首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

The dismembered ophiolites in Wadi Arais area of the south Eastern Desert of Egypt are one of a series of Neoproterozoic ophiolites found within the Arabian–Nubian Shield (ANS). We present new major, trace, and rare earth element analyses and mineral composition data from samples of the Wadi Arais ophiolitic rocks with the goal of constraining their geotectonic setting. The suite includes serpentinized ultramafics (mantle section) and greenschist facies metagabbros (crustal section). The major and trace element characteristics of the metagabbro unit show a tholeiitic to calc-alkaline affinity. The serpentinized ultramafics display a bastite, or less commonly mesh, texture of serpentine minerals reflecting harzburgite and dunite protoliths, and unaltered relics of olivine, orthopyroxene, clinopyroxene, and chrome spinel can be found. Bulk-rock chemistry confirms harzburgite as the main protolith. The high Mg# (91.93–93.15) and low Al2O3/SiO2 ratios (0.01–0.02) of the serpentinized peridotite, together with the high Cr# (>0.6) of their Cr-spinels and the high NiO contents (0.39–0.49 wt.%) of their olivines, are consistent with residual mantle rocks that experienced high degrees of partial melt extraction. The high Cr# and low TiO2 contents (0.02–0.34 wt.%) of the Cr-spinels are most consistent with modern highly refractory fore-arc peridtotites and suggest that these rocks probably developed in a supra-subduction zone environment.  相似文献   

2.
The Wadi Sikait area lies at about 95 km southwest of Marsa Alam City along the Red Sea Coast, Eastern Desert, Egypt. It is occupied by Precambrian rocks of ophiolitic mélange, metamorphosed sandstones (MSS), gab-bros and monzogranites which were later intruded by lamprophyre dykes and quartz veins. The lamprophyre dykes were extruded in NW-SE and NE-SW trends cutting monzogranites and metamor-phosed sandstones. The lamprophyres are porphyritic and composed of clinopyroxene, olivine and amphibole phenocrysts enclosed in a fine-grained groundmass of clinopyroxene, amphibole, opaque and lithium mica. The al-teration products are represented by amphibole (tremolite-actinolite and hornblende), carbonate, epidote, chlorite, iddingsite, clay minerals, limonite and serpentine. The Sikait lamprophyre dykes can be classified as alkaline lamprophyres characterized by silica contents rang-ing from 41.65 wt% to 50.88 wt% and Na2O>K2O. They are enriched in LILE, LREE and HFSE, but strongly de-pleted in compatible elements such as Cr and Ni relative to the primitive mantle. Sikait lamprophyres have moderate Zr/Hf (35.6-52.8) and Nb/Ta (20.5-22.5) ratios. Most of these features are attributed to the origin of these dykes from the metasomatized mantle affected by subduction-related fluid. These lamprophyres are compositionally similar to Salu lamprophyres in eastern China. The Sikait lamprophyre samples have high LREE (320×10-6-419×10-6) relative to HREE (20×10-6-33×10-6) with ratios (LREE/HREE=11.6-18.7) and no negative Eu anomaly (Eu/Eu*=0.9-1.04). The relative presence of posi-tive Ce anomaly (Ce/Ce*=1.04) in lamprophyre samples suggests the oxidizing condition under which the REEs were precipitated due to the common occurrence of fluorite and apatite.  相似文献   

3.
4.
The studied graphite-bearing rocks are located at Wadi Sikait in the southern part of the Eastern Desert of Egypt to the west of Marsa Alam on the Red Sea coast. They are intruded by granitic rocks and they have low radioactivity level. Mica-graphite schists are considered as a matrix of ophiolitic mélange. Graphite occurs in mica-graphite schists as disseminated grains and in talc carbonates rocks as bands or veins. Petrographically, the mica-graphite schists are mainly composed of quartz, plagioclase, muscovite, biotite, and graphite. Geochemical characteristics show that trace elements analysis reflects higher content in Cr and Ni in ash-free graphite than mica-graphite schists. Spectrometrically, the graphite-bearing rocks at Wadi Sikait are showing eU values greater than eTh values, indicating that the graphite-bearing rocks gain U from the country rocks. The U/eU ratio range from 2.7 to 11 manifesting enrichment of chemical uranium (U) may be related to recent uranium transported from the mineralized country rocks. There is a role of graphite and carbonaceous matter in the genesis of U deposits.  相似文献   

5.
The study focuses on the lateral distribution and the environmental geochemistry of seven heavy metals: Fe, Mn, Cu, Co, Ni, Pb, and Zn in addition to Al in the stream sediments of Wadi Allaqi. Forty-two samples were collected from the upstream, the midstream, and the downstream of this Wadi. Results of the grain size analysis show that the sediments of Wadi Allaqi are fine to medium sand. The heavy metals content reflects the weathering impact on the hinterland. The highest concentrations of Fe, Al, Mn, Cu, Pb, and Zn are recorded in the midstream that is dominated by clastics of felsic and intermediate composition. Moreover, the downstream, occupied by ultrabasic–basic rocks, shows the highest averages of Co and Ni. These results suggest that the felsic and intermediate rocks are the main source of the former metals, whereas the ultrabasic–basic rocks are the source of later two metals. All the analyzed heavy metals have average concentrations lower than their backgrounds, except for Co and Pb. The pollution level by these heavy metals has been evaluated using enrichment ratio (ER), pollution load index (PLI), and index of geoaccumulation (Igeo). The calculated values of ER, CF, PLI, and Igeo indicate that Wadi Allaqi sediments are almost pristine except occasional feeble pollution level by Co and Pb.  相似文献   

6.
A crescent-shape granitic stock and associated dykes is located to the East Gabal Nuqra at the extreme western part of Wadi Natash,South Eastern Desert,Egypt.The examined granites are classified as alkali-feldspar granites and mainly consist of quartz,potash feldspars,plagioclases,and aegirine-augite.Xenotime,zircon,apatite and allanite are accessories representing the source of Y,U,Th and REEs in these rocks.These granites are characterized by high K2O,Na2O and Zn contents and Rb/Sr ratio.Also,they are highly enriched in high field strength elements(HFSE),especially Zr(1529×10-6),Nb(100×10-6),Hf(91×10-6) and Y(624×10-6) and light rare-earth elements(LREE,141×10-6) concentrations and strongly depleted in Ca,Mg,Sr and Eu contents.These features suggest that they are similar to A-type granites(type-2).The rhyolite dykes and granites have similar geochemical characteristics whereas the chondrite-normalized REE patterns show a LREE enriched feature with strong negative Eu-anomaly,whereas the REE pattern of trachydacites show slightly fractionated pattern with no Eu-anomaly.It is suggested that the trachydacites were generated by small degree of partial-melting deep-seated basic source.Such liquid,when subjected to fractional crystallization involving separation of plagioclases as residue,generated the alkali-feldspar granites.And further fractional crystallization gave rise to the alkali rhyolites.The igneous rock suite originated from metaluminous to alkaline trachytic magma,and was developed in a within-plate tectonic environment.The extension caused by NW-SE right-lateral shear in area led to the emplacement of the alkali-feldspar granites.The later extrusion of the alkali rhyolite and trachydacite dykes was due to cauldron subsidence.  相似文献   

7.
Several quartz vein sets with varying orientation, geometry and internal structure were recognized in the Atalla area. The veins were associated with the deformation phases affecting the area. En echelon and extensional veins are the main geometrical types. Syn-kinematic veins associated with the major northeast-over-southwest thrust faults were later boudinaged, folded and re-folded. En echelon veins, fibrous veins, and extensional veins are associated with the NNW–SSE faults. Other veins are associated with the NW–SE, N–S, NE–SW and E–W faults. Veins are concentrated at the intersection zones between faults. The internal structure of the veins comprises syntaxial, antitaxial, and composite types and reflects a change from a compressive stress regime to an extensional one. Chocolate-tablet structures and synchronous and co-genetic vein networks indicate later multi-directional extension of the area. Interaction between cracking and sealing of fractures is a common feature in the study area indicating that it was easy for the pore pressure to open pre-existing fractures instead of creating new ones. The reopening of pre-existing fractures rather than creating new ones is also indicated by the scattering of vein data around σ3. There is an alteration and change in characteristics of the wall rock due to increase in fluid flow rate. Fault-valving probably is also a cause of the complex geometry of some veins.  相似文献   

8.
A unique zircon was studied in the gneiss samples collected from the Wadi Abu Rusheid psammitic gneiss using electron scanning microscope and electron probe microanalyses. This zircon can be categorized into two types according to the texture and trace element content: (l) magmatic zircon slightly enriched in HfO2 with ordinary zone. (2) Overgrowths of zircon occur as two species, the first species being highly enriched in HfO2 with irregular zoning. The second species is highly enriched in HfO2 forming a rim around the second species with a very sharp thinner boundary. The first type shows a distinct oscillatory internal zoning pattern without change in shape of this zone and has conspicuous inclusion-free zircon overgrowths with distinct poor concentrations in Y, Hf, Th, U, Nb, and Ta in both rim and core. The second type shows two species, the first one displays distinct irregular interval zoning and irregular overgrowth with abrupt change in composition of these zones with distinct enrichment in Y, Hf, Th, U, Nb, and Ta in the rim relative to the core. The second species is forming a rim around the first species also with distinct enrichment in Y, Hf, Th, U, Nb, and Ta content. These indicate that two events (crystallization environment) have played an important role in the formation of this zircon and largely reflect differences in whole-rock trace element contents between the successive generations of this zircon. The first event is believed to be of magmatic origin giving rise to normal composition of magmatic zircon. The second event shows an intense successive process of metasomatic activity during the formation of the Abu Rusheid radioactive gneiss. Electron microprobe analysis indicates that oscillatory zoned zircon shows poor content of Y, Hf, Th, U, Nb, Ta, and rare earth elements (REE) in the rim and core, while overgrowths of zircon are slightly enriched by these elements. Also, these analyses indicate that the Abu Rusheid psammitic gneiss has been significantly enriched by the thorite mineral (Th content up to 54.72% ThO2) and columbite-bearing minerals (Nb content up to 64.74% Nb2O5, Ta content up to 9.32% Ta2O5). The poor content of REE in overgrowths of zircon indicates mobilization of REE during the metamorphism processes of gneiss.  相似文献   

9.
The present work deals with the geology, mineralogy, geochemistry, and origin of the metagabbroic-hosted manganese deposits at Wadi Maliek in the southern Eastern Desert of Egypt. The manganese veins are found in the shear zones and channel ways of the fault planes within the metagabbroic rocks pointing to those hydrothermal solutions carrying manganese and iron load penetrating along these fractures. These faults are striking N 80° E?CS 80° W with dipping 65°. These veins vary in thickness from 15?cm up to 125?cm wide; each vein may show difference in thickness from bottom to top. Microscopic examinations, X-ray diffraction, infrared spectral, differential thermal (DTA), thermogravimetric (TGA), and ESEM-EDAX analyses revealed that the manganese minerals consist mainly of pyrolusite, psilomelane, and ramsdellite. Goethite and hematite are the common iron minerals. Petrographically, the manganese deposits can be classified into three ore types based on the predominance of manganese and iron minerals: manganese, manganese?Ciron, and iron ore types. The geochemistry of Maliek deposits indicated that the total averages of some major oxides in manganese, manganese?Ciron, and iron ore types are respectively as follows: SiO2 (15.64%, 11.52%, and 20.58%), MnO (39.9%, 17.81%, and 0.77%), FeO* (7.13%, 33.31%, and 37.08%), CaO (5.89%, 5.82%, and 5.32%), and Na2O (1.04%, 1.61%, and 1.53%). With regard to trace elements, the Maliek manganese deposits are rich in Zn, Ba, Pb, Sr, and V. Based on the geological, mineralogical, and geochemical results, the studied manganese deposits are considered to be precipitated from hydrothermal solution.  相似文献   

10.
A small intrusive fresh gabbroic mass intrudes the Neoproterozoic metasediments and Dokhan volcanics of Wadi Az Zarib area, Central Eastern Desert. It is composed of hornblende gabbros and leuco-hornblende gabbros. Their petrography, opaque mineralogy, and geochemistry are addressed to elucidate their tectonic setting and petrogenesis. They represent a subduction-related calc–alkaline magma that evolved in an island arc setting. In terms of maturity, the supposed arc represents an intermediate stage between continental arc and active continental margin. Thermobarometry and physical–chemical data of the parent magma as deduced from compositions of amphiboles, biotite, and plagioclase indicate crystallization temperatures of 931–825 °C at pressures of 6.16–4.01 kbar and H2Omelt of 6.4–5.2 wt%. Data, as presented, argue in favor of fractional crystallization mechanism to be accounted to the present suite to interpret the observed variations. The evolution of the suite from hornblende gabbros to leuco-hornblende gabbros was accompanied by decreasing of MgO, CaO, Cr, and Ni with simultaneous increasing of Al2O3, TiO2, Na2O, K2O, Ba, Rb, Sr, La, and Ce. Residuals calculated during mass balance fractional crystallization modeling suggest that brown and green hornblendes are the main fractionated phases which derived the melt composition towards the leuco-hornblende gabbros.  相似文献   

11.
Dykes predominate within the Neoproterozoic rocks, especially granites, of Wadi El Redi-Wadi Lahami area in the southern Eastern Desert of Egypt. The dyke swarms form three major suites: from the oldest to the youngest, they are basaltic andesite—Suite 1 (E-W and ENE-WSW), rhyolite—Suite 2 (NE-SW), and andesite—Suite 3 (NNE-SSW, NNW-SSE, and NW-SE). Despite the wide ranges of the dyke compositions, the feldspar and amphibole are usually the essential forming minerals. The plagioclase arrays between Ab0.9An99.10 in the basaltic andesite and Ab98.80An0.70 in the rhyolite, while sanidine ranges from Or44.60Ab49.70 to Or98.40Ab1.60. Amphibole in Suite 1 and 3 (Al2O3, TiO2, Na2O, and K2O are the lowest and those of SiO2 and CaO are the highest) samples are usually magnesio-hornblende, whereas it is edenite and tschermakite in Suite 2 dykes. Despite all parent magmas have calc-alkaline affinity, some elements such as Ni show an erratic behavior against the progressing differentiation from one magma chamber and implying for an assimilation of the country rocks. The high contents of amphibole, the depletion in Ti, and the enrichment in large-ion lithophile elements (such as K, Rb, Ba, Sr, and Ba) compared to the primitive mantle composition are consistent with parent hydrous melts generated due to extension above the subduction zone. The estimated compositions of liquids in equilibrium with amphiboles and the pressures at which they crystallized (4.61–7.8 kbar for the Suite 2 and 1.5–2 kbar for the Suites 1 and 3) are greatly varied. These are indications for a difference in the source regions of the parent magmas of the studied dykes. It is supposed that the Suite 1 and 2 dykes are a conjugate set emplaced due to the NW-SE crustal extension in the Arabian-Nubian shield, whereas the Suite 3 dykes generated due to the rifting along the Red Sea.  相似文献   

12.
13.
The present work concerns two occurrences of Neoproterozoic volcaniclastic metasediments in the Central Eastern Desert (CED) of Egypt namely Alam occurrence and Atalla occurrence. They are mainly composed of bedded successions of feldspathic and feldspathic-lithic metagreywackes, arkosic metagreywackes, metasiltstones, and subordinate metaconglomerates. The rocks have been subjected mainly to various ductile deformational events (D1 and D2) due to NE–SW compression and later deformation (D3). The D1 deformation is synchronous with greenschist facies metamorphism (M1). The Alam metagreywackes show oceanic arc tectonic setting. The greywackes have clasts of quartz, feldspar, and metamorphic amphibole after pyroxene and show variable abundances of Cr, Ni, and V. Their provenance components are mainly of evolved felsic and mafic (bimodal) island arcs. The rocks are suggested to be deposited in a localized “intra-arc basin.” The metagreywackes of Atalla show tectonic setting affinity similar to continental sland arc or active continental margin. Their geochemical characteristics reflect the presence of felsic rocks as the main sources, together with minor inputs of intermediate rocks and reworked mineral grains of quartz and feldspar. They are deposited in a localized “retro-arc basins” of an active continental margin. The whole sequences of both Atalla and Alam sediments have been subjected to deformation and contemporaneous regional metamorphism during arc-arc or arc-continent collision. Newproterozoic clastic metasedimentary rocks in the CED appear to have been deposited in arc-related basins, including interarc or back-arc basins, intra-arc basins, and retro-arc basin of active continental margin.  相似文献   

14.
The ocellar lamprophyre dyke (ENE-WSW) is recorded at Wadi Nugrus, Eastern Desert, Egypt. It cuts porphyritic biotite granites and varies in thickness from 0.5 to 1.5 m and up to 3 km in length. The lamprophyre dyke has been altered, and it is characterized by porphyritic and panidiomorphic textures with plagioclase, olivine, and augite constituting the porphyritic phase in a fine groundmass of the same composition. Rutile, titanite, apatite, fluorite, graphite, calcite, allanite, autunite and Fe-Ti oxides are accessory minerals. Kaolinite, chlorite and epidote are secondary minerals. Carbonitization and hematitization are common. Rounded to sub-rounded porphyritic and zoned ocelli with radiate or brush-like shapes are generally common and represent physical traps for mineralization. The ocellar features are interpreted to represent the late stage of magmatic segregation or magmatic crystallization involving two immiscible magmatic liquids.  相似文献   

15.
Wadi Hammuda is dominated by a variety of low grade regionally metamorphosed volcaniclastic metasediments pertaining to two different geotectonic settings and intruded by arc and late collision granitic rocks. Thus, the volcaniclastic metasediments which form extensive outcrops are considered as a member of island arc assemblages. This paper deals with the petrography, geochemistry, and tectonic setting of the island arc volcaniclastic metasediment rock units. The volcaniclastic metasediments consist of interbedded metagreywackes, metasiltstones, metamudstones, and schists as well as metapyroclastics. They are well foliated, crenulated and tightly folded, metamorphosed, and intruded by granitic rocks. Geochemical data support the petrographic classification and reveal that these volcaniclastic metasediments are generally low-K, essentially tholeiitic in character, with the exception of some metasediments and metapyroclastics which exhibits calc-alkaline and tholeiitic affinities and represent the first stage of island arc volcanism. The overthrusted oceanic lithosphere blocks with fragments of the fore arc and/or back-arc marginal basins volcaniclastic metasediments were incorporated among the island arc volcanics which supported by tectonically relationship between the different rock units in the study area. Contemporaneous with this deformation event, Wadi Hammuda was subjected to low grade regional metamorphism and the rocks document an early phase of shearing and/or foliation. Occasionally minor folds were developed particularly in the metasediments and schists. The subsequent emplacement of the syn-tectonic granites (tonalites and granodiorites) resulted in minor local thrusts. During the regional thrusting event which preceded the emplacement of the late-tectonic granites (alkali feldspar granites) and affected the whole region, low grade successions cover the study area similar to the Meatiq volcaniclastic metasediments.  相似文献   

16.
The Dokhan volcanics are represented by a thick stratified lava flows succession of basalt, andesite, imperial porphyry, dacite, rhyodacite, rhyolite, ignimbrites, and tuffs. These lavas are interbanded with their pyroclastics in some places including banded ash flow tuffs, lithic tuffs, crystal lapilli tuffs, and agglomerates. They are typical calc–alkaline and developed within volcanic arc environment. All rocks show moderate enrichment of most large ion lithophile elements relative to high field strength elements (HFSE). The incompatible trace elements increase from basalt through andesite to rhyolite. The felsic volcanics are characterized by moderate total rare earth elements (REE) contents (162 to 392 ppm), less fractionated patterns {(Ce/Yb)N = (1.24 to 10.93)}, and large negative Eu anomaly {(Eu/Eu*) = (0.15 to 0.92)}. The mafic volcanics have the lowest REE contents (61 to 192 ppm) and are relatively steep {(Ce/Yb)N = (3.2 to 8.5)}, with no negative Eu anomalies {(Eu/Eu*) = (0.88 to 1)}. The rhyolite displays larger negative Eu anomaly (Eu/Eu* = 0.28) than those of other varieties, indicating that the plagioclase was an early major fractionating phase. The mineralogical and chemical variations within volcanics are consistent with their evolution by fractional crystallization of plagioclase and clinopyroxene.  相似文献   

17.
The basement rocks of Abu Marawat area comprise serpentinites (oldest), metavolcanics and their equivalent pyroclastics, intrusive metagabbro–diorite complex, synkinematic granitoids, Hammamat sediments and basic intrusion (youngest). Remote sensing ETM+ data of Abu Marawat area were analyzed, and band ratios technique was applied to discriminate between different varieties of these basement rocks. Serpentinites are represented by lensoidal bodies tectonically incorporated in the metavolcanics. On band ratio 5/7 image, they are characterized by very bright image signature. The metavolcanics comprise basalts, andesite and subordinate dacites together with their equivalent pyroclastics. They were regionally metamorphosed up to the greenschist facies and exhibit dark grey image signatures on band ratio 5/7 image. The metagabbro–diorite complex is made up of metagabbros, diorites and quartz diorites, whereas the synkinematic granitoids are formed of tonalites and granodiorites. The band ratio 5/7 image illustrates tonalites with dark image signature, whereas metagabbro–diorites and granodiorites exhibit grey image signature. The metavolcanic suites are of island arc setting, where metabasalts are of tholeiitic affinity, while the meta-andesites and metadacites are of calc-alkaline character. The metagabbroic and granitoid rocks are of I-type, calc-alkaline affinity and were formed in arc tectonic setting. They are enriched in LIL elements and depleted in Nb and HFS elements, a characteristic feature of subduction-related magmatism. The regular variation trends among the major and trace elements as well as the coincidence of the plotted samples favor the assumption that they are comagmatic and formed by processes such as fractional crystallization.  相似文献   

18.
By comparison with the general features of metamorphic soles (e.g. vertical and lateral extension, metamorphic grade and diagnostic mineral parageneses, deformation and dominant rock types), it is inferred that the amphibolites, metagabbros and hornblendites of the Wadi Um Ghalaga–Wadi Haimur area in the southern part of the Eastern Desert of Egypt represent the metamorphic sole of the Wadi Haimur ophiolite belt. The overlying ultramafic rocks represent overthrusted mantle peridotite. Mineral compositions and thermobarometric studies indicate that the rocks of the metamorphic sole record metamorphic conditions typical of such an environment. The highest P – T conditions ( c . 700 °C and 6.5–8.5 kbar) are preserved in clinopyroxene amphibolites and garnet amphibolites from the top of the metamorphic sole, which is exposed in the southern part of the study area. The massive amphibolites and metagabbros further north (Wadi Haimur) represent the basal parts of the sole and show the lowest P – T  conditions (450–620 °C and 4.7–7.8 kbar). The sole is the product of dynamothermal metamorphism associated with the tectonic displacement of ultramafic rocks. Heat was derived mainly from the hot overlying mantle peridotites, and an inverted P – T  gradient was caused by dynamic shearing during ophiolite emplacement. Sm/Nd dating of whole-rock–metamorphic mineral pairs yields similar ages of c . 630 Ma for clinopyroxene and hornblende, which is interpreted as a lower age limit for ophiolite formation and an upper age limit for metamorphism. A younger Sm/Nd age for a garnet-bearing rock ( c . 590 Ma) is interpreted as reflecting a meaningful cooling age close to the metamorphic peak. Hornblende K/Ar ages in the range 570–550 Ma may reflect thermal events during late orogenic granite magmatism.  相似文献   

19.
Quartz-diorite, gneissose granodiorites, two-mica granite and perthite leucogranie are the main rock units cropping out in the Wadi Ghadir area, South Eastern Desert of Egypt. Along the NNE-SSW mega-faults, a broad brittle shear zone is developed in the Ghadir two-mica granite. Brittle deformation is manifested by severe myloniti-zation and alteration of these granites. These sheared altered granites are characterized by the presence of radioactive mineralization, associated with alteration features such as silicification, hematization and kaolinitization. Radioelement measurements revealed that the unaltered and altered two-mica granites are considered as uraniferous granites. The average uranium and thorium contents in the unaltered two-mica granites are 12.29×10-6 and 19.81×10-6, respectively, and the average Th/U ratio is 1.62. The altered granites exhibit higher concentrations of U (averaging 97.949), but have lower Th and Th/U ratios (13.83 and 0.16, respectively), which indicates uranium enrichment in the granites. Binary relations of eTh/eU against either eU or eTh and eU with eTh in the studied gran-ites suggest that the distribution of radioactive elements not only magmatic (positive correlation between eU and eTh), but also due to hydrothermal redistribution of radioelements (weak correlation between eU and eTh/eU). The magmatic U and Th are indicated by the presence of uraninite, thorite, zircon and monazite whereas the evidence of hydrothermal mineralization is the alteration of rock-forming minerals such as feldspar and the forma-tion of secondary minerals such as uranophane and pyrite. Microscopic, XRD and scanning electron microscopic studies revealed the presence of uraninite, uranophane, thorite, Ce-monazite and zircon, in addition to phlogopite-fluor mica in the studied altered granites of the Wadi Ghadir shear zone.  相似文献   

20.
The study area is located in the central part of the Eastern Desert of Egypt and is mainly covered by different varieties of Precambrian basement rocks represented mainly by younger and older granites, metadiorite, metavolcanics, and metasediments. The analysis and interpretation of airborne gamma-ray spectrometric survey data are essentially based on the computation of the three radioelements (U, Th, and K) favorability indices, estimation of uranium migration rate percentage, variation of eU with eTh and eU/eTh ratio, and the construction of the contour map of the (eU-eTh/3.5) in the different rock units. The highest percent of uranium migration- out or leaching rate is connected with the red and pink granites of Gebel Kadabora El-hamra, metadiorite, and red and pink granites of G. Umm Rakham (??20.8%, ??18.57%, and ??8.45% respectively), which indicates that they could represent a major U-source bodies in the area. It was observed that the metasediments and associated graphite-bearing schists west and northwest of G. Kadabora El-hamra reflect more precipitation than the other locations around the pluton (the uranium migration rates varies between 2.59 and 30%) which mean that the graphite may have acted as a reducing agent for uranium carried in oxidizing fluids (surface meteoric water) and resulted in its precipitation. In the light of the availability of uranium source, its mobility, and graphite-bearing metasediments, the area has a good potential for the possible occurrence of uranium mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号