首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theoretical electron-density-sensitive emission line ratios in B-like AIix are presented forR =I(385.01 )/I(392.42 ). A comparison of these with high spectral resolution solar flare data, obtained with the S082A slitless spectrograph on boardSkylab, reveals agreement between theory and observation for those spectra that were observed during the later stages of the flares. These results provide experimental support for the accuracy of the line-ratio calculations, and also resolves discrepancies found previously when the theoretical results were compared with solar observations from the S-055 instrument on boardSkylab. However, the agreement between theory and observation for a spectrum obtained during the early stages of a flare is very poor, which probably indicates that the 392.42 line is blended with a transition arising from a species formed at a very high electron temperature.  相似文献   

2.
New theoretical electron-density-sensitive Fe xii emission line ratios $$R_1 = I(3s^2 3p^3 {}^4S_{3/2} - 3s3p^4 {}^4P_{5/2} )/I(3s^2 3p^3 {}^2P_{3/2} - 3s3p^4 D_{5/2} )$$ and $$R_2 = I(3s^2 3p^3 {}^2P_{3/2} - 3s3p^4 {}^2D_{5/2} )/I(3s^2 3p^3 {}^4S_{3/2} - 3s3p^2 P_{3/2} )$$ are derived using R-matrix electron impact excitation rate calculations. We have identified the Fexii \(3s^2 3p^3 {}^4S_{3/2} - 3s3p^4 {}^4P_{5/2} ,{\text{ }}3s^2 3p^3 {}^2P_{3/2} - 3s^3 3p^4 {}^2D_{5/2} ,{\text{ }}3s^2 3p^3 S_{3/2} - 3s^2 3p^3 P_{3/2} \) and \(3s^2 3p^3 {}^4S_{3/2} - 3s^2 3p^3 {}^2P_{1/2}\) transitions in an active region spectrum obtained with the Harvard S-055 spectrometer on board Skylab at wavelengths of 364.0, 382.8, 1241.7, and 1349.4 Å, respectively. Electron densities determined from the observed values of R 1 (log N e ? 11.0) and R 2(log N e ? 11.4) are significantly larger than the typical active region measurements, but are similar to those derived from some active region spectra observed with the Skylab 2082A instrument, which provides observational support for the atomic data adopted in the line ratio calculations, and also for the identification of the Fe xii transitions in the S-055 spectrum. However the observed value of R 3 = I(1349.4 Å)/I(1241.7 Å) is approximately a factor of two larger than one would expect from theory which, considering that the 1349.4 Å line lies at the edge of the S-055 wavelength coverage, may reflect errors in the instrument efficiency curve. Another possibility is that the 1349.4 Å transition is blended, probably with Si ii 1350.1 Å.  相似文献   

3.
A comparison of Skylab S082A observations for several solar flares with calculations of the electron temperature sensitive emission line ratio R 1 = I(2s2p 1 P – 2s 2 1 S)/I(2s2p 3 P 1 - 2s 2 1 S) = = I(256.68 Å)/I(491.45 Å) in Be-like SXIII reveals good agreement between theory and experiment, which provides observational support for the accuracy of the adopted atomic data. However, observed values of the electron density sensitive ratio R 2 = I(2s2p 1 P – 2s 2 1 S)/I(2p 2 3 P 2 - 2s2p 3 P 2) = = I(256.68 Å)/I(308.96 Å) all lie below the theoretical high density limit, which is probably due to blending in the 308.96 Å line.  相似文献   

4.
Electron impact excitation rates for transitions in the S v ion, calculated with theR-matrix code, are used to derive the electron temperature sensitive emission line ratiosR 1 =I(854.8 Å)/I(786.9 Å),R 2 =I(852.2 Å)/I(786.9 Å),R 3 =I(849.2 Å)/I(786.9 Å), andR 4 =I(1199.1 Å)/I(786.9 Å), which are found to be significantly different from previous estimates. A comparison of the present results with observational data for a sunspot obtained with the Harvard S-055 spectrometer on boardSkylab reveals generally good agreement between theory and experiment, except in the case ofR 1, which is probably due to blending in the 854.8 Å feature. The possible effects of Lyman continuum absorption on the observed line ratios is briefly discussed.  相似文献   

5.
The EUV emission spectra in the wavelength range 110–1900 Å of the 5 September 1973 flare observed with the NRL slit spectrograph on Skylab are studied. The results are: (1) The chromospheric and transition-zone lines are greatly enhanced during the flare. In particular, the allowed lines are enhanced more than the intersystem lines. The Ni ii and P ii lines show the greatest enhancement with a factor of 800 increase in intensity. Other lines such as O i, C i, Si iii, S iii, S iv, O iv, O v, and N v show increases in intensity 10–100 times during the flare. (2) The chromospheric lines, although greatly enhanced during the flare, maintain their sharp and gaussian profiles and are not appreciably broadened. The transition zone lines, on the other hand, show a red-shifted component during the initial phase of the flare. The deduced downward velocity in the transition zone is 50 km s–1. In addition, there are large turbulent mass motions. The downward mass motion is probably caused by the pressure imbalance between the flare hot plasma at 13 × 106 K and the cooler plasma at 105 K. (3) The density of the 105 K flare plasma, as deduced from density-sensitive lines, is greater than 1012 cm-3. The depth of the 105 K plasma in the flare transition zone is only of the order of 0.1 km, giving a steep temperature gradient. Consideration of the energy balance between the conductive flux and the radiative energy losses shows that, indeed, the high density in the transition zone requires that its thickness be very small. This is a consequence of the maximum radiative efficiency at the temperature around 105 K in the solar plasma.Ball Brothers Research Corporation.  相似文献   

6.
Results are presented for several theoretical line ratios in Nev involving transitions between multiplets in the 2s 22p 2 and 2s2p 3 configurations. A comparison of these with solar data from the S082A and S-055 instruments on board Skylab reveals generally good agreement between theory and experiment, especially in the case of the high-resolution (S082A) observations. However the 2s 22p 2 1 D – 2s2p 3 1 P (365.6 Å) and 2s 22p 2 3P – 2s2p 3 3 S (359 Å) lines appear to be blended, possibly with transitions in Fex and Fexi/Fexiii, respectively. We note that the intensity ratio I(365.6 Å)/I(416.2 Å) should be a valuable calibration check for a high-resolution extreme ultraviolet instrument in the spectral range 360–420 Å.  相似文献   

7.
We present extensive spectroscopic observations of supernova remnant(SNR) S147 collected with the Large sky Area Multi-Object fiber Spectroscopic Telescope(LAMOST). The spectra were carefully sky-subtracted taking into account the complex filamentary structure of S147. We have utilized all available LAMOST spectra toward S147, including sky and stellar spectra. By measuring the prominent optical emission lines including Hα, [NⅡ]λ 6584 and [SⅡ]λλ 6717, 6731, we present maps of radial velocity and line intensity ratio covering the whole nebula of S147 with unprecedented detail. The maps spatially correlate well with the complex filamentary structure of S147. For the central 2?of S147, the radial velocity varies from-100 to 100 km s~(-1) and has peaks between~0 and 10 km s~(-1). The intensity ratios of Hα/[S Ⅱ]λλ 6717, 6731, [SⅡ]λ 6717/λ 6731 and Hα/[NⅡ]λ 6584 peak at about 0.77, 1.35 and 1.48, respectively, with a scatter of 0.17, 0.19 and 0.37, respectively. The intensity ratios are consistent with the literature values. However, the range of variations of line intensity ratios estimated here,which are representative of the whole nebula, is larger than previously estimated.  相似文献   

8.
Theoretical line ratios involving 2s 2 S - 3p 2 P, 2p 2 P - 3s 2 S, and 2p 2 S - 3d 2 D transitions inCiv between 312 and 420 Å are presented. A comparison of these with solar active region observational data obtained during a rocket flight by the Solar EUV Rocket Telescope and Spectrograph (SERTS) reveals good agreement between theory and experiment, with discrepancies that average only 22%. This provides experimental support for the accuracy of the atomic data adopted in the line ratio calculations, and also resolves discrepancies found previously when the theoretical results were compared with solar data from the S082A instrument on boardSkylab. The potential usefulness of theCIV line ratios as electron temperature diagnostics for the solar transition region is briefly discussed.  相似文献   

9.
This instrument, at the present time in development, will fly on board Spacelab I in May 1983. Other flights are foreseen during the following missions. This instrument is composed by three double monochromators covering the range 170 to 3200 nm. The spectrometers have band-passes of 1 nm up to 900 nm and 20 nm from 850 to 3200 nm with an accuracy 10–2 nm. Calibration lamps are included in the instrument to monitor any change of its sensitivity and wavelength scale.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 September 1980, Scheveningen, The Netherlands.Institut d'Aéronomie Spatiale de Belgique, 3, avenue Circulaire-B1180 Bruxelles, Belgique.Landessternwarte-Koenigstuhl, D6900 Heidelberg, F.R.G.Hamburger Sternwarte, Gojenbergsweg, D2050 Hamburg 80, F.R.G.  相似文献   

10.
This paper presents a statistical comparison of the solar total irradiance measured from the Nimbus-7, the Solar Maximum Mission (SMM), the Earth Radiation Budget Satellite (ERBS), and the Upper Atmosphere Research Satellite (UARS) spacecraft platforms, for the period 1985 –1992. The mean irradiance, standard deviation, and the correlation among the daily irradiance remained high during periods of high solar activity. Linear regression models are established to estimate the irradiance measurements from one platform by the others. The results are consistent with the observations. However, the Nimbus-7 ERB responses show a drift during 1989–1992. The absolute irradiance observed by each instrument varies within the uncertainty associated with the corresponding radiometer.  相似文献   

11.
12.
Simple considerations of observed variation with wavelength of polarization on the solar disc, computed continuum polarization, and estimated line polarization have led to the following simple conclusions (more qualitative than quantitative); (a) The metal abundances in the photosphere are five times larger than the classical values adopted in the BCA model of the solar photosphere. (b) The depolarization factor k in lines is an increasing function of wavelength. (c) Assuming that k varies as 2, an additional polarization (which can be either solar or instrumental) has to be taken into account.  相似文献   

13.
Brabban  D. H. 《Solar physics》1974,38(2):449-464
A rocket-borne, collimated spectrometer has obtained the soft X-ray (1.0–2.2 nm) spectra of three solar active regions. The principal features of the spectra are described and are then used to determine the conditions in the active regions. An isothermal (single temperature) model is not able to describe the observed spectra so that a continuous distribution of emission measure with temperature is introduced.This distribution, based on that proposed by Chambe, is then used to investigate the structure of the active regions. Several simple models are considered. It is shown that each active region has a hot, dense core surrounded by a large outer volume through which the temperature and density fall until normal coronal conditions are reached.Two of the regions exhibited similar characteristics with the cores having electron densities 1010 cm–3 and temperatures of at least 4 × 106K. Even the third region, which was much less impressive and quite compact in H, appears to have had a small amount of this dense plasma in its central core.  相似文献   

14.
Lewis  D.J.  Simnett  G.M. 《Solar physics》2001,200(1-2):75-89
We present data obtained from the Large Angle Spectrometric Coronagraph (LASCO) aboard the Solar and Heliospheric Observatory spacecraft (SOHO). We compare the rotation of the white-light corona as seen during a period approaching the maximum of the solar 11-year activity cycle with that observed in a previous study made at solar minimum (Lewis et al., 1999). We find no fundamental difference in the rotation characteristics and again find the white-light corona to be radially rigid. The rotation has been observed at altitudes from 2.5 R to beyond 15 R and as predicted in the previous study, the greater level of complexity in the coronal structures and their relatively rapid evolution has not allowed periods to be determined as accurately as at solar minimum. Our best estimate of the mean synodic rotation period during the period of study (7 March 1999 to 6 March 2000) is 27.5±0.3 days. This is consistent with the relatively small scale structures associated with the surface activity imposing their rotation signature on an otherwise axisymmetric background corona. The short-lived nature of the small scale coronal morphologies at this epoch has made a thorough analysis of the latitudinal variation difficult, although we again find some evidence for the white light corona's increased latitudinal rigidity when compared to the underlying photosphere. However, we again note how projection effects create difficulties in confirming the exact degree of rigidity in the corona at these altitudes and a very simple coronal model is used to highlight how the appearance of lower latitude features in projection can contaminate the coronal signal observed at other latitudes. We also note evidence for a sudden and apparently fundamental change to the global coronal morphology on the approach to solar maximum and suggest this may represent the time beyond which the classical solar dipole ceases to dominate the coronal field.  相似文献   

15.
The propagation time for solar protons observed during the events of January 24, February 25 and March 17, 1969 are compared with those estimated from numerical solutions of the Fokker-Planck transport equation, using values of the diffusion coefficient of the form K r = K 0 r b where r is radial distance from the Sun, K 0 is obtained from the plasma-field parameters near the Earth and b varies from - 3 to + 1. K 0 is derived either by assuming that all the magnetic fluctuation power is in small amplitude transverse waves or alternatively in discontinuous changes in ¦B¦ along the flux tube of propagation. In the first case it is found that the K 0 values calculated require either b -3, implying a very rapid wave growth with r, or the Fokker-Planck equation reduces to the situation of purely convective transport which is at variance with the experimental observations. More reasonable results are found in the second case although even here K 0 is probably underestimated. Alternative ways of deducing K 0 empirically from particle anisotropy measurements are put forward and these seem to favour the discontinuity model.  相似文献   

16.
Estimation of solar illumination on the Moon: A theoretical model   总被引:2,自引:0,他引:2  
The solar illumination conditions on the lunar surface represent a key resource with respect to returning to the Moon. As a supplement to mapping the solar illumination by exploring data, lighting simulations using high-resolution topography could produce quantitative illumination maps. In this study, a theoretical model is proposed for estimating the solar illumination conditions. It depends only on the solar altitude and topographical factors. Besides the selenographic longitude and latitude, the former is determined by the selenographic longitude and latitude at the subsolar site, the geocentric ecliptical latitude, and the dimensionless distance of the Sun–Moon relative to 1 AU, which are function of time. The latter is determined by comparing the elevations in solar irradiance direction within 210 km in which the topography might shadow the behind sites to the critical elevations determining whether the behind sites are shadowed or not. Compared to Zuber's model, the model proposed in this study is simpler and easier for computing. It is parameterized with selenographic coordinates, elevations, and time. With high-resolution topography data, the solar illumination conditions at any selenographic coordination could be estimated by this model at any date and time. The lunar surface is illuminated when the solar altitude is non-zero and all the elevations within 210 km in solar irradiance direction are lower than the critical elevations. Otherwise it would be shadowed.  相似文献   

17.
The observation of extreme ultraviolet (EUV) emission lines of Fe ix through Fe xvi made by Orbiting Solar Observatory-1 are discussed and applied to a study of the solar corona above active regions. Ultraviolet and radio emission are determined and compared for several levels of activity classified according to the type of sunspot group associated with the active region. Both radio emission and line radiation from Fe xvi, the highest stage of ionization of Fe observed, are observed to increase rapidly with the onset of activity and are most intense over an E-spot group early in the lifetime of the active region. As activity diminishes, radiation from Fe xv and Fe xvi becomes relatively more prominent. The observations imply that the coronal temperature reaches a maximum during the period of highest activity, as indicated by sunspot-group complexity and the occurrence of chromospheric flares. A maximum coronal electron temperature of 4.0 × 106 °K is estimated when taking into account the mechanism of dielectronic recombination. Concurrently, the average coronal electron density increases by a factor of 10–12. Both electron temperature and density decrease as activity subsides. The coronal temperature above the remaining Ca ii plage is estimated to be 2.5–3.0 × 106 °K after flare activity has ceased and sunspots have disappeared.  相似文献   

18.
Measurements of the C iv 1548 Å and Si iv 1393 Å lines made with the University of Colorado Ultraviolet Spectrometer on board OSO-8 show that the mean profiles are redshifted at disk center. Assuming these lines to be optically thin, we measure an apparent average downflow of material in the 50 000 to 100 000 K temperature range which is weighted by the emission measure in these lines. The magnitude of the redshift varies from 6–17 km s–1 with a mean of 12 km s–1 and is persistent at least on the order of months, which is the time covered by the observations presented in this paper. Pneuman and Kopp (1978) have demonstrated that the flux of material associated with this downflow is of the same order of magnitude as the flux of material being carried upward in spicules. Thus, it is possible that material observed to be downflowing in C iv and Si iv has its origins in the upward moving spicule material.  相似文献   

19.
An analysis is made of two series of photographic observations of the Galilean satellites of Jupiter. In the comparison of theory with observation, the aim of this work is to solve for systematic errors in the observations as well as those in the theory. The observations are those made by D. Pascu with the McCormick refractor during the apparition of 1967–1968 and with the 26" refractor of the U.S. Naval Observatory in 1973. Neutral density filters were used for magnitude compensation between the planet and the satellites as well as between the satellites themselves. Preliminary positions were derived by the trail/scale method using a scale value derived from scale plates taken during the observational program. The mean error of these observations is expected to be about ±0".10. The computed positions are those supplied by the Bureau des Longitudes and are based on Sampson's theory. Both intersatellary and planet-satellite positions were used in the comparison of theory with observation. The least squares adjustment included as unknowns, corrections to the longitudes, inclinations and scale for both observation types, and an additional periodic term to account for residual phase defect for the planet-satellite coordinates. The validity of the results is discussed in terms of the unknowns introduced, the correlations between them and the reduction of the residuals.  相似文献   

20.
G. E. Brueckner 《Solar physics》1983,86(1-2):259-265
Observations of high-speed coronal clouds (OSO-7), flare ejecta (Skylab) and high-energy jets (HRTS) are compared. It is possible that the same physical mechanism - an expanding loop - which is responsible for the high speed jets (400 km sec?1, 2.5 × 1026 ergs) can also account for the high-speed coronal clouds (1300 km sec?1, 4 × 1030 ergs), which were correlated with a flare-connected spray. Field strength of 15 gauss and 2500 gauss are required for the jets and the sprays, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号