotites and eclogite xenoliths in kimberlite are not compatible with production of kimberlite by eclogite fractionation from a melt derived from garnet lherzolite. The Sr isotopic composition of kimberlite is compatible with partial melting of garnet mica peridotite. The isotopic composition of liquids formed by partial melting of this rock can be modified by (i) gross contamination with material of low Sr87/Sr86 ratio or (ii) selective diffusion of material of high Sr87/Sr86 ratio into kimberlitic fluids.  相似文献   

17.
A study of the isotopic composition of plankton from Woods Hole Harbor was conducted to investigate seasonal variation in carbon and nitrogen stable isotopes in a shallow coastal environment. Stable isotopic ratios of carbon and nitrogen both showed temporal variation on the scale of weeks to months, with heaviest (most positive) values in summer to fall for both isotopes. Particulate organic matter (POM) δ13C values were highest (?19‰ to ?21‰) in August to November and lower (?21‰ to ?25‰) at other times of the year, while δ13N-POM values were highest (9.5‰ to 12‰) in March to September and lower (7.5‰ to 9.5‰) at other times of the year. Stable isotopic values were significantly correlated with temperature, DI13C, and C∶N ratios, but not with [DIC], [POC], [PN], [chlorophyll], or the taxonomic composition of the phytoplankton. There was no direct evidence of allochthonous inputs of carbon and nitrogen to the system. Woods Hole δ13C values were virtually identical to Georges Bank plankton values; similar POC: Chlorophyll and C∶N ratios in the two systems further suggest that Woods Hole Harbor is principally a marine system. The high δ13C values of net plankton (>20 μm) during summer and early fall are consistent with a smaller degree of photosynthetic isotopic fractionation at that time, related to temperature and/or [CO2(aq)]. This pattern was not seen, however, in total POM. Plankton δ13N values were higher in Woods Hole Harbor than on Georges Bank, especially during warmer periods, possibly due to high rates of nitrification and organic matter recycling in Woods Hole waters. Relatively wide ranges of stable isotopic values from both Woods Hole Harbor and Georges Bank suggest that seasonality should be considered when attempting to establish endmember C and N isotopic values for temperate marine plankton. Preliminary results from size-fractionated samples suggest that cyanobacteria may fractionate carbon isotopes to a greater degree than net phytoplankton.  相似文献   

18.
首次在Mir金伯利岩筒中的锆石中发现了烃类包裹体。利用低温荧光光谱仪测定出烃类包裹体的成分为萘和菲的同系物 ,芘 ,1,12苯并芘等 ;其成分与Udachnaya岩筒中的橄榄石内的烃类和Mir岩筒中的石榴石中的烃类的成分相近。测定出锆石的δ13C值为 - 2 1 83‰~ - 3 3 5 4‰ ,与用榴辉岩共生组合中最轻的金刚石测出的同位素δ13C值范围相符。文中引述了有关有机物来源的讨论及多环芳烃 (PAH)由缩聚作用形成的论述。伴生矿物中相当数量的PAH的存在证明在形成金刚石及其伴生矿物的情况下 ,若有相当浓度的自由氢存在则可能发生缩聚作用。这些缩聚作用中碳的来源显然与形成金刚石时碳的来源是相同的 (即液态的CH4,CO及CO2 )。  相似文献   

19.
Diamond from metaultramafic rocks of the Mesoarchean (2.96–3.0 Ga) Olondo greenstone belt, located in the western Aldan–Stanovoy shield, has been studied. Diamonds occur in lenses of olivine–serpentine–talc rocks within metaultramafic rocks of intrusive habit, whose composition corresponds to peridotite komatiites. All diamonds from the metaultramafic rocks are crystal fragments 0.3 to 0.5 mm in size. Morphological examination has revealed laminar octahedra, their transitional forms to dodecahedroids, crystals with polycentric faces, and spinel twins. The crystals vary in photoluminescence color: dark blue, green, yellow, red, or albescent. Characteristic absorption bands in crystals point to nitrogen impurities in the form of A and B1 defects and tabular B2 defects. The crystals studied belong to the IaA/B type, common among natural diamonds. The overall nitrogen content varies from < 100 to 3800 ppm. The relative content of nitrogen in B1 centers varies from 0 to 94%, pointing to long stay in the mantle. The carbon isotope ratio in the diamonds, 13C = ? 26‰, is indicative of involvement of subducted crust matter in diamond formation in the Archean.  相似文献   

20.
We report Lithium (Li) concentrations and isotopic compositions for co-existing olivine, orthopyroxene (opx), and clinopyroxene (cpx) mineral separates from depleted and metasomatised peridotite xenoliths hosted by basaltic lavas from northwestern Ethiopian plateau (Gundeweyn area). The peridotites contain five lherzolites and one harzburgite and are variably depleted and enriched in LREE relative to HREE. In both depleted and enriched lherzolites, Li is preferentially incorporated into olivine (2.4-3.3 ppm) compared to opx (1.4-2.1 ppm) and cpx (1.4-2.0 ppm) whereas the Li contents of olivines (5.4 ppm) from an enriched harzburgiteare higher than those of lherzolites. Olivines from the samples show higher Li abundances than normal mantle olivines (1.6-1.9 ppm) indicating the occurrence of Li enrichments through melt-preroditite interaction. The average δ7 Li values range from +2.2 to +6.0‰ in olivine, from -0.1 to +2.0‰ in opx and from -4.4 to -0.9‰ in cpx from the lherzolites. The Li isotopic composition (3.5‰) of olivines from harzburgite fall within the range of olivine from lherzolites but the opxs show low in δ7Li (-2.0‰). Overall Li isotopic compositions of olivines from the peridotites fall within the range of normal mantle olivine, δ7Li values of ~+4±2‰ within uncertainty, reflecting metasomatism (enrichment) of the peridotites by isotopically heavy Li-rich asthenospheric melt. Li isotope zonation is also observed in most peridotite minerals. Majority of olivine grains display isotopically heavy cores and light rims and the reverse case is observed for some olivine grains. Orthopyroxene and clinopyroxene grains show irregular distribution in δ7Li. These features of Li isotopic compositions within and between grains in the samples reflect the effect of diffusion-driven isotopic fractionation during meltperidotite interaction and cooling processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号