首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fishing boat hull is used as an example of how hull form optimization can be accomplished using a Multi-Objective Genetic Algorithm (MOGA). The particular MOGA developed during this study allows automatic selection of a few Pareto Optimal results for examination by the designers while searching the complete Pareto Front. The optimization uses three performance indices for resistance, seakeeping and stability to modify the hull shape to obtain optimal hull offsets as well as optimal values for the principal parameters of length, beam and draft. The modification of the 148/1-B fishing boat hull, the parent hull form of the ?stanbul Technical University (?TÜ) series of fishing boats, is presented by first fixing the principal parameters and allowing the hull offsets to change, and secondly by simultaneously allowing variation of both the principal parameters and the hull offsets. Improvements in all three objectives were found. For further research the methodology can be modified to allow for the addition of other performance objectives, such as cost or specific mission objectives, as well as the use of enhanced performance prediction solvers. In addition, one or more hulls could be evaluated by experiment to validate the results of using this particular optimization approach.  相似文献   

2.
The motions of a high speed craft are highly influenced by speed and dynamic forces that begin to be important for high Froude numbers. Classical ship motions theories and some seakeeping programs do not include the effect of these dynamic forces that mainly affect to the damping of vertical motions, and have to be corrected to model high speed crafts. In any other way, the use of these theories or programs would be unrealistic. In this paper, some theories that can be used to predict the seakeeping behaviour of high speed crafts, considering dynamic forces, are studied and validated against seakeeping tests of some fast monohulls models. Tests and results focus on vertical motions in head seas, which are the most severe for these fast crafts. Experimental results of vertical motions are compared with numerical calculations and conclusions about the range of application of the presented theories are obtained.  相似文献   

3.
Increasing propulsion efficiency, safety, comfort and operability are of the great importance, especially for small ships operating on windy sites like the North Sea and the Baltic Sea. Seakeeping performance of ships and offshore structures can be analysed by different methods and the one that is becoming increasingly important is CFD RANS. The recent development of simulation techniques together with rising HPC accessibility enables performance of advanced seakeeping simulations for ships in a full scale. The paper presents CFD seakeeping analysis for a case study vessel in two variants: V-shaped bulbous bow hull form (as built) and innovative hull form (X-bow type). The study presents the influence of redesigning the ship on selected seakeeping aspects. The advanced CFD model, with the application of overset mesh technique, was described in detail. Selected numerical results were validated on the basis of experimental testing in a towing tank and showed good agreement. The approach demonstrated here of performing the CFD seakeeping simulations for the analysis of ship performance in a full scale and close to real loading conditions has direct application to the design process as well as in determination of optimal operational parameters of any ship.  相似文献   

4.
The overall performance of ships depends on the seakeeping performance in specified sea areas where the vessel is designed to operate. The seakeeping performance procedure is based upon the probability of exceeding specified ship motions in a sea environment particular to the vessel's mission. Given the operational area of the vessel, the percentage of time the vessel operates in a particular sea state can be determined from an oceanographic database through application of the response amplitude operators. The predicted motions are compared to the motion limiting criteria to obtain the operability indices. However, the operability indices are strongly affected by the chosen limiting criteria. This is particularly the case for passenger vessels where many conflicting criteria are used to assess the effect of motions and accelerations on comfort and well-being of passengers. This paper investigates the effect of seakeeping criteria on seakeeping performance assessment for passenger vessels. Conventional seakeeping performance measures are evaluated for various levels of vertical accelerations defined by the ISO 2631 standard. It is shown that the estimated seakeeping performance of a passenger vessel greatly depends on the level of limiting value selected as the seakeeping criteria.  相似文献   

5.
This study investigates the occurrence of irregular frequencies in a seakeeping analysis of a ship moving with forward speed. This is achieved by formulating the interior virtual flow Dirichlet or Neumann eigenvalue problem. A theoretical analysis of a rectangular box travelling and oscillating in waves reveals that in the forward speed case, apart from the singular irregular frequency at zero encounter frequency, no irregular frequencies exist whilst at zero forward speed multiple irregular frequencies are observed confirming previous findings. These theoretical predictions are further verified by numerical calculations involving the rectangular box and a Series 60, CB=0.70, hull.  相似文献   

6.
The scope of this paper is to develop the nonlinear meta-models for seakeeping behaviour, considering the fishing vessels. These models are intended to be inserted either in a multiattribute design selection process or in a comprehensive multiobjective optimization procedure. For this purpose, seakeeping data of fishing vessels in regular head waves are used to develop meta-models of transfer functions of heave, pitch and vertical acceleration by nonlinear analysis. A home-made software considers two databases; the first is composed by the ship dimensions and coefficients of fishing vessels, and the second is their ship motion data obtained by employing a strip-theory calculation. The meta-models are proposed to predict the vertical motion characteristics for given ranges of speed and wave length during the concept design stage. The independent variables are hull size (Δ), main dimensions (L, B, T), and some hydrostatic parameters (CWP, CVP, LCB, LCF, etc.). The results estimated by the software show good correspondences with the ones achieved by direct computations. The study provides additional insight on the influence of hull form parameters on seakeeping performance of small vessels having form properties and parametric range corresponding to the investigated vessels.  相似文献   

7.
Added resistance in waves is an important part of ship dynamic due to its economical effect on ship exploitation. Can the ship sustain speed in a rough sea state? If not, this will produce delays and economical losses if added resistance is not taken into account in the propulsion design. There are not many simple methods to obtain the added resistance in waves of a ship, and the validity of the results is not always good enough for different ships. In this paper, some theories that can be used to predict the added resistance of a ship are studied and validated against seakeeping tests of some monohull models. Tests and results focus in head seas, which are the most severe for the added resistance. Experimental results are compared with numerical calculations and conclusions about the range of application of the presented theories are obtained.  相似文献   

8.
Prediction of ship motions at high Froude number is carried out using a time domain strip theory in which the unsteady hydrodynamic problem is treated in terms of the motion of fixed strips of the water as hull sections pass through it. The Green function solution is described and the integration of the ship motion carried out by an averaging method to ensure stability of the solution. The method is validated by comparison with tank data for conventional slender hulls suitable for catamarans, small water area twin hull (SWATH) forms and hulls suitable for high-speed monohulls. Motion computations are then carried out for 14 designs with an operating speed of 40 kts and a displacement of 1000 tonnes. The vessels are assumed not to be fitted with motion control systems for the purposes of this comparative study. Motion sickness incidence is predicted to rise to between 42 and 72% depending upon the hull design in 3 m head seas of average period 7.5 s. MSI values reduce in smaller seas with a shorter average period to be less than 15% in all cases in 1m seas with an average period of 5.5 s.  相似文献   

9.
An extensive experimental investigation on four SWATH hull forms has been conducted in calm water and in regular waves at University of Naples Federico II. Calm water tests have been analyzed in the range of Froude number FrT from 0.1 to 0.6. For all four SWATH configurations at the speed, corresponding to FrT 0.32, the behaviour in regular waves has been tested. The results of heave, pitch and vertical accelerations are presented in nondimensional form as RAO. For the “most promising” SWATH #4 configuration, a set of stabilizing fins have been designed and an active stabilization system has been developed. The developed SWATH#5 has been tested in calm water on three displacements in the range of FrT from 0.1 to 0.65. The dynamic wetted surface has been identified and the residual resistance coefficient CR as well as RT/Δ are reported. Seakeeping tests have been performed in regular head sea and in head and following irregular sea at FrT = 0.50. The conditions for the occurrence of dynamic longitudinal instabilities have been identified. The results allows to comment the effect of slenderness of struts and SWATH’s immersed bodies on resistance and seakeeping and concerns the applicability of SWATH concept to small craft.  相似文献   

10.
《Ocean Engineering》2007,34(14-15):1909-1917
Low frequent motions of vessel may cause motion sickness in rough seas. These undesirable effects induce fatigue of crews during the navigation. The motion sickness is always an important criterion for the high-speed craft design. Modern ferry designs have been marketed with a great emphasis on the seakeeping performance. This research has been carried out by investigating the results on the vertical motion sickness incidence (MSI) study for a 40 m wave-piecing catamaran at seas. The primary purpose of this research is to investigate the vertical motion sickness characteristics of a high-speed catamaran ferry. Two mathematical models, three-dimensional translating–pulsating source distribution technique and three-dimensional pulsating source distribution technique, are used for predicting the vertical acceleration responses of the wave-piecing catamaran in oblique waves. The comparison between numerical predictions and experimental data shows a good agreement except that around the pitch resonance region in FP vertical acceleration motions. Based on the experimental observation, the discrepancies may be caused by the nonlinear effects of centre bow during large pitch motions in waves. The comfort assessments are based on the ISO-2631/1997 standard with the hydrodynamic analysis for determining the acceleration levels in different locations on the vessel. The effects of seating location, wave heading and duration of motion exposure on seasickness are discussed.  相似文献   

11.
This paper aims to validate a numerical seakeeping code based on a 3D Rankine panel method by comparing its results with experimental data. Particularly, the motion response and hull-girder loads on a real modern ship, a 6500 TEU containership, are considered in this validation study. The method of solution is a 3D Rankine panel method which adopts B-spline basis function in the time domain. The numerical code is based on the weakly nonlinear scheme which considers nonlinear Froude-Krylov and restoring forces. The main focus of this study is given to investigate the nonlinear characteristics of wave-induced loads, and to validate this present scheme for industrial use in the range of low Froude number. The comparisons show that the nonlinear motions and hull-girder loads, computed by the present numerical code, have good overall agreements with experimental results. It is found that, for the better accuracy of computational results, particularly at extreme waves in oblique seas, the careful treatment of soft-spring (or compatible) system is recommended to the control of non-restoring motions such as surge, sway, and yaw.  相似文献   

12.
This paper analyzes the hydrodynamic performance of a planing craft with a fixed hydrofoil in regular waves. Numerical simulations are carried out based on a RANS-VOF solver to study the hydrodynamic performance of the planing craft and the influence of the fixed hydrofoil on its seakeeping. To validate the numerical method, a series of hydrodynamic experiments of a bare planing craft without the hydrofoil were carried out, from which the seakeeping performance of the planing craft was recorded, the numerical method based on overset grid was compared with the experiment and verified reliable. Eight hydrofoil design cases were then studied, whereby, their seakeeping performance in regular wave conditions were predicted through the numerical method which has been verified reliable and compared with each other. Effects of hydrofoil parameters, such as angle of attack and installation height, on the seakeeping performance were investigated. Finally, the suitable installation parameters which can optimize the performance of hydrofoil and reduce the negative influence are verified. The influence of the speed on the effect of the hydrofoil and the flow field around the planing craft are also investigated.  相似文献   

13.
The paper presents an approach to investigate the effects of some parameters on seakeeping assessment of fast ships in conceptual design stage. Hull form parameters have been classified into two groups: main dimensions (L, B and T) and secondary form parameters (LCB and CP). To demonstrate the approach a fast ship is redesigned as parent hull and alternative hull forms are generated by changing these parameters systematically. Some hull forms are selected related the geometric limits and seakeeping analyzes are here investigated and discussed. The obtained results are satisfactory for seakeeping predictions during the conceptual design stage.  相似文献   

14.
The main idea of this paper is to identify functional relations between seakeeping characteristics and hull form parameters of Mediterranean fishing vessels. Multiple regression analysis is used for quantitative assessment through a computer software that is based on the SQL Server Database. The seakeeping attributes under investigation are the transfer functions of heave and pitch motions and of absolute vertical acceleration at stern, while the ship parameters influencing motion dynamics have been classified into two groups: displacement (Δ) and main dimensions (LBT), coefficients that define the details of the hull form (CWP, CVP, LCB, LCF, etc.).Four multiple regression models having different parameter combinations are here investigated and discussed, giving way to the so-called ‘Simple Model’, ‘Intermediate Model’, ‘Enhanced 1 Model’ and ‘Enhanced 2 Model’. The obtained results are more than satisfactory for seakeeping predictions during the conceptual design stage.  相似文献   

15.
研究设计了一艘适用于浅海油田的高速交通艇,该艇采用深V线型和在侧斜螺旋浆,设有主动式减摇鳍。实船航行表明该艇具有优良的耐波性。  相似文献   

16.
A study of the seakeeping performance of a set of fishing vessels is carried out aiming to identify the seakeeping criteria, and vessel conditions that limit the operability of the fishing vessels in certain sea states. Ship motions and derived responses are obtained in fully developed sea states using the transfer functions of the hull forms. Those responses are assessed against the prescribed values, for the chosen criteria, to determine the vessels operational conditions that might result in hazards or seasickness. For the purpose of this study, each fishing vessel is considered operating in sea states 5 and 6, with different Froude numbers and heading angles, and their short term responses are assessed against the most relevant criteria related with the absolute and relative motions, accelerations, slamming and green water on deck. The results obtained show that roll and pitch criteria are most critical for seakeeping performance, and there is a significant influence of the transverse metacentric height, GMt, and the location of the reference checking points in the seakeeping performance of these fishing vessels.  相似文献   

17.
On unstable ship motions resulting from strong non-linear coupling   总被引:1,自引:0,他引:1  
In this paper, the modelling of strong parametric resonance in head seas is investigated. Non-linear equations of ship motions in waves describing the couplings between heave, roll and pitch are contemplated. A third-order mathematical model is introduced, aimed at describing strong parametric excitation associated with cyclic changes of the ship restoring characteristics. A derivative model is employed to describe the coupled restoring actions up to third order. Non-linear coupling coefficients are analytically derived in terms of hull form characteristics.The main theoretical aspects of the new model are discussed. Numerical simulations obtained from the derived third-order non-linear mathematical model are compared to experimental results, corresponding to excessive motions of the model of a transom stern fishing vessel in head seas. It is shown that this enhanced model gives very realistic results and a much better comparison with the experiments than a second-order model.  相似文献   

18.
The seakeeping characteristics of a Small Waterplane Area Twin Hull (SWATH) vehicle equipped with fixed stabilizing fins was investigated by experimental and numerical methods The calculation methods range from viscous CFD simulation based on an unsteady RANS approach to Boundary Element Method (BEM) based on Three Dimensional Translating-pulsating Source Green Function (3DTP). Responses of ship motions in head regular waves and nonlinear effects on motion responses with increasing wave amplitude were analyzed. Numerical simulations have been validated by comparisons with experimental tests. The results indicate that the heave and pitch transfer functions depict two peaks with the increase of wave length. Comparisons amongst experimental data and different numerical calculations illustrate that the RANS method predicts ship motions with higher accuracy and allows the detection of nonlinear effects. The heave and pitch transfer functions see a downward trend with the increasing wave amplitude in the resonant zone at low speed.  相似文献   

19.
Seakeeping qualities are one of the most important aspects for passenger ships, since a collateral effect of seakeeping, the seasickness, can avoid the use of ships and ferries among passengers who can choose a different way of transport. Therefore, it is important for ship designers and ship owners to predict and evaluate the seasickness effects at the design stage.In this paper, a review of the seasickness causes and effects is made, and a mathematical model that includes several human factors is proposed. This model is applicable especially in big passenger ships where different kind of spaces or activities for the passengers can be found inside the ship.The way to present the large amount of information obtained in seakeeping calculations is important, and it is useful to detect the most conflictive parts of the ship's general arrangement. Calculations for an example ferry are presented.  相似文献   

20.
The present paper describes a mathematical model in which the fluid motion inside a U-tank is nonlinearly coupled to the heave, roll and pitch motions of the ship. The main purpose of the investigation is centred on the control of roll motion in the case of parametric resonance in longitudinal waves. A transom stern small vessel, known to be quite prone to parametric amplification, is employed in the study. Four tank designs are employed in order to study the influence of tank mass, tank natural frequency and tank internal damping on the control of parametric rolling at different head seas conditions. Additionally, the influence of the vertical position of the tank is also investigated. The main results are presented in the form of limits of stability, with encounter frequency and wave amplitudes as parameters. Distinct dynamical characteristics are discussed and conclusions are drawn on the relevant parameters for the efficient control of the roll amplifications in head seas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号