首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Y. R. Chou  B. C. Low 《Solar physics》1994,153(1-2):255-285
Three-dimensional, quasi-static evolutions of coronal magnetic fields driven by photospheric flux emergence are modeled by a class of analytic force-free magnetic fields. Our models relate commonly observed photospheric magnetic phenomena, such as the formation and growth of sunspots, the emergence of an X-type separator, and the collision and merging of sunspots, to the three-dimensional magnetic fields in the corona above. By tracking the evolution in terms of a continuous sequence of force-free states, we show that flux emergence and submergence along magnetic neutral lines in the photosphere are essential processes in all these photospheric phenomena. The analytic solutions we present have a parametric regime within which the magnetic energy attained by an evolving force-free field may be of the order of 1030 ergs to several 1031 ergs, depending on the magnetic environment into which an emerging flux intrudes. The commonly used indicators of magnetic shear in magnetogram interpretation are discussed in terms of field connectivity in our models. It is demonstrated that the crossing angle of the photospheric transverse magnetic field with the neutral line may not be a reliable indicator of the magnetic shear in the coronal field above, due to the complexity of three-dimensionality. The poorly understood constraint of magnetic-helicity conservation on the availability of magnetic free energy for a flare is briefly discussed.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

2.
Reliable measurements of the solar magnetic field are restricted to the level of the photosphere. For about half a century attempts have been made to calculate the field in the layers above the photosphere, i.e. in the chromosphere and in the corona, from the measured photospheric field. The procedure is known as magnetic field extrapolation. In the superphotospheric parts of active regions the magnetic field is approximately force-free, i.e. electric currents are aligned with the magnetic field. The practical application to solar active regions has been largely confined to constant-α or linear force-free fields, with a spatially constant ratio, α, between the electric current and the magnetic field. We review results obtained from extrapolations with constant-α force-free fields, in particular on magnetic topologies favourable for flares and on magnetic and current helicities. Presently, different methods are being developed to calculate non-constant-α or nonlinear force-free fields from photospheric vector magnetograms. We also briefly discuss these methods and present a comparison of a linear and a nonlinear force-free magnetic field extrapolation applied to the same photospheric boundary data. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
It is shown that for a class of force-free magnetic fields, i.e., ∇ × B = α B with α = constant, the magnetic field cannot be determined uniquely from the observed vertical component of the photospheric magnetic field given in an area of limited extent. Then it is proposed how some functions, the additional knowledge of which permits the magnetic field to be determined uniquely, could be chosen as a first approximation.  相似文献   

4.
B. C. Low 《Solar physics》1982,77(1-2):43-61
This paper presents a new class of exact solutions describing the non-linear force-free field above a spatially localized photospheric bipolar magnetic region. An essential feature is the variation in all three Cartesian directions and this could not be modelled adequately with previously known symmetric force-free fields. Sequences of force-free fields are constructed and analyzed to simulate the slow growth of a pair of spots on the photosphere. The axis connecting the spots executes rotational motion, distorting the photospheric neutral line separating fluxes of opposite signs. We show directly from the analytic solutions that the resulting reversal of the positions of the spots relative to the background field is associated with (i) the creation of magnetic free energy, (ii) the severe shearing of localized low-lying loops in the vicinity where the photospheric transverse field aligns with the photospheric neutral line, and (iii) the emergence and disappearance of flux from the photosphere at these highly stressed regions. The model relates theoretically for the first time these different magnetic field features that have been suggested by observation and theoretical considerations to be flare precursors. A general formula, based on the virial theorem, is also given for the free energy of a force-free field, strictly in terms of the field value at the photosphere. This formula has obvious practical application.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

5.
We present a novel numerical method that allows the calculation of nonlinear force-free magnetostatic solutions above a boundary surface on which only the distribution of the normal magnetic field component is given. The method relies on the theory of force-free electrodynamics and applies directly to the reconstruction of the solar coronal magnetic field for a given distribution of the photospheric radial field component. The method works as follows: we start with any initial magnetostatic global field configuration (e.g. zero, dipole), and along the boundary surface we create an evolving distribution of tangential (horizontal) electric fields that, via Faraday’s equation, give rise to a respective normal-field distribution approaching asymptotically the target distribution. At the same time, these electric fields are used as boundary condition to numerically evolve the resulting electromagnetic field above the boundary surface, modeled as a thin ideal plasma with non-reflecting, perfectly absorbing outer boundaries. The simulation relaxes to a nonlinear force-free configuration that satisfies the given normal-field distribution on the boundary. This is different from existing methods relying on a fixed boundary condition – the boundary evolves toward the a priori given one, at the same time evolving the three-dimensional field solution above it. Moreover, this is the first time that a nonlinear force-free solution is reached by using only the normal field component on the boundary. This solution is not unique, but it depends on the initial magnetic field configuration and on the evolutionary course along the boundary surface. To our knowledge, this is the first time that the formalism of force-free electrodynamics, used very successfully in other astrophysical contexts, is applied to the global solar magnetic field.  相似文献   

6.
The magnetic shear at a point within an active region field configuration can be defined (Hagyard et al., 1984b) as the difference in angle between the observed photospheric transverse field and that of a reference potential field calculated using the observed line-of-sight field as a boundary condition. Using analytic models for non-potential (but force-free) fields representative of preflaring active regions, we calculate the degree of magnetic shear along the magnetic neutral line that such fields would exhibit, as a function of the location and orientation of the active region on the solar disk. We find that, except for regions close to disk center, the position of the inferred neutral line (zero line-of-sight field) is significantly different from the actual neutral line (zero radial field), and that the calculated reference potential field also varies significantly with the position of the region. Thus the inferred degree of shear can vary significantly with the position and orientation of the region, due to (a) straightforward geometric projection effects, (b) the shift of the inferred neutral line relative to its true position, and (c) variations in the reference potential field. The significance of these results for flare prediction is considered.Presidential Young Investigator.  相似文献   

7.
We develop an approach to deriving the three-dimensional non-force-free coronal magnetic field from vector magnetograms. Based on the principle of minimum dissipation rate, a general non-force-free magnetic field is expressed as the superposition of one potential field and two constant-α (linear) force-free fields. Each is extrapolated from its bottom boundary data, providing the normal component only. The constant-α parameters are distinct and determined by minimizing the deviations between the numerically computed and measured transverse magnetic field at the bottom boundary. The boundary conditions required are at least two layers of vector magnetograms, one at the photospheric level and the other at the chromospheric level, presumably. We apply our approach to a few analytic test cases, especially to two nonlinear force-free cases examined by Schrijver et al. (Solar Phys. 235, 161, 2006). We find that for one case with small α parameters, the quantitative measures of the quality of our result are better than the median values of those from a set of nonlinear force-free methods. The reconstructed magnetic-field configuration is valid up to a vertical height of the transverse scale. For the other cases, the results remain valid to a lower vertical height owing to the limitations of the linear force-free-field solver. Because our method is based on the fast-Fourier-transform algorithm, it is much faster and easy to implement. We discuss the potential usefulness of our method and its limitations.  相似文献   

8.
The generally accepted scenario for the events leading up to a two-ribbon flare is that a magnetic arcade (supporting a plage filament) responds to the slow photospheric motions of its footpoints by evolving passively through a series of (largely) force-free equilibria. At some critical amount of shear the configuration becomes unstable and erupts outwards. Subsequently, the field closes back down in the manner modelled by Kopp and Pneuman (1976); but the main problem has been to explain the eruptive instability.The present paper analyses the magnetohydrodynamic stability of several possible arcade configurations, including the dominant stabilizing effect of line-tying at the photospheric footpoints. One low-lying force-free structure is found to be stable regardless of the shear; also some of the arcades that lie on the upper branch of the equilibrium curves are shown to be stable. However, another force-free configuration appears more likely to represent the preflare structure. It consists of a large flux tube, anchored at its ends and surrounded by an arcade, so that the field transverse to the arcade axis contains a magnetic island. Such a configuration is found to become unstable when either the length of the structure, the twist of the flux tube, or the height of the island becomes too great; the higher the tube is situated, the smaller is the twist required for instability.  相似文献   

9.
Knowledge regarding the coronal magnetic field is important for the understanding of many phenomena, like flares and coronal mass ejections. Because of the low plasma beta in the solar corona, the coronal magnetic field is often assumed to be force-free and we use photospheric vector magnetograph data to extrapolate the magnetic field into the corona with the help of a nonlinear force-free optimization code. Unfortunately, the measurements of the photospheric magnetic field contain inconsistencies and noise. In particular, the transversal components (say B x and B y) of current vector magnetographs have their uncertainties. Furthermore, the magnetic field in the photosphere is not necessarily force free and often not consistent with the assumption of a force-free field above the magnetogram. We develop a preprocessing procedure to drive the observed non–force-free data towards suitable boundary conditions for a force-free extrapolation. As a result, we get a data set which is as close as possible to the measured data and consistent with the force-free assumption.  相似文献   

10.
M. A. Raadu 《Solar physics》1972,22(2):425-433
Energy storage in chromospheric flux ropes is discussed, in the context of solar flares. The structure is represented by a cylindrically symmetric magnetic field of finite length. The field is assumed to be approximately force-free. The stability of the field to a kink perturbation is investigated. Flux ropes are rooted in dense photospheric material. So the ends of the field lines are taken to be fixed on rigid boundaries for all perturbations. An energy perturbation method is used and the boundary conditions give a stabilizing effect. It is shown that for a moderate degree of twisting the fields are stable to a kink perturbation. Thus energy can be stored in cylindrical fields prior to release in a solar flare.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

11.
Photospheric motion shears or twists solar magnetic fields to increase magnetic energy in the corona, because this process may change a current-free state of a coronal field to force-free states which carry electric current. This paper analyzes both linear and nonlinear two-dimensional force-free magnetic field models and derives relations of magnetic energy buildup with photospheric velocity field. When realistic data of solar magnetic field (B 0 103 G) and photospheric velocity field (v max 1 km s–1) are used, it is found that 3–4 hours are needed to create an amount of free magnetic energy which is of the order of the current-free field energy. Furthermore, the paper studies situations in which finite magnetic diffusivities in photospheric plasma are introduced. The shearing motion increases coronal magnetic energy, while the photospheric diffusion reduces the energy. The variation of magnetic energy in the coronal region, then, depends on which process dominates.  相似文献   

12.
Wiegelmann  T. 《Solar physics》2004,219(1):87-108
We developed a code for the reconstruction of nonlinear force-free and non-force-free coronal magnetic fields. The 3D magnetic field is computed numerically with the help of an optimization principle. The force-free and non-force-free codes are compiled in one program. The force-free approach needs photospheric vector magnetograms as input. The non-force-free code additionally requires the line-of-sight integrated coronal density distribution in combination with a tomographic inversion code. Previously the optimization approach has been used to compute magnetic fields using all six boundaries of a computational box. Here we extend this method and show how the coronal magnetic field can be reconstructed only from the bottom boundary, where the boundary conditions are measured with vector magnetographs. The program is planed for use within the Stereo mission.  相似文献   

13.
Improvements to an existing method for calculating nonlinear force-free magnetic fields (Wheatland, Solar Phys. 238, 29, 2006) are described. In particular a solution of the 3-D Poisson equation using 2-D Fourier transforms is presented. The improved nonlinear force-free method is demonstrated in application to linear force-free test cases with localized nonzero values of the normal component of the field in the boundary. These fields provide suitable test cases for nonlinear force-free calculations because the boundary conditions involve localized nonzero values of the normal components of the field and of the current density, and because (being linear force-free fields) they have more direct numerical solutions. Despite their simplicity, fields of this kind have not been recognized as test cases for nonlinear methods before. The examples illustrate the treatment of the boundary conditions on current in the nonlinear force-free method, and in particular the limitations imposed by field lines that connect outside of the boundary region.  相似文献   

14.
S. Régnier 《Solar physics》2012,277(1):131-151
In the last decades, force-free-field modelling has been used extensively to describe the coronal magnetic field and to better understand the physics of solar eruptions at different scales. Especially the evolution of active regions has been studied by successive equilibria in which each computed magnetic configuration is subject to an evolving photospheric distribution of magnetic field and/or electric-current density. This technique of successive equilibria has been successful in describing the rate of change of the energetics for observed active regions. Nevertheless the change in magnetic configuration due to the increase/decrease of electric current for different force-free models (potential, linear and nonlinear force-free fields) has never been studied in detail before. Here we focus especially on the evolution of the free magnetic energy, the location of the excess of energy, and the distribution of electric currents in the corona. For this purpose, we use an idealised active region characterised by four main polarities and a satellite polarity, allowing us to specify a complex topology and sheared arcades to the coronal magnetic field but no twisted flux bundles. We investigate the changes in the geometry and connectivity of field lines, the magnetic energy and current-density content as well as the evolution of null points. Increasing the photospheric current density in the magnetic configuration does not dramatically change the energy-storage processes within the active region even if the magnetic topology is slightly modified. We conclude that for reasonable values of the photospheric current density (the force-free parameter α<0.25 Mm−1), the magnetic configurations studied do change but not dramatically: i) the original null point stays nearly at the same location, ii) the field-line geometry and connectivity are slightly modified, iii) even if the free magnetic energy is significantly increased, the energy storage happens at the same location. This extensive study of different force-free models for a simple magnetic configuration shows that some topological elements of an observed active region, such as null points, can be reproduced with confidence only by considering the potential-field approximation. This study is a preliminary work aiming at understanding the effects of electric currents generated by characteristic photospheric motions on the structure and evolution of the coronal magnetic field.  相似文献   

15.
Topology of Magnetic Field and Coronal Heating in Solar Active Regions   总被引:2,自引:0,他引:2  
Force-free magnetic fields can be computed by making use of a new numerical technique, in which the fields are represented by a boundary integral equation based on a specific Green's function. Vector magnetic fields observed on the photospheric surface can be taken as the boundary conditions of this equation. In this numerical computation, the following two points are emphasized: (1) A new method for data reduction is proposed, for removing uncertainties in boundary data and determining the parameter in this Green's function, which is important for solving the boundary integral equation. In this method, the transverse components of the observed boundary field are calibrated with a linear force-free field model without changing their azimuth. (2) The computed 3-D fields satisfy the divergence-free and force-free conditions with high precision. The alignment of these field lines is mostly in agreement with structures in Hα and Yohkoh soft X-ray images. Since the boundary data are calibrated with a linear force-free field model, the computed 3-D magnetic field can be regarded as a quasi-linear force-free field approximation. The reconstruction of 3-D magnetic field in active region NOAA 7321 was taken as an example to quantitatively exhibit the capability of our new numerical technique.  相似文献   

16.
The coronal magnetic field cannot be directly observed, but, in principle, it can be reconstructed from the comparatively well observed photospheric magnetic field. A?popular approach uses a nonlinear force-free model. Non-magnetic forces at the photosphere are significant, meaning the photospheric data are inconsistent with the force-free model, and this causes problems with the modeling (De Rosa et?al., Astrophys. J. 696, 1780, 2009). In this paper we present a numerical implementation of the Grad?CRubin method for reconstructing the coronal magnetic field using a magnetostatic model. This model includes a pressure force and a non-zero magnetic Lorentz force. We demonstrate our implementation on a simple analytic test case and obtain the speed and numerical error scaling as a function of the grid size.  相似文献   

17.
The evolution of vector photospheric magnetic fields has been studied in concert with photospheric spot motions for a flare-productive active region. Over a three-day period (5–7 April, 1980), sheared photospheric velocity fields inferred from spot motions are compared both with changes in the orientation of transverse magnetic fields and with the flare history of the region. Rapid spot motions and high inferred velocity shear coincide with increased field alignment along the B L= 0 line and with increased flare activity; a later decrease in velocity shear precedes a more relaxed magnetic configuration and decrease in flare activity. Crude energy estimates show that magnetic reconfiguration produced by the relative velocities of the spots could cause storage of 1032 erg day–1, while the flares occurring during this time expended 1031 erg day–1.Maps of vertical current density suggest that parallel (as contrasted with antiparallel) currents flow along the stressed magnetic loops. For the active region, a constant-, force-free magnetic field (J = B) at the photosphere is ruled out by the observations.Presently located at NASA/MSFC, Huntsville, Ala. 35812, U.S.A.  相似文献   

18.
A method is developed which for a certain day permits the approximate calculation of closed small and large scale magnetic field lines. From the photospheric longitudinal components of the magnetic field measured at this day normal components are derived taking into account the curvature of the solar surface. The magnetic fields are assumed to be potential or force-free fields.The method is applied to observations of September 5 and September 7, 1973. The projected magnetic field lines are compared with the loop structures which are visible in XUV pictures taken on these days. In the cases where no good agreement could be obtained for potential fields, force-free fields are calculated and fitted to the observed structures.  相似文献   

19.
Computation of solar magnetic fields from photospheric observations   总被引:1,自引:0,他引:1  
The observational difficulties of obtaining the magnetic field distribution in the chromosphere and corona of the Sun has led to methods of extending photospheric magnetic measurements into the solar atmosphere by mathematical procedures. A new approach to this problem presented here is that a constant alpha force-free field can be uniquely determined from the tangential components of the measured photospheric flux alone. The vector magnetographs now provide measurements of both the solar photospheric tangential and the longitudinal magnetic field. This paper presents derivations for the computation of the solar magnetic field from these type of measurements. The fields considered are assumed to be a constant alpha force-free fields or equivalent, producing vanishing Lorentz forces. Consequently, magnetic field lines and currents are related by a constant and hence show an identical distribution. The magnetic field above simple solar regions are described from the solution of the field equations.  相似文献   

20.
Magnetic field extrapolation is an alternative method to study chromospheric and coronal magnetic fields. In this paper, two semi-analytical solutions of force-free fields (Low and Lou in Astrophys. J. 352:343, 1990) have been used to study the errors of nonlinear force-free (NLFF) fields based on force-free factor α. Three NLFF fields are extrapolated by approximate vertical integration (AVI) Song et al. (Astrophys. J. 649:1084, 2006), boundary integral equation (BIE) Yan and Sakurai (Sol. Phys. 195:89, 2000) and optimization (Opt.) Wiegelmann (Sol. Phys. 219:87, 2004) methods. Compared with the first semi-analytical field, it is found that the mean values of absolute relative standard deviations (RSD) of α along field lines are about 0.96–1.19, 0.63–1.07 and 0.43–0.72 for AVI, BIE and Opt. fields, respectively. While for the second semi-analytical field, they are about 0.80–1.02, 0.67–1.34 and 0.33–0.55 for AVI, BIE and Opt. fields, respectively. As for the analytical field, the calculation error of 〈|RSD|〉 is about 0.1∼0.2. It is also found that RSD does not apparently depend on the length of field line. These provide the basic estimation on the deviation of extrapolated field obtained by proposed methods from the real force-free field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号