首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Morphotectonic study of Hispaniola   总被引:1,自引:0,他引:1  
Geomorphological analysis; aerial photographs; and geomorphologic, geological, geophysical, topographical, and field studies show that the morphology of Hispaniola can be linked to lateral variations in the geometry and tectonism of the Caribbean-North American Plate Boundary Zone. Three main categories of the relief were established: territorial units (1 megablock, 2 macroblocks, 14 mesoblocks, 209 blocks, 401 microblocks, and 527 nanoblocks), morphostructural alignments (4 first-, 1 second-, 12 third-, and 30 fourth-rank), and 16 knots between morphostructural alignments (second-to fourth-rank). The main seismic activity is concentrated on the first-and second-rank lineaments, and some important epicenters are located in the vicinity of the lineament intersections. The origin of the earthquakes in the vicinity of such knots can be explained by the forcing/pushing of macroblocks northeastward. The existence of earthquakes along the main lineaments may be explained by tension or compression in a restraining bend zone. From the current study, it appears that earthquake occurrence in Hispaniola is related with the stress concentrations in the vicinity of morphotectonic zones. A seismotectonic interpretation of Hispaniola is shown where three zones exist, each of them with a different active level and dimensions. The text was submitted by the authors in English.  相似文献   

2.
The first morphotectonic model of the Greater Antilles is presented. The model is adjusted to the current dynamics between the Caribbean and North American plates. It is mainly elaborated by Rantsman’s methodology. We determined 2 megablocks, 7 macroblocks, 42 mesoblocks, 653 microblocks and 1264 nanoblocks. They constitute a set of active blocks under rotation, uplifting and tilting movements. A total of 11 active knots of faults and 8 cells are the main articulation areas. The largest seismogenetic structures in the Northern Caribbean are an array of the active fault segments. The majority of them are in the Caribbean-North American Plate Boundary Zone, the Hispaniola has the most complex neotectonic structure–associated with the central axis of the morphotectonic deformations in the region.  相似文献   

3.
The morphotectonics of Córdoba and Granada are differentiated using the Rantsman method [53]. Over 40 quantitative geomorphologic indicators are used in the systemic classification. Both areas are included in what are known as the macroblocks no. 1 (Southern) and no. 2 (Sub-Western 2A) of the Iberian Peninsula megablock. The qua ntities of the four lowest order Territorial Units defined for Córdoba/Granada are: mesoblocks (4/4), blocks (9/9), microblocks (15/35) and nanoblocks (64/83). The main lineaments/intersections determined in Córdoba total 16/1041 and in Granada 25/633, A series of seven morphostructural scarps is found in both areas, along with important modifications (inflections) in some river beds. Some of the structures described are seismicity-related. Córdoba displays less activity than Granada. Between the towns of Loja, Beas de Granada, and Lentejí a seismoactive sector (~820 km2) with blocks B2, B3, B5, and B6 forms the area where the deep earthquakes are concentrated.  相似文献   

4.
Morphostructural zoning (MSZ) scheme of the Himalayan arc region as obtained from a joint study of topographic, geological and tectonic maps as well as satellite imagery is analysed. Three types of morphostructures have been determined: territorial units (blocks of different ranks), linear zones limiting these blocks (lineaments) and intersections of the lineaments (knots). Comparison of MSZ scheme with the know seismicity indicates epicenters of strong earthquakes (M≥6·5) clustered around some of these knots. Pattern recognition method is used to determine seismically potential areas for the occurrence of recognition method is used to determine seismically potential, for the occurrence of strong earthquakes of magnitude ≥M 0. We have carried out two such studies for the Himalayan arc region, one forM 0=6·5 and the other forM 0=7·0. Out of a total number of 97 knots, 48 knots are found to be seismically potential for the occurrence of earthquake ofM≥6·5. The results of the study forM 0=6·5 were presented in the symposium on “Earthquake Prediction” held in Strasbourg, France, March 1991 (Gorshkovet al 1991). The epicenter of Uttarkashi earthquake of magnitude,M b=6·6 that occurred in the late hours of 19th October 1991 (UTC) lies in the vicinity of one such knot. The second study carried out subsequently shows that only 36, knots are potential for the occurrence of earthquakes ofM≥7·0, which include the knot, associated with theUttarkashi earthquake.  相似文献   

5.
Pediments representing gently sloping denudation plains widespread in different climatic and morphotectonic regions of Asia are described with consideration of their main formation features and the role of pedimentation in the development of planation surfaces. The general classification proposed for these morphostructures, including false pediments, takes into consideration their morphological features and position in the landscape structure.  相似文献   

6.
关于"中央造山带”几个问题的思考   总被引:34,自引:0,他引:34  
张国伟  柳小有 《地球科学》1998,23(5):443-448
“中央造山带”的提法响亮,瞩目,但其真正含义应加以分析,思考,从地理山脉综合分析表明它们不是统一山脉,但现实却出现一带山系,横贯中国大陆中央,故地理上可知经而统之称其为一道“中央山系”地质含义分析证明它们不是统一造山带,但祁连,昆仑,秦岭和大别可为广义统一造山带,有东古特提斯和中国大陆完成其主体最后拼合的关键地带之一,研究“中央造山系”有以下几个关键问题;(1)新生代,尤其是新第三纪以来中央造山带  相似文献   

7.
The stratigraphic succession of the subsurface Pliocene-Quaternary post-rift megasequence in the north-central part of the Nile Delta includes the rock units; Kafr El-Sheikh Formation (Early-Middle Pliocene), El- Wastani Formation (Late Pliocene), Mit-Ghamr and Bilqas formations (Quaternary). These rock units were analyzed according to the sequence stratigraphic principles to construct their stratigraphic architecture and discuss the depositional events influencing their evolution. Accordingly, seven 3rd order depositional sequences were encountered, of which six 3rd order seismic depositional sequences (sequences 1–6) are found in the Early–Middle Pliocene Kafr El-Sheikh Formation, whereas sequence-7 includes the Quaternary rock units. Sequences 1 and 7 were further subdivided, on the basis of high-resolution sequence stratigraphy into 8 and 11 4th order subsequences respectively. The results of the sequence stratigraphic analyses suggested that the depositional evolution of the examined Pliocene-Quaternary megasequence represents a complete prograding depositional phase during the Nile Delta history. The lower part of Kafr El-Sheikh Formation (sequences 1, 2, 3 and 4) was deposited as a thick outer marine shelf succession over which the younger rock units were deposited. However, the depositional sequences 5 & 6 of Kafr El-Sheikh Formation and the lower parts of El-Wastani Formations may indicate a deposition within active prograding prodelta sub-aqueous deltaic-subenvironments. The upper parts of El-Wastani Formation were deposited as a constructive delta-front pushing its way northward. The Pleistocene Mit-Ghamr Formation was evolved as a direct result of a huge fluvial input, organized as coalescing laterally extensive sand-rich bars. These were laid-down by active fluvial distributary streams that dominated the delta plain as the final phases of the present deltaic subaqueous environments.  相似文献   

8.
The central Iberian Peninsula (Spain) is made up of three main tectonic units: a mountain range, the Spanish Central System and two Tertiary basins (those of the rivers Duero and Tajo). These units are the result of widespread foreland deformation of the Iberian plate interior in response to Alpine convergence of European and African plates. The present study was designed to investigate thermal structure and rheological stratification in this region of central Spain. Surface heat flow has been described to range from 80 to 60 mW m−2. Highest surface heat flow values correspond to the Central System and northern part of the Tajo Basin. The relationship between elevation and thermal state was used to construct a one-dimensional thermal model. Mantle heat flow drops from 34 mW m−2 (Duero Basin) to 27 mW m−2 (Tajo Basin), and increases with diminishing surface heat flow. Strength predictions made by extrapolating experimental data indicate varying rheological stratification throughout the area. In general, in compression, ductile fields predominate in the middle and lower crusts and lithospheric mantle. Brittle behaviour is restricted to the first 8 km of the upper crust and to a thin layer at the top of the middle crust. In tension, brittle layers are slightly more extended, while the lower crust and lithospheric mantle remain ductile in the case of a wet peridotite composition. Discontinuities in brittle and ductile layer thickness determine lateral rheological anisotropy. Tectonic units roughly correspond to rheological domains. Brittle layers reach their maximum thickness beneath the Duero Basin and are of least thickness under the Tajo Basin, especially its northern area. Estimated total lithospheric strength shows a range from 2.5×1012 to 8×1012 N m−1 in compression, and from 1.3×1012 to 1.6×1012 N m−1 in tension. Highest values were estimated for the Duero Basin.Depth versus frequency of earthquakes correlates well with strength predictions. Earthquake foci concentrate mainly in the upper crust, showing a peak close to maximum strength depth. Most earthquakes occur in the southern margin of the Central System and southeast Tajo Basin. Seismicity is related to major faults, some bounding rheological domains. The Duero Basin is a relative quiescence zone characterised by higher total lithospheric strength than the remaining units.  相似文献   

9.
Acoustic profiling carried out with an Edgetech 3300 prophilograph in the junction zone of the Cape Verde Rise, Cape Verde Abyssal Plain, and Grimaldi and Bathymetrists seamounts in the Central Atlantic during Cruise 23 of the R/V Akademik Nikolaj Strakhov allowed us to obtain new data on neotectonic deformations in the ocean and to propose their interpretation. It has been established that neotectonic movements occurred in the discrete manner: blocks of undeformed rocks alternate with linear zones of intense deformation spatially related to paleotransform fracture zones, where anticlines, horsts, diapir-like morphostructures, and grabens were formed. The Cape Verde Ridge is a large horst. Its sedimentary cover is disturbed by thrust (?), reverse, and normal faults, steeply dipping fracture zones, and folds. Three stages of tectonic movements—Oligocene-early Miocene, pre-Quaternary, and Holocene—are recognized. The tectonic deformations occurred largely under near-meridional compression. Extension setting was characteristic of the Cape Verde Ridge and the Carter Rise in the Holocene.  相似文献   

10.
The present-day topography of the Iberian peninsula can be considered as the result of the Mesozoic–Cenozoic tectonic evolution of the Iberian plate (including rifting and basin formation during the Mesozoic and compression and mountain building processes at the borders and inner part of the plate, during the Tertiary, followed by Neogene rifting on the Mediterranean side) and surface processes acting during the Quaternary. The northern-central part of Iberia (corresponding to the geological units of the Duero Basin, the Iberian Chain, and the Central System) shows a mean elevation close to one thousand meters above sea level in average, some hundreds of meters higher than the southern half of the Iberian plate. This elevated area corresponds to (i) the top of sedimentation in Tertiary terrestrial endorheic sedimentary basins (Paleogene and Neogene) and (ii) planation surfaces developed on Paleozoic and Mesozoic rocks of the mountain chains surrounding the Tertiary sedimentary basins. Both types of surfaces can be found in continuity along the margins of some of the Tertiary basins. The Bouguer anomaly map of the Iberian peninsula indicates negative anomalies related to thickening of the continental crust. Correlations of elevation to crustal thickness and elevation to Bouguer anomalies indicate that the different landscape units within the Iberian plate can be ascribed to different patterns: (1) The negative Bouguer anomaly in the Iberian plate shows a rough correlation with elevation, the most important gravity anomalies being linked to the Iberian Chain. (2) Most part of the so-called Iberian Meseta is linked to intermediate-elevation areas with crustal thickening; this pattern can be applied to the two main intraplate mountain chains (Iberian Chain and Central System) (3) The main mountain chains (Pyrenees and Betics) show a direct correlation between crustal thickness and elevation, with higher elevation/crustal thickness ratio for the Central System vs. the Betics and the Pyrenees. Other features of the Iberian topography, namely the longitudinal profile of the main rivers in the Iberian peninsula and the distribution of present-day endorheic areas, are consistent with the Tertiary tectonic evolution and the change from an endorheic to an exorheic regime during the Late Neogene and the Quaternary. Some of the problems involving the timing and development of the Iberian Meseta can be analysed considering the youngest reference level, constituted by the shallow marine Upper Cretaceous limestones, that indicates strong differences induced by (i) the overall Tertiary and recent compression in the Iberian plate, responsible for differences in elevation of the reference level of more than 6 km between the mountain chains and the endorheic basins and (ii) the effect of Neogene extension in the Mediterranean margin, responsible for lowering several thousands of meters toward the East and uplift of rift shoulders. A part of the recent uplift within the Iberian plate can be attributed of isostatic uplift in zones of crustal thickening.  相似文献   

11.
北贝加尔盆地西南端位于贝加尔盆地中部,包括Olkhon岛及其邻区,文中研究了这个区域的构造地貌格架。北贝加尔盆地西南端的构造地貌类型是由走滑构造末端的一系列雁列构造、裂谷断层及次级断层的末端复合构造控制。朝着海的方向Olkhon地区次级断层包括4个连续的末端复合构造Primorsky断层带,Buguldeika-Chernorud地堑—MaloyeMore裂谷盆地—Ushkaniy断层带,Tazheran高原—Olkhon岛鞍部和淹没的Akademichesky山脊,Olkhon断层带。这个末端构造被横向断层切为几段,其活动时间在南西最年轻,向北东逐渐加大,同时断层垂直断距从数十米增至2000余米,且断层带变得更为宽阔,也更为复杂。Pri-morsky断层带向北东从西南端简单的线性断层崖,变为断层围限的断块系统,再变为上升和沉降(盆地)块体系统,并最终汇入一个盆地之中;沿着这个方向裂谷边界断层则突然地复合于盆地构造中。这种构造地貌类型记录了断层演化的时间和空间关系,即从属于递进的沉降和加宽直至最终发育为盆地。因此其趋势是发育完好的湖盆、陆地构造直至被水淹没。陆地构造淹没趋势及没有断层围限块体的盆内构造组合可能是与犁式断层旋转相关的陆内裂谷的共同特点,并具一般裂谷的打开机制。  相似文献   

12.
东北地块群:构造演化与古大陆重建   总被引:7,自引:0,他引:7  
东北地区位于西伯利亚板块、华北板块和太平洋板块之间,为"中亚造山带"的东段和太平洋构造域的叠加部位,因此东北地块群构造属性和背景的研究对深入探讨二大构造域的叠加与转化背景具有重要的理论意义。东北地块群从东到西可细分佳木斯兴凯、松辽、兴安和额尔古纳四大地块,这些地块具有相同的新元古代泛非期变质基底,而古生代沉积岩也存在一定的可比性,表明这些地块存在相同或者相似的构造演化背景。分割这些地块的构造边界特征为:1)额尔古纳与兴安地块的缝合带为早古生代头道桥-新林缝合带,而非中生代德尔布干断裂;2)兴安地块与松辽地块之间的贺根山黑河缝合带形成时代为晚石炭世(330~300 Ma),而非最近报道的中生代;3)古亚洲洋分布在东北陆块群与华北板块之间,沿西拉木伦-长春缝合带闭合,时代为三叠纪;4)佳木斯兴凯地块与松辽地块之间的吉黑高压带形成于古亚洲构造域与环太平洋构造域转换的关键时期(210~180 Ma);5)那丹哈达增生杂岩为中国境内古太平洋板块俯冲增生的唯一直接证据,并记录了晚三叠早白垩世古太平洋板块向欧亚大陆俯冲增生的过程。在此基础上,分析了东北地块群发育的典型古生物和年代学标志,重建了东北地块群从Gondwana 大陆到Pangea大陆的位置与模型。  相似文献   

13.
李霞 《世界地质》2013,32(3):549-557
以地层划分、对比、沉积岩建造、火山岩建造、侵入岩浆活动和变质变形等地质记录为基础,以板块理论为指导,对福建省大地构造单元进行了重新认识和划分。将福建省区划分为华夏地块( Ⅴ --3) 、东南沿海岩浆弧( Ⅴ--4) 和闽中结合带( Ⅴ--7) 等3 个Ⅱ级构造单元,武夷古弧盆系( Ⅴ--3-- 1) 、南平-宁化( 夭折) 裂谷( Ⅴ--3--2) 、闽西南陆表海盆地( Ⅴ--3--3) 、闽东沿海岩浆弧( Ⅴ--4--1) 和松溪-尤溪蛇绿混杂岩( Ⅴ--7--1) 等5 个Ⅲ级单元,以及建宁古弧后盆地( Ⅴ--3--1--1) 等18 个Ⅳ 级构造单元。  相似文献   

14.
本文根据华北和扬子陆块及秦岭-大别造山带地表和深部出露的各种岩石中发现的继承性锆石的测年数据,报道了太古宙基底和岩浆事件的新信息,并简要地论述其地质意义。华北陆块东北缘、东南缘、北缘、西北缘共6个地区的深部都存在新太古代和中、古太古代岩浆事件的新信息;南缘深部也存在古太古代岩浆事件的新信息。在华北陆块早前寒武纪同位素年龄直方图(以太古宙岩浆事件为主)上,最高峰值位于2.45-2.6 Ga区间,而以2.5-2.55 Ga最为突出,显示该区间岩浆事件最为强烈,可能代表一次重要的碰撞事件。此外还见有2.7 Ga,2.8 -2.85 Ga,2.95-3.0 Ga,3.1-3.15 Ga,3.3-3.4 Ga,3.45-3.5 Ga,3.6 Ga和3.8 Ga等较高峰值,反映了岩浆事件不同活动阶段的演化趋势。扬子陆块北缘地表和深部有与华北陆块相似的太古宙古老基底信息。扬子陆块中部的长江中下游地区、东南缘相当于江南古陆的地区以及扬子陆块西南缘地区在地壳深部均保留有新太古代和/或古太古代岩浆锆石的年龄信息。秦岭-大别造山带从东到西,多处(主要是深部)也发现有新-中太古代残余岩浆锆石的年龄信息。  相似文献   

15.
Architecture and Kinematics of the Dabie Orogen,Central Eastern China   总被引:3,自引:0,他引:3  
The geometry of the Dabie Mountains is manifested in terms of the distribution of petro-tectonic units in three dimensions. It is identified into three segments from east to west, four horizons in vertical profiles and eight petrotectonic units from north to south. Three segments are the east, middle and west segments. Four horizons, from top to bottom, are two different meta-tectonic melange in the uppermost part, underthrust basement and cover below them, and mantle at the bottom of the profiles. Eight petro-tectonic units from north to south are: (1) the hinterland basin, (2) the meta-flysch, (3) the ultramafic rock belt (UM) Sujiahe eclogite belt (SH), (4) eclogite belt 2 (Ec2) with most eclogites of continental affinity, (5) eclogite belt 1 (Ecl1) with some eclogite of oceanic affinity, (6) the Dabie complex or underthrust basement of the Yangtze continent, (7) the Susong and Zhangbaling Groups or underthrust cover of the Yangtze continent and (8) the foreland belt. The (3), (4) and (5) units belong to meta-tectonic melange. Some ultrahigh pressure metamorphic minerals such as coesite and micro-diamonds have been found in (3) and (4) units; a possible ultrahigh pressure mineral,clinozoisite aggregate pseudomorph after lawsonite, was found in unit (5). The three tectonic units are speculated to be coherent initially; the UM and SH units are suggested to be the root belt in the east, middle and west segments respectively.The kinematics of the Dabie orogen is divided into three stages: top-to-south thrusting during the eclogite-granulite facies metamorphism, top-to-north extension during the amphibolite metamorphic stage, and faults or shear bands of brittle deformation and greenschist facies metamorphism were formed in the post-orogenic stage since the Late Jurassic and the movement pictures of these faults is different from each other.  相似文献   

16.
The geological-geophysical data on the Pugachevo mud volcano group located in the zone of the submeridional Central Sakhalin Fault (CSF) are analyzed. The results of the density and geothermal modeling along two orthogonal profiles passing through the central part of the Pugachevo area are examined. It is found that the Late Cretaceous sequence of this fault-related area contains a subvertical narrow anomalous deconsolidation cone-shaped zone widening from 1 km on the surface to 4 km at its base (at the depths more than 6 km). The density of the deconsolidation blocks is 2.20–2.22 g/cm3, whereas that of the adjacent blocks reaches around 2.4–2.5 g/cm3. The largest deconsolidation block is located in the Lower Cretaceous Ai Formation, where a vast reservoir zone with mainly hydrocarbon gas (HC) is inferred at depths of more than 4400 m with temperatures of more than 140°C. The modeling results showed that the main reservoir of gases periodically ejected from the Pugachevo mud volcano is localized in the Ai Formation sequence in the tectonically weakened zone of the CSF at depths of 4.5–5.6 km. The overlying sequences contain smaller intermediate reservoirs. The Pugachevo area is promising for economic hydrocarbon reservoirs.  相似文献   

17.
Very-high-resolution seismic data acquired on the Rhône continental shelf were used to address the detailed morphology of Late Pleistocene and post-glacial units (from 18 000 yr BP to the present). Two groups of units can be distinguished. (1) Lower units that are mainly the product of variations in relative sea level. They comprise the last Pleistocene regressive deposits made of alluvial sheets (U0, U1) and, above, transgressive deposits that can be divided into: backstepping transgressive units (U3 and U4a), deposited during the landward retreat of the river mouth and transgressive units (U4b, U4c) laid down during the inundation of the shelf. A prograding littoral/lagoon system (U5/U6) indicating a fluctuation during the rise in sea level caps the transgressive units. This work has emphasized the complexity of these depositional environments, mainly related to a river system situated near the current Petit-Rhône. (2) Upper units that make up the recent Rhône delta and correspond to the current highstand systems tract (HST) developed since the stabilization of relative sea level. Seven prodeltaic lobes have been identified (U7–U13). Two of them are bilobate (U7 and U8) and date from a period when the delta was split as a result of the fluviatile system being progressively divided into several channels. Other prodeltaic lobes (U9, U10) are stacked in front of the distributary's outlet, recording several periods of outflow. The results show a strong correlation with studies on land. The distribution of recent prodeltaic lobes was constrained by canalization of the Rhône river to prevent the effects of climatic crises or other natural disasters.  相似文献   

18.
As both Middle-European and Mediterranean country, the Republic of Croatia is composed of several regional units. Every single natural and geographical unit is not specific only in terms of its general natural features, but also by its role in linking Croatia with the rest of the world. Additional peculiarity of these geographic units is their complementary value, which gives good prerequisites for successful economic development of the country.In Pannonian section of Croatia prevail natural features close to those in other Central-European countries. Namely, this section of Croatia participates in Danube catchment area, linking Croatia with the rest of Central Europe. Dinaric Alps are typical mountainous area; in north-western part of the range (i.e. in the region of Gorski Kotar) they are very narrow, making thus possible a comparatively easy communication between Pannonian part of Croatia and the Adriatic coast. Coastal region of Croatia — stretching along the most of (north)eastern coast of the Adriatic — is predominantly characterised by Mediterranean natural features. Due to its size and share in total area of the country, territorial waters of the Adriatic sea can be accepted as the fourth natural and geographic unit of Croatia.  相似文献   

19.
The Middle Albian Ondarroa turbidite system is a coarse grained, deep water unit which outcrops in the north-eastern part of the Basque-Cantabrian region, west of the Pyrenees. It is about 18 km long and 7 km wide, and shows an unusual ‘L’shape resulting from both a direct morphotectonic confinement and the presence of nearby shallow water carbonate buildups. Eight main facies have been distinguished within this turbidite system: (1) clast-supported conglomerates; (2) mud-supported conglomerates; (3) slump deposits; (4) normally graded pebbly sandstones; (5) cross stratified sandstones; (6) interbedded graded sandstones and mudstones; (7) interbedded non-graded sandstones and mudstones: and (8) mudstones. Inner system, middle system, outer system and basin plain divisions have been distinguished. The inner turbidite system is characterized by stacked channel fill conglomerates and lesser sandy turbidites and mudstones. The middle system consists of sandy and conglomeratic fining upwards sequences, normally several metres thick. The outer system has alternating non-channellized sandstones and mudstones, without any predictable vertical arrangement. The basin plain is characterized by mudstone-siltstone laminations and lesser, randomly occurring thin bedded sandy turbidites. Three main channel fills make up the inner turbidite system. Although all of them can be compared with the valley channel fills of the modern Mississippi Fan, and thus their bases can be interpreted as sequence boundaries, only the lowermost and the uppermost channel bases are documented as allocyclic boundaries. The Ondarroa turbidite system was deposited in an immature passive margin subjected to transtensional movements. It filled a composite pull apart depression with coarse clastics derived from a narrow platform to the north of the present outcrops which was invaded by fan deltas. A major pattern of sinistral strike-slip faulting linked to the opening of the Bay of Biscay is invoked to explain the Ondarroa turbidite system appearance and its tectonic confinement.  相似文献   

20.
An integrated geological analysis of the Himalaya and Indo-Gangetic Plains demonstrates that the Great Vindhyan Basin incorporating large parts of these morphotectonic units were uplifted into an uneven landmass due to the Pre-Mesozoic orogenic cycle. This uneven landmass was eroded off largely during a considerable part of the Devonian and Carboniferous thereby causing partial absence of sedimentary sequences of these periods except in parts of the Tethys Himalaya. The Late Paleozoic epeirogenic movements brought about renewed sedimentation in the Lesser and Tethys Himalayas in the Krol and Tethys Basins, respectively, which was terminated by the Himalayan Orogeny during Late Cretaceous—Early Eocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号