首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Using a two-dimensional fluid-flow/compaction code an investigation is given of the influence of dynamically evolving curved faults in impacting the overpressure development of a sedimentary basin. Four synthetic cases are examined: an homogeneous sandy-shale section, and a mixed layered section of sand and shale, with fault conditions investigated being open to fluid flow, and closed to fluid-flow, respectively. Fault throws can be instantaneous either in time (such as a gravity slump) or can be progressive in time (such as a growth fault). A case history from south Louisiana also is examined to illustrate typical response patterns.  相似文献   

2.
J. Liu  I. Lerche  Z. Wei 《地学学报》1993,5(1):40-51
The Kodiak Shelf Basin is one of the undeveloped basins in Alaska. In surrounding areas, hydrocarbon accumulations have been found. It is of interest to investigate whether there might also be hydrocarbons generated in the Kodiak Shelf Basin. Using both one- and two-dimensional fluid flow/compaction models, together with geological, geophysical and geochemical data from the Kodiak Shelf Basin, we simulate the development with time and depth of sedimentary compaction, porosity, permeability, pressure, palaeoheat flux variation and palaeotemperature variation. We then evaluate quantitatively the maturation of organic matter in the basin. The model results indicate that there was only a low likelihood of hydrocarbon generation in the basin due mainly to the combined effects of a cool palaeothermal history and low organic carbon content.  相似文献   

3.
王建荣  万力 《现代地质》1996,10(4):550-557
介绍了3种地下水运动模型及相应的应用条件,并在吐 哈盆地进行了实际应用。把吐 哈盆地地下水活动划分为2个阶段,相应的油气有利聚集区分为4大类。认为在水动力条件活跃的地区,油气藏可能偏移构造高部位。另外还介绍了勘探此类油藏的UVZ法,以及在柳赞油田的应用实例,不仅预测了油藏的分布位置,还合理地解释了所谓“水洗层”现象  相似文献   

4.
Compaction and associated fluid flow are fundamental processes in sedimentary basin deformation. Purely mechanical compaction originates mainly from pore fluid expulsion and rearrangement of solid particles during burial, while chemo‐mechanical compaction results from Intergranular Pressure‐Solution (IPS) and represents a major mechanism of deformation in sedimentary basins during diagenesis. The aim of the present contribution is to provide a comprehensive 3D framework for constitutive and numerical modeling of purely mechanical and chemo‐mechanical compaction in sedimentary basins. Extending the concepts that have been previously proposed for the modeling of purely mechanical compaction in finite poroplasticity, deformation by IPS is addressed herein by means of additional viscoplastic terms in the state equations of the porous material. The finite element model integrates the poroplastic and poroviscoplastic components of deformation at large strains. The corresponding implementation allows for numerical simulation of sediments accretion/erosion periods by progressive activation/deactivation of the gravity forces within a fictitious closed material system. Validation of the numerical approach is assessed by means of comparison with closed‐form solutions derived in the context of a simplified compaction model. The last part of the paper presents the results of numerical basin simulation performed in one dimensional setting, demonstrating the ability of the modeling to capture the main features in elastoplastic and viscoplastic compaction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
李忠  刘嘉庆 《沉积学报》2009,27(5):837-848
对成岩作用的物理—化学—生物过程的系统认识已经成为国际成岩作用研究的学术热点,而对沉积盆地尤其是化石能源盆地成岩作用重要性认识的加强,使得对成岩作用时空属性及其界定的精度要求愈来愈高。为此本文明确提出了在盆地动力学演化框架内,基于盆地沉积层序(岩石—矿物—化学体系配置)、埋藏、构造、流体格架分析,开展成岩作用时空分布研究的思路。进一步讨论了成岩作用的动力机制与时空分布研究若干问题和发展趋向,提出了应重视和开展地表温度变化对埋藏成岩作用,沉积结构及其矿物—化学体系对后期成岩改造的制约机理,断裂相、变形条带及其与碎屑岩储层裂缝或强压实改造关系,构造—流体活动耦合机制与流体—岩石相互作用效应等的研究建议。  相似文献   

6.
As sedimentation progresses in the formation and evolution of a depositional geologic basin, the rock strata are subject to various stresses. With increasing lithostatic pressure, compressional forces act to compact the porous rock matrix, leading to overpressure buildup, changes in the fluid pore pressure and fluid flow. In the context of petroleum systems modelling, the present study concerns the geometry changes that a compacting basin experiences subject to deposition. The purpose is to track the positions of the rock layer interfaces as compaction occurs. To handle the challenge of potentially large geometry deformations, a new modelling concept is proposed that couples the pore pressure equation with a level set method to determine the movement of lithostratigraphic interfaces. The level set method propagates an interface according to a prescribed speed. The coupling term for the pore pressure and level-set equations consists of this speed function, which is dependent on the compaction law. The two primary features of this approach are the simplicity of the grid and the flexibility of the speed function. A first evaluation of the model concept is presented based on an implementation for one spatial dimension accounting for vertical effective stress. Isothermal conditions with a constant fluid density and viscosity were assumed. The accuracy of the implemented numerical solution for the case of a single stratigraphic unit with a linear compaction law was compared to the available analytical solution [38]. The multi-layer setup and the nonlinear case were tested for plausibility.  相似文献   

7.
盆地构造演化、流体系统、矿化作用是当代矿床学研究的新课题。盆地演化过程中,压实流体系统温度场、动力场和地球化学场可以通过地质研究和数字模拟来重塑。粤北晚古生代沉积盆地存在三种类型的矿化流体。大宝山型流体与岩浆热动力作用有关,形成海底火山热液沉积多金属矿床;凡口型流体与深部建造的循环热液有关,形成中低温海底热泉喷溢沉积铅锌银汞矿床;红岩型流体与盆地成岩压实水有关,形成低温单一黄铁矿矿床。粤北晚古生代盆地沉积物主要由透水性较好的粗碎屑物质和碳酸盐组成,沉积建造厚度较薄,数字模拟结果表明,盆地压实流体系统难以形成较高的地热储和流体势,不可能形成自身的突发喷溢。但在同生断裂作用引导下,流体在沉积层的特殊部位汇聚形成红岩型低温黄铁矿矿床。  相似文献   

8.
A two-dimensional modelling study of sedimentation, fluid flow, and heat flow in the Baikal rift basin undergoing flank uplift and basin subsidence has been performed in order to understand the impact of these processes on the surface heat flow signal. Heat flow anomalies of different scales and magnitudes have been observed at the sediment surface of the lake Baikal basin, and the presence of a hydrothermal vent suggests that fluids play an important role in the regional distribution of heat flow. The BASIN-code applied for this study allows to simulate topographically and compaction-driven hydrodynamical fluid flow and coupled heat transfer.The flank uplift history provides the basis for a regional groundwater circulation towards the central basin area, with predicted Darcy velocities at present-day situation in the basement varying between 1 and 100 cm/year. Within the basin, the presence of aquifers and the pinch-out layering has a major control on the flow field, and compaction-driven flow velocities are strongly altered when combined with topography-driven flow. When velocities in the basement are larger than several centimeters per year, the regional fluid circulation is an effective mechanism of heat redistribution. Heat is brought from the flanks towards the basin area, with largest heat transported at a depth of 1–2 km at both sides. During the flank uplift, heat advection increases, with secondary variation related to the deposition of sedimentary layers. The heat flow is increased over the basin and reduced in the flanks, with a total heat output balance always positive. The extra heat output over the modelled transection is 2–10% of the initial heat output. The maximum computed heat fluxes are smaller than measured in the heat flow anomalies of the lake Baikal basin. Nevertheless, the model suggests that flow in the sedimentary basin combined with a topographically driven heat advection in the surrounding basement is a sufficient mechanism to account for the increased heat flow over the basin and the main features of the heat flow distribution.  相似文献   

9.
塔里木盆地北部油气运移二维二相数值模拟分析   总被引:3,自引:0,他引:3       下载免费PDF全文
范土芝  刘鹏生 《地球科学》1995,20(3):322-327
油气运移和聚集过程实际上是油(气)水饱和度知疏导层的变化过程,盆地中油(气)二相流动问题的研究就是对这一过程的定量描述,本项研究是在前人工作基础上,考察压实作用造成骨架变形来推导新的二维二相流动方程,它容描述异常压力演化与二相流动于一式,在模拟方法上采用有限分析的数值方法,这应用于新疆塔里木盆地北部地区,展示了该区异常压力、含水饱和度弥散状扩散效应以及流速场在地质历史时期动态模拟演化特征;指出了该  相似文献   

10.
油气的运移、聚集与地下水动力场的形成与演化紧密相关。含油气沉积盆地地下水动力场的理想模式可以归纳为两种,即对称型和不对称型,其中局部地下水动力单元可以划分为:(1)泥岩压水离心流;(2)大气水下渗向心流;(3)越流、越流-蒸发泄水;(4)滞留4种类型。本文试通过讨论鄂尔多斯盆地现今地下水动力场的特征,推断其油气的运移和聚集,这对分析鄂尔多斯盆地上古生界气田的形成,以及资源评价和勘探决策都具有极其重要的意义。  相似文献   

11.
沉积盆地内热流体活动过程实际上是热流体聚集与散失的动平衡过程.热流体活动必然导致温度和压力以及化学条件的改变,尽管如此,沉积盆地内热流体活动的示踪难度较大.通过对莺歌海盆地典型实例的剖析,认为较为有效的方法就是通过热流体活动中的温度效应进行示踪研究.其中较为有效的参数有伊-蒙矿物的转换、镜质体反射率和有机物热解指标以及流体包裹体等.这些参数的不同形式的异常均指示了来自深部的热流体的活动.  相似文献   

12.
This article presents a numerical model of heat and fluid flow in compacting sedimentary basins formulated in Lagrangian co-ordinates. The Lagrangian co-ordinates are the sediment particle positions of the completely compacted basin. A finite element formulation of excess water pressure and temperature in these Lagrangian co-ordinates is presented, in addition to an equivalent formulation in the real co-ordinates. The later formulation is also Lagrangian of nature, since the elements of the grid in the real co-ordinates always frame the same sediment particles. In other words, it is the Lagrangian grid mapped to the real space. This is done in an iterative loop which solves for excess water pressure, and then updates the real co-ordinates of the sediment particles. By comparing the two finite element formulations it is concluded that the one in real space is the simplest, most efficient and most precise. The model is validated by comparison with two dimensionless one-dimensional solutions, one analytical for the linear case, and one numerical for the non-linear case. Both these one-dimensional solutions are obtained on the unit interval, where the moving top boundary caused by continuous sedimentation is incorporated.  相似文献   

13.
Mudstones are one of the least permeable rocks in most sedimentary sequences. Accordingly they can act as seals for fluid flow leading to abnormal overpressures. Nevertheless, mudstone compaction and related permeability and porosity decrease are not adequately described in current basin modelling software, because only mechanical compaction is taken into account. In reality, however, clay minerals undergo severe chemical diagenesis which certainly influences petrophysical properties and compaction. In this context a mathematical approach which has been originally developed in soil mechanics has been adapted to basin modelling. The underlying mathematical equations are carefully explained in the text. In the basic equation the compression coefficient is a function of void ratio and effective stress. Using these equations, overpressure can be predicted by using petroleum systems modelling techniques. This is shown for a real 3D case study in the North Sea, in which strong overpressure occurs. A compaction model for mudstones that depends strongly on the clay content of the individual stratigraphic units is used for the calibration of porosities in the 3D case study. In addition, a chemical compaction model that reduces porosities by using a kinetic reaction is used for the deeper part of the basin where mechanical compaction processes are less important. The pressure generation process depends strongly on permeability and compressibility of the porous medium. Therefore, the use of mudstone compaction and permeability models is sufficient to produce pore overpressures. In the case studied, abnormal overpressures are generated during burial together with the petroleum generation process. The mechanical and chemical compaction mechanisms ensure that the pressures are preserved in the deeper part of the basin.  相似文献   

14.
INTRODUCTIONQuantitativebasinmodelinghasbecomeoneofthefrontiersinsedimentarybasinanalySis.Alargevarietyofnumericalmodelsconcerningbasinformation,basinfillingprocess,thermalhistory,hydrocarbongenerationandaCCUmulationhavebeenformulatedoverthelastdecadetondAnctheprocessesandevollltionofsedimentarybasins(Mckenzie,1978,signeretal.,1990;Ungereretal.,1990).Thebasinmodeling,utilizingcomputersimulationtechnique,isapowerfultoolforbasinanalySisandhasincreasinglybeenintegratedintoconventionalbasi…  相似文献   

15.
南岭地区两种类型盆地的压实流体系统及其矿化作用   总被引:9,自引:5,他引:4  
盆地构造演化—流体系统—矿化作用是矿床学研究的前缘课题。盆地演化的特征直接影响盆地沉积建造的结构特征。建造结构和地球化学特征对压实流体系统的温度场、动力场、地球化学场和矿化作用产生决定性的影响。滇东南白牛厂早古生代盆地是典型的裂谷式凹陷盆地,上万米厚的黑色页岩与上部碳酸盐岩和砂岩组合有利于矿化的压实流体系统的形成,形成了白牛厂式超大型银多金属矿床。粤北晚古生代盆地为地台型浅海盆地,沉积物主要由透水性较好的粗碎屑物质和碳酸盐岩组成,沉积建造厚度较薄。数字模拟结果表明,粤北盆地压实流体系统难以形成较高的地热储和流体势,流体只能在沉积层的特殊部位汇聚并形成红岩型低温黄铁矿矿床。  相似文献   

16.
A numerical compaction model of overpressuring in shales   总被引:1,自引:0,他引:1  
A one-dimensional model of sediment compaction is presented to relate pressure, porosity, permeability, and fluid and solid-particle velocities in an evolving sedimentary basin. The burial history of a sedimentary package is followed and incorporated into rate models for diagenetic reactions to predict clay compositions with depth. The governing set of nonlinear, partial differential equations constitutes a moving boundary problem and is solved by a finite difference scheme. Sedimentation rates and a permeability-porosity function for shales are required to implement the model. Additional factors are incorporated to mimic the effect of increased fluid volume generated by dehydration from clay mineral transformations and by thermal expansion. We demonstrate that the major cause of overpressuring in sediments accumulating along passive margins is nonequilibrium compaction. Sedimentation rates and strata permeability are the most important geologic factors in the formation of overpressured zones. Smectite dehydration and aquathermal pressuring play secondary roles in the development and sustenance of overpressures.  相似文献   

17.
《Computers and Geotechnics》2006,33(6-7):316-329
The aim of the paper is to provide new elements concerning the constitutive behavior of sedimentary rocks and the numerical aspects for basin simulators. A comprehensive model for mechanical compaction of sedimentary basins is developed within finite poroplasticity setting. Particular concern is paid to the effects of large porosity changes on the poromechanical properties of the sediment material. A simplified micromechanics-based approach is used to account for the stiffness increase and hardening induced by large plastic strains.A key challenge for numerical assessment of sedimentary basin evolution is to integrate multiple coupled processes in the context of open material systems. To this end, a numerical approach inspired from the ‘deactivation/reactivation’ method used for the simulation of excavation process and lining placement in tunnel engineering, has been developed. Periods of sediments accretion are simulated by progressive activation of the gravity forces within a fictitious closed system. Fundamental components of the constitutive model developed before (hydromechanical coupling, dependence of poroelastic properties on large plasticity, impact of irreversible porosity changes on the hardening rule, evolution of permeability with porosity) are included into our finite element code.Illustrative examples of basin simulation are performed in the one-dimensional case. Various aspects of the constitutive model are investigated. Their influence on the corresponding basin response is analyzed in terms of compaction law, porosity and fluid pressure profiles.  相似文献   

18.
论盆地流体成矿/成烃作用的耦合关系   总被引:7,自引:1,他引:6  
沉积盆地中的油气聚集和某些金属矿床都是盆地演化过程中盆地流体活动的产物,是同一地质-构造格架内同一自然过程留下的物质表象。油气是被封存起来的、以碳氢化合物为主的盆地有机流体,而固态的金属矿石则大多是以水溶液相为主的盆地流体在适当的部位将所溶解携带的成矿金属组分沉淀卸载的结果。碳氢化合物源干沉积有机质的演化;成矿金属元素则可能是盆地流体从沉积物颗粒通过流-岩反应萃取来的。有机组分在成矿金属元素的活化萃取、迁移、直至沉淀就位的全过程中均起了非常重要的作用。在成岩压实作用阶段(相当干油气的初次析出阶段),油气与粘土水一道从生烃层内被挤出。从这个意义上讲,油气与部分成矿水溶液具有共同的起源。但在往后的运移和聚集就位过程中,由于水和油的物理化学特征不同,二发生了分离。从而造成了金属矿床与油气藏在空间上既相互依赖,又相互分离的复杂关系。  相似文献   

19.
论松辽盆地地下水动力场的形成与演化   总被引:25,自引:7,他引:25       下载免费PDF全文
理想的沉积盆地地下水动力场模式可以归纳为对称型和不对称型两种,其中局部地下水动力单元可以划分为4种类型:①泥岩压榨水离心流;②大气水下渗向心流;③越流、越流-蒸发泄水;④滞留。地下水动力场演化具有旋回性,每个旋回可以分为两个阶段:①盆地沉降接受沉积时期的泥岩压榨水离心流阶段;②盆地抬升剥蚀阶段的大气水下渗向心流阶段。随着沉积盆地的形成与演化,水动力场也有形成、发展和消亡的过程。松辽盆地地下水动力场具有明显的不对称性:盆地北部和东部大气水不对称下渗形成向心流;中央坳陷区压榨水形成离心流和越流;盆地南部以越流-蒸发浓缩为特征。在纵向上地下水动力的强度具有分带性,由浅到深,可以划分出强、弱、停滞3个带。  相似文献   

20.
I. Lerche  Z. Yu  J. Liu 《地学学报》1995,7(4):459-466
A discussion is given of the impact of normal slant faults on basinal structure, compaction, fluid overpressure development, and thermal effects in sedimentary basins. Faults which are hydraulically closed or open to fluid flow are examined in a dynamical two-dimensional fluid/ flow compaction model.
From this numerical investigation three dominant factors characterize the effects of single and multiple faults with open or closed hydraulic behaviours: (i) there is a difference in excess pressure for fault planes with open or shut hydraulic conditions, but the neighbourhood where the effect of the fault is dominant is fairly localized (to within about half a kilometre or so laterally from the fault plane); (ii) the lateral and vertical motion of sediments between faulted blocks induces a thermal difference prior to, during, and post-faulting, which can play a role in influencing hydrocarbon generation, migration, and accumulation; (iii) porosity retention and permeability modification by fault development could influence hydrocarbon exploration decisions regarding sealing, migration pathways, and fluid retention.
The general patterns of slant fault effects described here should prevail in most geological situations, because the numerical experiments are designed to illuminate sharply the dominant response characteristics within the framework of simplified situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号