首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Seasonal and intraseasonal variations of the surface Taiwan Warm Current   总被引:1,自引:0,他引:1  
To study seasonal and intraseasonal variations of the Taiwan Warm Current (TWC) in detail Rotated Empirical Orthogonal Function (REOF) and Extended Associate Pattern Analysis (EAPA) are jointly adopted with daily sea surface salinity (SSS), sea surface temperature (SST) and sea surface height (SSH) datasets covering 1126 days from American Navy Experimental Real-Time East Asian Seas Ocean Nowcast System in the present paper. Results show that the first and second REOFs of SST in the southern East China Sea (SECS) account for 50.8% and 39.8% of the total variance. The surface TWC contains persistent (multi-year mean), seasonal and intraseasonal components. The persistent one mainly inosculates with the Kuroshio but the seasonal and intraseasonal ones are usually active only on the continental shelf. Its persistent component is produced by inertial flow of the Kuroshio, however its seasonal and intraseasonal ones seems coming from seasonal and intraseasonal oscillations of monsoon force. The seasonal one reaches its maximum in late summer,lasting about four months and the intraseasonal one takes place at any seasons, lasting more than 40 days.  相似文献   

2.
In this work, Princeton Ocean Model (POM) was used to study the formation of the South China Sea Warm Current (SCSWC) in the barotropic case. Monthly averaged wind stress and the inflow/outflow transports in January were used in the numerical simulation which reproduced the SCSWC. The effects of wind stress and inflow/outflow were studied separately. Numerical experiments showed thatthe Kuroshio intrusion through the Luzon Strait and the slope shelf in the northern SCS are necessary conditions for the founation of the SCSWC. In a flat bottom topography experiment, the wind stress drivennortheast current in the northern SCS is a compensatory current.  相似文献   

3.
Based on field data for nutrients collected on the continental shelf of the East China Sea (ECS) during summer 2006, the structure and variations of nutrients in every water mass related to the Taiwan Warm Current (TWC) were analyzed. The supplementary effect of nutrient of upwelling on harmful algal blooms (HABs) in the ECS was also estimated, based on upwelling data. Then the maintenance contribution of nutrient of upwelling to HABs was assessed. The results showed that N/P ratio is fairly low in both surface and deep layers of the TWC, which possibly controls nutrient structure of the HABs-frequently-occuring areas. In upwelling areas, the rate of phosphate (PO4-P) uptake exceeds that of nitrate (NO3-N) of the TWC. The TWC may relieve PO4-P limitation during the process of HABs. Furthermore, upwelling plays an important role in providing nutrients to HABs. After estimating nutrient fluxes (NO3-N, PO4-P, SiO3-Si) in the upwelling areas along a typical section (S07), the results showed that the nutrient uptake rate is the greatest at 10–20 m below euphotic zone, sustaining the ongoing presence of HABs. The uptake rate of PO4-P is the highest among dissolved inorganic nutrients. Therefore, upwelling is most likely the main source of PO4-P supply to HABs.  相似文献   

4.
An improved 3-D ECOM-si model was used to study the impact of seasonal tide variation on saltwater intrusion into the Changjiang River estuary, especially at the bifurcation of the North Branch (NB) and the South Branch (SB). The study assumes that the river discharge and wind are constant. The model successfully reproduced the saltwater intrusion. During spring tide, there is water and salt spillover (WSO and SSO) from the NB into the SB, and tidally averaged (net) water and salt fluxes are 985 m3/s and 24.8 ton/s, respectively. During neap tide, the WSO disappears and its net water flux is 122 m3/s. Meanwhile, the SSO continues, with net salt flux of 1.01 ton/s, much smaller than during spring tide. Because the tidal range during spring tide is smaller in June than in March, overall saltwater intrusion is weaker in June than in March during that tidal period. However, the WSO and SSO still exist in June. Net water and salt fluxes in that month are 622 m3/s and 15.35 ton/s, respectively, decreasing by 363 m3/s and 9.45 ton/s over those in March. Because tidal range during neap tide is greater in June than in March, saltwater intrusion in June is stronger than in March during that tidal period. The WSO and SSO appear in June, with net water and salt fluxes of 280 m3/s and 8.55 ton/s, respectively, increasing by 402 m3/s and 7.54 ton/s over those in March. Saltwater intrusion in the estuary is controlled by the river discharge, semi-diurnal flood-ebb tide, semi-monthly spring or neap tide, and seasonal tide variation.  相似文献   

5.
Analysis of seasonal variation of water masses in East China Sea   总被引:5,自引:0,他引:5  
Seasonal variations of water masses in the East China Sea (ECS) and adjacent areas are investigated, based on historical data of temperature and salinity (T-S). Dynamic and thermodynamic mechanisms that affect seasonal variations of some dominant water masses are discussed, with reference to meteorological data. In the ECS above depth 600 m, there are eight water masses in summer but only five in winter. Among these, Kuroshio Surface Water (KSW), Kuroshio Intermediate Water (KIW), ECS Surface Water (ECSSW), Continental Coastal Water (CCW), and Yellow Sea Surface Water (YSSW) exist throughout the year. Kuroshio Subsurface Water (KSSW), ECS Deep Water (ECSDW), and Yellow Sea Bottom Water (YSBW) are all seasonal water masses, occurring from May through October. The CCW, ECSSW and KSW all have significant seasonal variations, both in their horizontal and vertical extents and their T-S properties. Wind stress, the Kuroshio and its branch currents, and coastal currents are dynamic factors for seasonal variation in spatial extent of the CCW, KSW, and ECSSW, whereas sea surface heat and freshwater fluxes are thermodynamic factors for seasonal variations of T-S properties and thickness of these water masses. In addition, the CCW is affected by river runoff and ECSSW by the CCW and KSW.  相似文献   

6.
Based on the EOF analyses of Absolute Dynamic Topography satellite data,it is found that,in summer,the northern South China Sea(SCS) is dominated by an anticyclonic gyre whilst by a cyclonic one in winter.A connected single-layer and two-layer model is employed here to investigate the dynamic mechanism of the circulation in the northern SCS.Numerical experiments show that the nonlinear term,the pressure torque and the planetary vorticity advection play important roles in the circulation of the northern SCS,whilst the contribution by seasonal wind stress curl is local and limited.Only a small part of the Kuroshio water intrudes into the SCS,it then induces a positive vorticity band extending southwestward from the west of the Luzon Strait(LS) and a negative vorticity band along the 200 m isobath of the northern basin.The positive vorticity field induced by the local summer wind stress curl is weaker than that induced in winter in the northern SCS.Besides the Kuroshio intrusion and monsoon,the water transports via the Sunda Shelf and the Sibutu Passage are also important to the circulation in the northern SCS,and the induced vorticity field in summer is almost contrary to that in winter.The strength variations of these three key factors(Kuroshio,monsoon and the water transports via the Sunda Shelf and the Sibutu Passage) determine the seasonal variations of the vorticity and eddy fields in the northern SCS.As for the water exchange via the LS,the Kuroshio intrusion brings about a net inflow into the SCS,and the monsoon has a less effect,whilst the water transports via the Sunda Shelf and the Sibutu Passage are the most important influencing factors,thus,the water exchange of the SCS with the Pacific via the LS changes dramatically from an outflow of the SCS in summer to an inflow into the SCS in winter.  相似文献   

7.
Since the volume transport across the pycnocline is much smaller than that in the mixed layer, the current in the mixed layer can be regarded as non-divergent. An objective analysis method is deduced based on this hypothesis. The linear combination method is used to solve the non-divergent component of the current field of an ocean basin containing islands, which is equivalent to a mathematical problem of solving a Poisson equation in a multi-connected domain. The method is applied to the Bohai Sea, the Yellow Sea and the East China Sea (ECS). The modeled result is consistent with the current maps constructed by other oceanographers.  相似文献   

8.
The size-fractionated phytoplankton biomass, and the spatial and temporal variations in abundance of Synechococcus (SYN) and picoeukaryotes (PEUK) were measured in the Taiwan Strait during three cruises (August 1997, February-March 1998, and August 1998). The results show that picophytoplankton and nanophytoplankton dominate the phytoplankton biomass, in average of 38% and 40%, respectively. SYN and PEUK varied over time in abundance and carbon biomass, greater in summer than in winter, in range of (7.70–20...  相似文献   

9.
In this part, Levitus‘ climatological temperature and salinity are incorporated in the numerical model developed in Part I. Diagnostic and prognostic experiment on the thermohaline circulation were conducted. The smooth Levitus‘ data do not include any information on the South China Sea Warm Current (SCSWC), so it is not in the model-produced diagnostic thermohaline circulation. Although the SCSWC does not appear in the wind-driven circulation in the barotropic case, it appears in the prognostic wind-driven circulation in the baroclinic case. This implies that the differing circulation pat-terns between barotropic case and bareclinic case are due to the stratification. The prognostic thermohaline circulation with wind stress and inflow/outflow transports at open boundaries are also discussed. Coupling of density and dynamic forces makes the circulation pattern more complicated, Even though the stratification is not always a direct cause of the formation of the SCSWC, it is at least an indirect cause.  相似文献   

10.
The circulations off the Changjiang mouth in May and November were simulatedby a three dimension numerical model with monthly averaged parameters of dynamic factors in this paper. The area covers the East China Sea (ECS), Yellow Sea and Bohai Sea. Simulated results show that the circulation off the Changjiang mouth in spring and autumn is mainly the Changjiang runoff and Taiwan Warm Current (TWC). The Changjlang discharge is much larger in May than in November, and the wind is westward in May, and southward in November offthe Changjiang mouth. The runoff in May branches in three parts, one eastward flows, the other two flow northward and southward along the Subei and Zhejiang coast respectively. The Changjiang diluted water expands eastward off the mouth, and forms a strong salinity front near the mouth. Surface circulation in autumn is similar to that in winter, the runoff southward flows along the coast, and the northward flowing TWC becomes weaker compared to that in spring and summer. The bottom circulations in May and November are mainly the runoff near the mouth and the TWC off the mouth, and the runoff and TWC are greater in May than in November.  相似文献   

11.
Water samples were collected in the coastal area of the Changjiang Estuary on four cruises from August 2002 to May 2003. The seasonal variations of dissolved inorganic arsenic (DIAs) distributions were analyzed. The results showed that the distributions of DIAs were mainly influenced by Water (KSSW). The concentration of the total dissolved the terrestrial input and the intrusion of the Kuroshio Subsurface inorganic arsenic (TDIAs) decreased consecutively from winter to summer, while it increased in autumn. The distributions of TDIAs showed some relationships with salinity and suspended particulate matter (SPM). The relationships between DIAs speciation (including arsenite [ As( Ⅲ ) ] and arsenate [ As( Ⅴ ) ]), biological activity and the availabilities of the phosphate were investigated in the study area for the cruise August 2002. The ratio of As (Ⅲ)/TDIAs increased with the decrease of phosphate concentrations. In the bottom water, the As( Ⅲ )/TDIAs ratio decreased with the increasing of N/P. The concentration of TDIAs decreased 28.7% approximately after the occurrence of harmful algal blooms (HAB) because of the uptake of arsenate by algae. Further study is needed about the arsenic source/sink relationships in their vertical or horizontal profiles and the uptake mechanism during the occurrence of harmful algal blooms.  相似文献   

12.
In the South China Sea(SCS), the subsurface chlorophyll maximum(SCM) is frequently observed while the mechanisms of SCM occurrence have not been well understood. In this study, a 1-D physical-biochemical coupled model was used to study the seasonal variations of vertical profiles of chlorophyll-a(Chl-a) in the SCS. Three parameters(i.e., SCM layer(SCML) depth, thickness, and intensity) were defined to characterize the vertical distribution of Chl-a in SCML and were obtained by fitting the vertical profile of Chl-a in the subsurface layer using a Gaussian function. The seasonal variations of SCMs are reproduced reasonably well compared to the observations. The annual averages of SCML depth, thickness, and intensity are 75 ± 10 m, 31 ± 6.7 m, and 0.37 ± 0.11 mg m-3, respectively. A thick, close to surface SCML together with a higher intensity occurs during the northeastern monsoon. Both the SCML thickness and intensity are sensitive to the changes of surface wind speed in winter and summer, but the surface wind speed exerts a minor influence on the SCML depth; for example, double strengthening of the southwestern monsoon in summer can lead to the thickening of SCML by 46%, the intensity decreasing by 30%, and the shoaling by 6%. This is because part of nutrients are pumped from the upper nutricline to the surface mixed layer by strong vertical mixing. Increasing initial nutrient concentrations by two times will increase the intensity of SCML by over 80% in winter and spring. The sensitivity analysis indicates that light attenuation is critical to the three parameters of SCM. Decreasing background light attenuation by 20% extends the euphotic zone, makes SCML deeper(~20%) and thicker(12% – 41%), and increases the intensity by over 16%. Overall, the depth of SCML is mainly controlled by light attenuation, and the SCML thickness and intensity are closely associated with wind and initial nitrate concentration in the SCS.  相似文献   

13.
1 INTRODUCTIONThe South China Sea (SCS) is a semi-enclosedmarginal sea in western North Pacific Ocean withvery complex topography and is the important pas-sage connecting the Pacific and Indian Oceans. Ithas great impact to the global climate and a greatinterest of many oceanography researchers. Twodominant surface hydrographic and circulation fea-tures in the northern SCS are a strong fresh waterexpansion and a warm and high-salinity seawaterintrusion such as the SCS Diluted Water…  相似文献   

14.
Based on the Pathfinder sea surface temperature(PFSST),the surface axis and its pattern of the Yellow Sea Warm Current(YSWC) are discussed.A structure of double-warm-tongue is found in February and it varies in different years.Two indexes are calculated to represent the westward shift(WSI) and northward extension(NEI) of the warm water in the Yellow Sea(YS).Wavelet analysis illustrates that the WSI and NEI have prominent periods of 3-6 years and 3-4 years,respectively.The Empirical Orthogonal Function(EOF) ...  相似文献   

15.
Using a Finite-Volume Community Ocean Model, we investigated the dynamic mechanism of the South China Sea Warm Current(SCSWC) in the northern South China Sea(NSCS) during winter monsoon relaxation. The model reproduces the mean surface circulation of the NSCS during winter, while model-simulated subtidal currents generally capture its current pattern. The model shows that the current over the continental shelf is generally southwestward, under a strong winter monsoon condition, but a northeastward counter-wind current usually develops between 50-and 100-m isobaths, when the monsoon relaxes. Model experiments, focusing on the wind relaxation process, show that sea level is elevated in the northwestern South China Sea(SCS), related to the persistent northeasterly monsoon. Following wind relaxation, a high sea level band builds up along the mid-shelf, and a northeastward current develops, having an obvious vertical barotropic structure. Momentum balance analysis indicates that an along-shelf pressure gradient provides the initial driving force for the SCSWC during the first few days following wind relaxation. The SCSWC subsequently reaches a steady quasi-geostrophic balance in the cross-shelf direction, mainly linked to sea level adjustment over the shelf. Lagrangian particle tracking experiments show that both the southwestward coastal current and slope current contribute to the northeastward movement of the SCSWC during winter monsoon relaxation.  相似文献   

16.
Transfort of oxygen,nutrients and carbonates by the Kuroshio Current   总被引:1,自引:0,他引:1  
Measured concentrations of dissolved oxygen, phosphate, silicate, total alkalinity and calculated total CO2 in a section between 121° E and 125° E across the Kuroshio near 22° N off Taiwan and the geostrophic velocity were used to estimate the gross transport of oxygen, nutrients and carbonates. The flux of dissolved oxygen is 6.7×106 mol/s northward and 0.9×106 mol/s southward. The net flux equals 5.8×106 mol/s down-stream. The northward flux of phosphate is 22.6×103 mol/s; the southward flux is 1.4×103 mol/s. The net phosphate flux is 21.2×103 mol/s northward. The flux of silicate is 967×103 northward and 59×103 mol/s southward; the net transport is 908×103 mol/s down-stream. The flux of alkalinity is 75.5×106 mol/s northward, and 10.8×106 mol/s southward, the net flux is 64.7×106 mol/s northward. For total CO2 the transport is 73.4×106 mol/s northward and 10.8×106 mol/s southward, or a net transport of 62.6×106 mol/s horthward.  相似文献   

17.
The formulation and justification of a three-layer baroclinic ocean model developed to simulate thegeneral circulation of the ocean are described in this paper.Test of the model in simulating the annualmean circulation patterns in the North Pacific under the prescribed atmospheric forcing,which consists ofthe climatological surface wind stress and sea surface heat flux,and comparison of the results withobservations showed that the model basically simulated the large scale features of the annual meancirculation patterns in the North Pacific Ocean such as those of the intensified western boundary currentsand the North Equatorial Currents and Undercurrents.But due to the coarse resolution of the model,some details of these currents were poorly reproduced.The seasonal variations of the North Pacific Oceancirculation driven by the seasonal mean sea surface wind stress was calculated,the different aspects of theseresults were analyzed and the main current(the intensified western boundary currents)transports we  相似文献   

18.
INTRODUCTIONTheKuroshioisthewesternboundarycurrentintheNorthPacificandisthecounterpartoftheGulfStreamintheNorthAtlantic.TheoriginoftheKuroshioisthenorthwardflowingbranchoftheNorthEquatorialCurrentwhichisdividedintotwocurrentsonapproachingthewesternbo…  相似文献   

19.
Numerous published results have showr the importance of the Wcstern Pacific Warm Pool (WPWP)surface centroid movement in ENSO-(EI Nino/Southcrn Oscillation)rclated studies .Howcver,some rccent research conclusions make it necessary to clarify the differenccs of the currently exicing two types of WPWP surface centroid:the geometric centroid and the thermal (heat)centrold.This study analyzes the physical backgrounds of the two typcs of centroid and points out their differenccs.which suggest that different types of ccntroid may scrve different study purposes.This study also shows that the ‘geometric center’of WPWP.actually a close approximation to the mass ccntroid,is more related to the Nino-3 region sca surfacc temperaturc(SST)ancmaly and can also be regarded as an important indicator of ENSO events.  相似文献   

20.
Based on experiment data of the Sino-German comprehensive investigations in the Bohai Sea in 1998 and 1999, a simple coupled pelagic-benthic ecosystem multi-box model is used to simulate the ecosystem seasonal variation. The pelagic sub-model consists of seven state variables: phytoplankton, zooplankton, TIN, TIP, DOC, POC and dissolved oxygen (DO). The benthic sub-model includes macro-benthos, meiobenthos, bacteria, detritus, TIN and TIP in the sediment. Besides the effects of solar radiation, water temperature and the nutrient from sea bottom exudation, land-based inputs are considered. The impact of the advection terms between the boxes is also considered. Meanwhile, the effects of the micro- bial-loop are introduced with a simple parameterization. The seasonal variations and the horizontal distributions of the ecosystem state variables of the Bohai Sea are simulated. Compared with the observations, the results of the multi-box model are reasonable. The modeled results show that about 13% of the photosynthesis primary production goes to the main food loop, 20% transfers to the benthic domain, 44% is consumed by the respiration of phytoplankton, and the rest goes to DOC. Model results also show the importance of the microbial food loop in the ecosystem of the Bohai Sea, and its contribution to the annual zooplankton production can be 60%-64%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号