首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The topographic effect of a meridional marine ridge on the spin-down of a cyclonic eddy, which is embedded in a zonal mean flow, is examined by use of a two layer numerical model. It is shown that the cyclonic eddy initially given on the eastern flank of the marine ridge decays in a short time. This result is common to all cases with the different volume transports of the mean flow (3070 Sv) and of the cyclonic eddy (1535 Sv). During the decay process, the cyclonic eddy shifts mainly northward into the shallower region, which is different from the dominant westward shift of the isolated cyclonic eddy. If the mean flow across over the marine ridge at the more northern latitude, the cyclonic eddy spins down more rapidly. A mean flow shifts zonal or south-eastward over a western side of the ridge, while it deflects north-eastward over an eastern side. The deflection angle of mean flow over the ridge depends on the intensity of lower layer velocity and density stratification. It is suggested that the topographic effect of the meridional marine ridge on the cyclonic eddy with mean flow is influenced both by the global phenomena that controls the inclination of the mean flow from zonal direction and by the local phenomena that controls the intensity of the topographic effect of the marine ridge.  相似文献   

2.
A numerical experiment is made with a three-dimensional source-sink flow model in order to study effects of a marine ridge to the western boundary current. The model represents the Kuroshio current crossing the Izu Ridge which has a submarine narrow passage. It is indicated that most of the surface water of the western boundary current crosses the ridge through the narrow passage. A part of the surface water circulates around a warm eddy formed in an upstream region of the ridge. A water below the thermocline makes a long detour around the ridge and forms a subsurface northward current along the eastern slope of the ridge.  相似文献   

3.
4.
A coupled single-layer/two-layer model is employed to study the South China Sea (SCS) upper circulation and its response before and after the onset of summer monsoon. It is found that, in summer, due to the β effect and the first baroclinic mode of the wind-driven current, a northward western boundary jet current is formed along the Indo-China Peninsula coast, and it leaves the coast at about 13° N and diffuses towards northeast; next to the Indo-China Peninsula, a large anticyclonic  相似文献   

5.
A reduced-gravity primitive equation eddy resolving model has been used to study the decay of a mesoscale eddy as it migrates toward a western boundary current (WBC) region. The model results indicated that the gradient of the relative vorticity to the east of the WBC is an important factor in the interaction between an eddy and a WBC. A circular eddy is deformed into an elliptical form during the eddy–WBC interaction with the major axis of a cyclonic/anticyclonic eddy aligning in the NW/NNE direction, respectively. Because of the difference in the major axes orientations for the cyclonic and anticyclonic eddies, the kinetic energy transfer between a WBC and a particular eddy has very different behavior. A cyclonic eddy loses its energy to the mean field, whereas an anticyclonic eddy can obtain energy from the mean flow during the WBC–eddy interaction. An anticyclonic eddy, however, still decayed from losing its water and friction dissipation during the interaction period.  相似文献   

6.
Located between the Okinawa trough (OT) backarc basin and the collisional zone in Taiwan, the southernmost Ryukyu subduction zone is investigated. This area, including the southwestern portions of the OT and Ryukyu island arc (RA) and located west of 123.5° E, is named the Taiwan-Ryukyu fault zone (TRFZ). West of 123.5° E, the OT displays NNW-SSE structural trends which are different in direction from the ENE-WSW trending pattern of the rest of the OT. Using joint analysis of bathymetric, magnetic, gravity and earthquake data, three major discontinuities, that we interpret as right-lateral strike-slip faults (Faults A, B and C), have been identified. These faults could represent major decouplings in the southern portion of the Ryukyu subduction zone: each decoupling results in a decrease of the horizontal stress on the portion of the RA located on the eastern side of the corresponding fault, which allows the extension of the eastern side of OT to proceed more freely.We demonstrate that the 30° clockwise bending of the southwestern RA and the consecutive faulting in the TRFZ are mainly due to the collision of the Luzon arc with the former RA. After the formation of Fault C, the counterclockwise rotated portion of the ancient RA located west of the Luzon arc was more parallel to the Luzon arc. This configuration should have increased the contact surface and friction between the Luzon arc and the ancient RA, which could have reduced the northward subduction of the Luzon are. Thus, the westward component of the compressive stress from the collision of the Luzon arc should become predominant in the collisional system resulting in the uplift of Taiwan. Presently, because the most active collision of the Luzon arc has migrated to the central Taiwan (at about 23° N; 121.2° E), the southwestern OT has resumed its extension. In addition, the later resistent subduction of the Gagua ridge could have reactivated the pre-existing faults A and B at 1 M.y. ago and present, respectively. From 9 to 4 M.y., a large portion of the Gagua ridge probably collided with the southwestern RA. Because of its large buoyancy, this portion of the ridge resisted to subduct beneath the Okinawa platelet. As a result, we suggest that a large exotic terrane, named the Gagua terrane, was emplaced on the inner side of the present Ryukyu trench. Since that period, the southwestern portion of the Ryukyu trench was segmented into two parallel branches separated by the Gagua ridge: the eastern segment propagated westward along the trench axis while the western segment of the trench retreated along the trench axis.  相似文献   

7.
Relatively little is known about coherent vortices in the eastern South-Pacific along the Peruvian coast, even with regard to basic facts about their frequency of occurrence, longevity and structure. This study addresses these issues with nearly 15 years of relatively high-resolution satellite altimetry measurements.We first compare two distinct automated methods for eddy identification. The objective validation protocol shows that the rarely-used geometrical or “winding-angle method”, based on the curvature of the streamline functions, is more accurate than the commonly-used “Okubo–Weiss algorithm”, which defines a vortex as a simple connected region with values of Okubo–Weiss parameter weaker than a given threshold.We then investigate vortices off Peru using more than 20,000 mesoscale eddies identified by the winding-angle method. Coherent eddies, characterized by a high ratio of vorticity to deformation rate, are typically formed along the coast and propagate westward at 3–6 cm s−1. The vortices have a mean radius of 80 km, increasing northward, and are most frequently observed off of Chimbote (9°S) and south of San Juan (15°S). The mean eddy lifetime is about 1 month, but if eddies survive at least 2 months, the probability for surviving an additional week (or month) is constant at 90% (or 67%). Anticyclonic eddies tend to propagate northwestward whereas cyclonic vortices migrate southwestward. In general, cyclones and anticyclones are similar, except for eddies surviving at least 6 months. In this case, after a similar 3–4 months of radius and amplitude growth, amplitudes (or sizes) decay particularly rapidly for anticyclonic (or cyclonic) eddies. In terms of intensity, cyclonic eddies show a rapid decay during the first 3 months before arriving at a quasi-constant value, whereas anticyclones exhibit steady decline. Finally, eddy temporal variations were examined at seasonal and interannual scales in the “coastal” region favorable to the formation of energetic mesoscale structures. On seasonal scales, eddy activity is maximal in fall and minimum in spring. At interannual scales, the eddy activity index was maximal during the strong El Niño of 1997–1998 but another strong maximum of eddy activity also occurred late in 2004. These temporal variations are probably associated with the intensification of the upwelling thermal front and with the passage of coastal-trapped waves which generate baroclinic instabilities. Further investigation of the mechanisms involved on the eddy genesis is needed.  相似文献   

8.
Investigated is a possibility of two-dimensional model in the study of the dynamics of the western boundary current by a numerical experiment. Emphasis is laid on the effect of bottom barrier corresponding to the Izu Ridge.The western boundary current in the model is formed by source and sink of the water prescribed at an artificial eastern wall (600 km offshore). The bottom topographyconsists of a continental slope parallel to the straight western coast, and a ridge protruding from the western coast to 500 km offshore (1,500 m deep and 400 km wide). The grid size of 12 km× 25 km (offshore and longshore directions, respectively) resolves both the western boundary current and the bottom topography.The assumption of homogeneity of the water density makes the western boundary current detour along the isobath of the ridge.A steady state solution is obtained under the assumptions that the horizontal velocity does not change direction vertically (equivalent barotropic), and that the geostrophic relationship holds at the bottom. Homogeneity of the water density is not assumed. The solution shows that most of the volume transport of the western boundary current cross the ridge and the current has cyclonic vorticity near the summit of the ridge. It seems to suggest that the investigation by three-dimensional models is neccesary in order to study the complete dynamics of the western boundary current crossing the ridge.  相似文献   

9.
冬季南海上层环流动力机制的数值研究   总被引:13,自引:2,他引:13  
通过利用一个分区性的正压-斜压衔接模式来探讨冬季南海的上层环流特征及其动力机制,结果表明:(1)在南海北部,流态主要受黑潮的影响,除了东沙群岛西南的大陆架海域以及吕宋岛北部西岸附近各为一反气旋涡外,整个南海北部为一气旋式大环流所控制.(2)在南海南部主要是风生环流,源自粤西沿岸的水体在东北季风的作用下顺南海西边界岸线向南流动,形成一支相当强的西边界流;同时,由于受北康暗沙以南的陆架坡底形效应和β效应的作用,使得在南海南部出现以一个反气旋涡在南沙海槽处产生、发展并向西传播乃至衰减的约50d的周期性过程  相似文献   

10.
Mesoscale eddies and tropical instability waves in the eastern tropical Pacific, first revealed by satellite infrared imagery, play an important role in the dynamics and biology of the region, and in the transfer of mass, energy, heat, and biological constituents from the shelf to the deep ocean and across the equatorial currents.From boreal late autumn to early spring, four to 18 cyclonic or anticyclonic eddies are formed off the coastal region between southern Mexico and Panama. The anticyclonic gyres, which tend to be larger and last longer than the cyclonic ones, are the best studied: they typically are 180–500 km in diameter, depress the pycnocline from 60 to 145 m at the eddy center, have swirl speeds in excess of 1 m s−1, migrate west at velocities ranging from 11 to 19 cm s−1 (with a slight southward component), and maintain a height signature of up to 30 cm. The primary generating agents for these eddies are the strong, intermittent wind jets that blow across the isthmus of Tehuantepec in Mexico, the lake district in Nicaragua and Costa Rica, and the Panama canal. Other proposed eddy-generating mechanisms are the conservation of vorticity as the North Equatorial Counter Current (NECC) turns north on reaching America, and the instability of coastally trapped waves/currents.Tropical Instability Waves (TIWs) are perturbations in the SST fronts on either side of the equatorial cold tongue. They produce SST variations on the order of 1–2 °C, have periods of 20–40 days, wavelengths of 1000–2000 km, phase speeds of around 0.5 m s−1 and propagate westward both north and south of the Equator. The Tropical Instability Vortices (TIVs) are a train of westward-propagating anticyclonic eddies associated with the TIWs. They exhibit eddy currents exceeding 1.3 m s−1, a westward phase propagation speed between 30 and 40 km d−1, a signature above the pycnocline, and eastward energy propagation. Like the TIWs, they result from the latitudinal barotropically unstable shear between the South Equatorial Current (SEC) and the NECC with a potential secondary source of energy from baroclinic instability of the vertical shear with the Equatorial Undercurrent (EUC).This review of mesoscale processes is part of a comprehensive review of the oceanography of the eastern tropical Pacific Ocean.  相似文献   

11.
琼州海峡东部水进入北部湾对广西沿海环流的影响   总被引:1,自引:0,他引:1  
本文通过对琼州海峡东部水域温盐资料和沿岸海洋站同步观测资料的对比发现:夏季,广西涠洲岛盐度变化规律和琼州海峡东部、中部变化规律一致,广西北海略受影响,而远离琼州海峡的龙门和白龙尾两站,则更多反映夏季陆地水文规律。同时,采用琼州海峡多年海流资料和涠洲岛定点站及近期测流站的海流观测资料对比看出,琼州海峡冬夏季余流方向仍然是自东向西。结合数值模拟计算结果,同样得出琼州海峡东部水自东向西进入北部湾的事实。这些温盐分布特征和余流观测结果进一步证实:粤西沿岸流是琼州海峡水向西输运的主要来源,形成粤西沿岸流这种现象的根源在于珠江冲淡水的西向流,它们通过琼州海峡进入北部湾,加强了北部湾北部气旋式环流的形成。夏季,在强的西南风作用下,产生较强北部湾西岸北向沿岸流,促使低盐冲淡水向外海输运,然后在东部涠洲岛附近形成更大范围内气旋式环流。琼州海峡东部水进入北部湾对广西沿海环流影响的研究,直接向琼州海峡冬夏季水体输运方向的传统结论提出了新的挑战。  相似文献   

12.
The influences of mesoscale eddies on variations of the Kuroshio path south of Japan have been investigated using time series of the Kuroshio axis location and altimeter-derived sea surface height maps for a period of seven years from 1993 to 1999, when the Kuroshio followed its non-large meander path. It was found that both the cyclonic and anticyclonic eddies may interact with the Kuroshio and trigger short-term meanders of the Kuroshio path, although not all eddies that approached or collided with the Kuroshio formed meanders. An anticyclonic eddy that revolves clockwise in a region south of Shikoku and Cape Shionomisaki with a period of about 5–6 months was found to propagate westward along about 30°N and collide with the Kuroshio in the east of Kyushu or south of Shikoku. This collision sometimes triggers meanders which propagate over the whole region south of Japan. The eddy was advected downstream, generating a meander on the downstream side to the east of Cape Shionomisaki. After the eddy passed Cape Shionomisaki, it detached from the Kuroshio and started to move westward again. Sometimes the eddy merges with other anticyclonic eddies traveling from the east. Coalescence of cyclonic eddies, which are also generated in the Kuroshio Extension region and propagate westward in the Kuroshio recirculation region south of Japan, into the Kuroshio in the east of Kyushu, also triggers meanders which mainly propagate only in a region west of Cape Shionomisaki. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Nan Wan is a 20 km wide tidally-dominated embayment situated between two headlands on the south coast of Taiwan. During spring tides, sudden sea-surface temperature drops occur twice each tidal cycle in the western and central regions of the bay, but only once in the eastern region. Shipboard ADCP surveys, moored measurements and numerical modelling results demonstrate that the headlands on either side of the bay generate strong tidally-induced eddies within the bay on each phase of the tide. The geometry of the region leads to considerable difference in size between the flood and ebb eddies. The flood eddy fills the entire basin, while the ebb eddy fills the western and central region only. The strong (relative vorticity ≈10–16 f) cyclostrophic eddies are only weakly affected by Earth's rotation, and thus upwelling occurs within each eddy, causing two temperature drops per tidal cycle in the western and central region, while only one drop in the eastern region.  相似文献   

14.
Wind data from NCEP and hydrographic data obtained from August 28 to September 10, 1994 have been used to compute circulation in the northern South China Sea and near Luzon Strait using three-dimensional diagnostic models with a modified inverse method. The numerical results are as follows: the main Kuroshio is located above 400 m levels near Taiwan’s eastern coast and above 800 m levels away from it. Near Luzon Strait above 400 m levels a branch of the Kuroshio joins with a part of the northward current, which comes from an area west of Luzon’s western coast and intrudes northwestward, then it branchs into western and eastern parts near 20°30′ N. The eastern part flows northward into an area east of Taiwan, while its western part continues to intrude northwestward, flowing through an area southwest of Taiwan. Net westward intruded volume transport through longitude Section AB at 121°00′ E from 19°00′ N to 21° 43′ N is about 3.5 × 106 m3s−1 in a layer above 400 m levels. The anticyclonic eddies W1 and W3 exist above 700 m levels east of Dongsha Islands and below 200 m levels in the eastern part of the region, respectively. The circulation in the middle region is dominated mainly by a basin-scale cyclonic gyre, and consists of three cyclonic eddies. Strong upwelling occurs in the middle region. The joint effect of baroclinity and relief and interaction between wind stress and relief both are important for real forcing of flow across contours of fH −1 in effecting the circulation pattern.  相似文献   

15.
E-Flux III (March 10–28, 2005) was the third and last field experiment of the E-Flux project. The main goal of the project was to investigate the physical, biological and chemical characteristics of mesoscale eddies that form in the lee of Maui and the Island of Hawai’i, focusing on the physical–biogeochemical interactions. The primary focus of E-Flux III was the cyclonic cold-core eddy Opal, which first appeared in the NOAA GOES sea-surface temperature (SST) imagery during the second half of February 2005. During the experiment, Cyclone Opal moved over 160 km, generally southward. Thus, the sampling design had to be constantly adjusted in order to obtain quasi-synoptic observations of the eddy. Analyses of ship transect-depth profiles of CTD, optical and acoustic Doppler current profiler (ADCP) data revealed a well-developed feature characterized by a fairly symmetric circular shape with a radius of about 80 km. Depth profiles of temperature, salinity and density were characterized by an intense doming of isothermal, isohaline and isopycnal surfaces. Isopleths of nutrient concentrations were roughly parallel to isopycnals, indicating the upwelling of deep nutrient-rich water. The deep chlorophyll maximum layer (DCML) shoaled from a depth of about 130 m in the outer regions of the eddy to about 60 m in the center. Chlorophyll concentrations reached their maximum values in Opal's core region (about 40 km in diameter), where nutrients were upwelled into the euphotic layer. ADCP velocity data clearly showed the cyclonic circulation associated with Opal. Vertical sections of tangential velocities were characterized by values that increased linearly with radial distance from near zero close to the center to a maximum of about at roughly 25 km from the center, and then slowly decayed. The vertical extent of the cyclonic circulation was primarily limited to the upper mixed layer, as tangential velocities decayed quite rapidly within a depth range of 90–130 m. Potential vorticity analysis suggests that only a relatively small (about 50 km in diameter) and shallow (to a depth of approximately 70 m) portion of the eddy is isolated from the surrounding waters. Radial movements of water can occur between the center of the eddy and the outer regions along density surfaces within an isopycnal range of σt23.6 () and σt24.4 (). Thus the biogeochemistry of the system might have been greatly influenced by these lateral exchanges of water at depth, especially during Opal's southward migration. While the eddy was translating, deep water in front of the eddy might have been upwelled into the core region, leading to an additional injection of nutrients into the euphotic zone. At the same time, part of the chlorophyll-rich waters in the core region might have remained behind the translating eddy and, thus contributed to the formation of an eddy wake characterized by relatively high chlorophyll concentrations.  相似文献   

16.
南海冬、夏季环流的三维数值模拟   总被引:6,自引:0,他引:6  
本文利用一个斜压三维陆架海模式——HAMSOM模式对12月份和8月份的南海环流进行数值模拟,结果为:对上层流场,在12月份,在西沙群岛-中沙群岛海区间呈现一个气旋式环流,在越南中部东岸存在一支南向西边界流,在金兰湾的远海为一局地反气旋涡,在南海南部,主要表现为万安滩的气旋式大弯曲(气旋涡)及在北康暗沙北侧的反气旋涡;在8月份,在东沙群岛-中沙群岛-吕宋岛西侧海域间存在一大尺度的气旋涡,在南海西部主要表现为以西沙群岛南部的气旋涡与金兰湾-礼乐滩间的反气旋式大环流相对峙的局面,同时在万安滩东侧有-气旋涡.由于斜压效应、底形效应的作用,使冬、夏季的南海南部中层流场几乎与上层流场相反.  相似文献   

17.
两个西边界流延伸体区域中尺度涡统计特征分析   总被引:3,自引:2,他引:1  
黑潮和湾流是世界大洋中最典型的两支西边界流,黑潮延伸体(Kuroshio Extention,KE)和湾流延伸体(Gulf Stream Extention,GSE)区域中尺度涡活动十分活跃。本文综合利用卫星高度计资料和Argo浮标资料,对KE和GSE区域中尺度涡的表层特征及其对温盐影响进行了统计研究和对比分析。结果表明:黑潮和湾流主轴附近为涡旋频率的高值区,主轴南北两侧分别以气旋涡和反气旋涡数量占多,主轴附近的涡旋强度明显大于其他区域;两个区域的涡旋以西向移动为主,气旋涡和反气旋涡都具有向南(赤道)偏离的趋势;两个区域的涡旋数量都以夏、秋季较多,涡旋强度都在春、夏季较大,且GSE区域涡旋强度明显大于KE区域;气旋涡(反气旋涡)引起内部明显的温度负(正)异常,KE区域气旋涡(反气旋涡)内部呈"负-正"("正-负")上下层相反的盐度异常分布,GSE区域气旋涡(反气旋涡)在各层呈现较为一致的盐度负(正)异常;两个区域中尺度涡对温盐场的平均影响深度可达1 000×104 Pa以上。  相似文献   

18.
The circulation pattern and volume transports in the eastern Weddell Gyre are estimated on the basis of hydrographic data collected by R.V. Polarstern between 1989 and 1996. In the northeastern edge of the Weddell Gyre, eastward-flowing water masses from the Antarctic Circumpolar Current and the Weddell Sea converge. Due to the strong effect of topographic constraints on ocean currents in the weakly stratified waters of high latitudes, the wedge-like structure of the Southwest Indian Ridge can cause the convergence. The increased shear leads to instabilities of the current at the eastern end of the ridge, which produce an intense mesoscale eddy field between 15° and 30°E. In the eddies, water from the Weddell cold regime and the Antarctic Circumpolar Current waters mix and form the water masses of the Weddell warm regime. These waters are advected southward and flow towards the westward southern rim current, which is driven by the Antarctic eastwind band. Hence, there is not a continous flow from the northern to the southern rim, but a decay of the mean flow in the northeast and a reformation in the south. Volume transports across the Greenwich Meridian, estimated on the basis of a combined CTD/ADCP data set, result in an eastward flow of 61 Sv in the northern rim current and a westward return flow of 66 Sv in the southern part of the gyre. The transport is about twice as high as previous estimates between Kapp Norvegia and the northern tip of the Antarctic Pensinsula, indicating a significant gyre circulation north of 70°S.  相似文献   

19.
建立了一个描述中尺度涡的新的非线性方程,然后利用变分原理研究了孤立涡旋的Liapunov稳定性,指出反气旋和气旋涡都是稳定的。数值计算结果发现在β效应的作用下这些涡旋都向西移动而不存在向南的移动,然而在反气旋涡的上游存在一个孤立地形(例如海山)的话,孤立地形会使反气旋涡向南移动,而且移动的轨迹取决于孤立地形的位置。当两个反气旋涡同时存在并发生相互作用时,上游孤立地形使这两个反气旋涡产生弱合并并出现弱分离。而且孤立地形的位置对这两个涡的移动和旋转有重要影响。  相似文献   

20.
A mechanism of the Kuroshio Meander is discussed by comparing some observed characteristics of the Kuroshio path with short- and long-term variations of the wind field over the North Pacific. It is suggested that the meander is caused by the blocking of the Kuroshio current by the Izu-Ogasawara Ridge. The blocking occurs when the depth of the main current increases or when the vertical shear becomes weak. These structural variations are closely related to the supposed baroclinic response of the North Pacific Subtropical Gyre to long-term variations of the wind field with a period of about 56 years. The Kuroshio Meander is initiated by a trigger meander at the offiing of Shikoku Island. The trigger meander is closely related to the supposed barotropic response of the gyre to short-term variations of the wind field with a period of about 34 months.The barotropic response of the North Pacific Subtropical Gyre to the short-term variation of the wind field yields the rapid change of the vertical structure of the Kuroshio current. This change generates the trigger meander in combination with the complicated pattern of the continental slope at the offing of Shikoku Island. The trigger meander is carried away toward the Izu-Ogasawara Ridge by the Kuroshio current. When the baroclinic response of the gyre is favourable for the blocking of the main current, the trigger meander and the cold eddy grow fed by the upwelling of the deep water of the Kuroshio which is blocked at the west of the ridge. The growing stops when the scale of the trigger meander reaches to the size of the steady Rossby wave which corresponds to the over-all mean velocity of the Kuroshio at that time, because the meander exceeding the size of the steady Rossby wave moves west-ward and separates from the ridge. Then the deep water of the Kuroshio at the west of the ridge which has been under the hard constraint of the cyclonic circulation in the form of the cold eddy becomes possible to flow arround the ridge. The upwelling stops and there remains only the general dissipation process of the available potential energy in the cold eddy. Then the meander gradually decreases its size and returns to the ridge when the meander becomes smaller than the steady Rossby wave at that time. It is blocked and begins to grow there again. In this way, the Kuroshio Meander behaves as a quasi-steady Rossby wave and stagnates at the west of the ridge until the baroclinic response of the gyre becomes unfavourable for the blocking of the Kuroshio current by the ridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号