首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
“96·8”特大暴雨和中尺度系统发展结构的非静力数值模拟   总被引:13,自引:0,他引:13  
1996年8月3~5日(“96  相似文献   

2.
重庆"9·4"特大暴雨天气过程数值模拟分析   总被引:9,自引:4,他引:9  
周国兵  沈桐立  韩余 《气象科学》2006,26(5):572-577
本文利用MM5中尺度数值预报模式对2004年9月4日发生在重庆的特大暴雨天气过程进行了模拟。模拟结果表明,模拟降水的落区和量级效果较好,通过对造成此次暴雨天气的中尺度天气系统西南涡的分析,模拟结果是西南涡的强度和中心与实况分析都是一致的。结合高低层的物理量场分析形成暴雨发生条件和落区分布的物理概念模型,水汽的输送和辐合从低层到高层是沿着西南气流的方向向东倾斜,落区的分布与中高层500 hPa~300 hPa的风场辐合相关性非常好,降水强度与垂直速度的强度和上升高度有关。  相似文献   

3.
对1991年7月4日至7日(“91.7”)发生在江淮流域的一次低涡切变线特大暴雨过程进行了高分辨行星边界层参数化的中尺度数值模拟。控制模拟结果揭示“91.7”江淮暴雨过程与中尺度暴雨低涡的生成和发展以及特有的动力和热力结构密切相关;气旋性涡柱,强上升运动与深厚湿舌三位一体的共存结构是暴雨低涡持续发展并产生对流云系和持续暴雨的强耦合条件;西南低空急流的发展和维持,不仅是暴雨低涡形成和持续发展的重要动  相似文献   

4.
“96·8”河北特大暴雨成因初探   总被引:13,自引:3,他引:13       下载免费PDF全文
江吉喜  项续康 《气象》1997,23(7):19-23
运用常规气象资料和卫星云图,分析了1996年8月3—5日河北特大暴雨的成因。认为:它是出现在东亚特定的强经向环流形势下,由9608号台风低压与副热带高压两侧之间形成的强偏南风低空急流,将低纬度地区高温高湿水汽源源不断地向华北输送并与近地面层弱冷空气相互作用,诱发两个中尺度云团的形成和发展直接造成的  相似文献   

5.
“91.7”江淮暴雨低涡发展结构和演变的中尺度数值模拟   总被引:5,自引:5,他引:5  
程麟生  彭新东 《高原气象》1995,14(3):270-280
本文对1991年7月4-7日发生在江淮流域的一次低涡切变线特大暴雨过程进行了高分辨行星边界参数化的中尺度数值模拟。所用模式是通过系列检验和改进的MM4。控制模拟结果揭示:“91.7”江淮暴雨过程与中尺度暴雨低涡的生成和发展以及特有的动力和热力结构密切相关;垂直气旋性涡柱的形成和发展是这类暴雨低涡持续发展的一种重要而特有的中尺度结构;伴随暴雨低涡涡柱耦合发展的强上升运动是维持其低涡持续发展以及完成高  相似文献   

6.
采用常规气象观测、地面加密降水资料、FY-2E卫星逐时TBB资料以及WRFV3.3高分辨率模式输出资料,对2010年7月12—13日安庆罕见特大暴雨过程的中尺度对流系统的发生发展、结构特征及形成原因进行了综合分析。WRFV3.3中尺度非静力模式很好地模拟了此次切变线暴雨的雨带走向、几个暴雨中心的位置和强度,以及中尺度对流系统的整个发展过程。分析结果表明:此次特大暴雨是在高层200 hPa强大的南亚高压稳定少动,中层500 hPa的短波槽的生成、转向和发展与副高的维持,低层的700 hPa和850 hPa中尺度低涡、切变线以及地面梅雨锋扰动的共同作用下造成的;700 hPa低涡、切变线以及沿切变线相继生成和强烈发展的β中尺度对流系统是这次特大暴雨的直接制造者。细网格模拟结果揭示,安庆特大暴雨与850 hPa上的β中尺度对流系统(MβCS)的生成和强烈发展直接相关。该MβCS具有明显的动力—热力结构特征,显示:强上升运动与饱和气柱的耦合,强散度柱与强涡柱的耦合发展,强上升运动与位势不稳定的耦合发展,湿静力不稳定与湿对称不稳定共存。  相似文献   

7.
采用常规气象观测、地面加密降水资料、FY-2E卫星逐时TBB资料以及WRFV3.3高分辨率模式输出资料,对2010年7月12-13日安庆罕见特大暴雨过程的中尺度对流系统的发生发展、结构特征及形成原因进行了综合分析.WRFV3.3中尺度非静力模式很好地模拟了此次切变线暴雨的雨带走向、几个暴雨中心的位置和强度,以及中尺度对...  相似文献   

8.
利用中尺度数值模式MM 4,对“99 8”山东特大暴雨进行数值模拟 ,探讨了弱冷空气、地形、东南气流对本次过程的影响机制 ,结果表明 :中低层中尺度涡旋是造成本次过程的主要天气系统 ,其空间上的倾斜特征是本次特大暴雨天气的触发机制之一 ;弱冷空气是特大暴雨的直接触发因素 ;地形的辐合抬升作用是暴雨加剧的另一主要原因 ;东南气流为特大暴雨提供了水汽来源。  相似文献   

9.
"987”突发大暴雨及中尺度低涡结构的分析和数值模拟   总被引:64,自引:13,他引:64       下载免费PDF全文
程麟生  冯伍虎 《大气科学》2001,25(4):465-478
1998年7月20~23日(简称"987”),发生在鄂东和鄂西南地区的突发性特大暴雨过程在长江流域是罕见的.该过程与500hPa短波槽和700hPa低涡切变线以及沿切变线相继生成和强烈发展的β中尺度对流系统密切相关.对该过程采用非静力MM5的二重网格双向嵌套进行了全物理过程的数值模拟,其中,可分辨尺度降水采用Reisner混合相微物理显式方案,次网格尺度降水采用Grell积云参数化方案.双向嵌套的细网格模拟结果揭示,武汉周边地区的特大暴雨与700hPa上一个β中尺度低涡的生成和强烈发展直接关联.该低涡具有明显的动力-热力结构特征:特强上升运动与饱和气柱互耦,超强散度柱与强涡柱耦合发展,湿静力不稳定与湿对称不稳定共存,深对流湿气柱内云团发展的微物理场结构比较典型.细网格域内前36h的降水分布和雨强与观测的大体相应,扩展域细网格的降水模拟明显改进了原细网格的模拟,特别是雨带.这一结果还表明,对持续时间较长的大暴雨,大尺度过程对中尺度系统的影响是重要的.  相似文献   

10.
98.7湖北特大暴雨的天气分析与降水模拟   总被引:10,自引:4,他引:10       下载免费PDF全文
齐艳军  程明虎  仪清菊 《气象》2004,30(3):12-16
1998年7月20~23日,湖北省南部发生了一次持续性特大暴雨过程,采用双向嵌套的非静力中尺度数值模式(MM5)对这次强暴雨过程进行初步模拟试验。结果表明,粗、细网格均能较好地模拟出雨带的走向和变动以及武汉地区的暴雨中心,尤其是嵌套域(细网格)模拟的降水强度比粗网格有明显改进,和实际观测结果更接近;另外,对引发这次特大暴雨的对流层低层的中尺度系统也能够很好地模拟出来。  相似文献   

11.
本文利用复杂地形条件下嵌套网格预报模式和欧洲中心(ECMWF)2.5°×2.5°的全球网格点资料,对“81.7”四川大暴雨进行了单向影响粗细网格嵌套48小时的个例预报试验;并根据滤波原理,利用最佳高通滤波器,将风场、位势高度场和温度场进行了中尺度分离。结果表明:本模式较好地预报了造成这次暴雨的中尺度系统发生、发展的过程;并对动力和热力影响作了一些粗浅的分析,本模式较好地描述了暴雨天气,细网格预报在某些方面有进一步改进。该尺度分离方法也能在扰动发展的早期阶段就能从大尺度背景场中将西南涡等中尺度系统清晰地分离出来,使我们能对影响这次暴雨的中尺度系统有进一步的认识。  相似文献   

12.
在2012年7月21日北京特大暴雨过程天气尺度环流背景分析的基础上,主要用WRF模式对该次暴雨过程进行了高分辨率的模拟。利用模拟资料分析了影响此次北京特大暴雨的辐合线及辐合线上生成的中尺度低涡的热动力结构及其演变。从热力场来看,来自于西北和东北方向的强冷空气与西南和东南暖湿气流的长时间对峙形成的辐合以及中低层冷空气从西北和东北方向向西南的入侵迫使整层暖湿空气抬升,以及低空急流的暖湿平流与低空弱冷空气之间形成的"西冷东暖"的结构,对对流不稳定的触发有一定作用,有助于该次特大暴雨的发生。对流层低层的西(东)南风与西北风之间形成了一条持续时间长的辐合切变线,切变线上不断有中尺度低涡生成并沿切变线发展移动,模拟资料分析表明,低涡不断沿切变线生成并移动经过北京从而对该次暴雨造成影响,这与"列车效应"现象类似。切变线上生成的中尺度低涡位置也同时处于急流左前侧和山前,低涡加强和发展时对应有暴雨的明显增强,是直接造成北京特大暴雨的中尺度系统,其生成与低层辐合、低空急流及地形均有关系。低层辐合引发的垂直运动在地形迎风坡附近得到加强,低层辐合及地形抬升共同导致了强垂直运动的发展和维持,是暴雨持续的重要原因。大气中层有下沉气流与低层上升气流相互作用,在大气中低层形成一系列中尺度环流,房山附近一直有中尺度环流的垂直上升支维持,也是暴雨中心出现在房山的原因之一。  相似文献   

13.
中尺度地形对“98.7”鄂东特大暴雨的动力作用   总被引:19,自引:6,他引:19  
用一个高分辨的 η坐标模式对 1998年 7月 2 1日鄂东沿江特大暴雨过程进行数值模拟 ,得到与实况相吻合的结果。通过敏感性试验和分析 ,研究了局地中尺度地形对这次暴雨过程的影响及其机理。结果表明 ,虽然地形对这次特大暴雨过程的基本面貌并未起到决定性的作用 ,但也有一些重要影响。大别山对边界层南风暖湿气流的阻挡使位于其迎风面上游的暴雨带有所加强。幕阜山对边界层水汽流入的拦截则使位于其背风面下游的暴雨带的初期发展减缓。到了暴雨盛期 ,由于暴雨带南侧有中尺度低空急流出现并正好位于幕阜山区 ,因地形而抬高的摩擦层内的Ekman风矢偏转直指暴雨区 ,加强了暴雨区水汽的辐合。由于强对流暴雨系统盛期近地层气流转为辐散 ,对暴雨维持起关键作用的辐合层升高 ,因此地形抬高的摩擦辐合恰好叠加其上使之增强 ,这可能是此次鄂东沿江特大暴雨过程持续时间长的一个重要原因。  相似文献   

14.
台风倒槽内β中尺度低涡及特大暴雨的数值模拟   总被引:10,自引:5,他引:10  
对 2 0 0 1年 7月 6~ 7日上海嘉定特大暴雨及β中尺度低涡进行大、中尺度分析 ,认为特大暴雨是在西太平洋副热带高压的西北侧、北部西风槽与南部台风倒槽相连的形势下形成的。利用改进的区域 η坐标模式 (REM)对这一过程进行了数值模拟 ,发现降水先于 β中尺度低涡形成 ,强降水是在“风速偶”之间的强辐合作用下触发的。探讨了“风速偶”特别是弱风中心形成的原因。根据模式输出的高时空分辨率物理量场对 β中尺度低涡与特大暴雨的形成进行分析 ,探讨了它们形成的机制 ,结果表明 β中尺度低涡的形成是由于强降水使气柱增暖加强了低空原有的正涡度的情况下形成的 ,低涡与降水存在正反馈机制 ,CISK机制可能是十分重要的  相似文献   

15.
"98.5"华南前汛期暴雨的非静力数值模拟和中尺度系统分析   总被引:3,自引:22,他引:3  
文莉娟  程麟生  隆霄 《高原气象》2005,24(2):223-231
为了对华南暴雨进行深入的数值模拟研究,在对1998年5月23~24日(简称“98.5”)华南暴雨进行天气分析的基础上,利用非静力中尺度数值模式MM5对该次暴雨过程进行了数值模拟。数值模拟结果和客观分析结果的比较表明,模拟结果可以再现造成暴雨的大、中尺度环流条件。造成此次暴雨的中尺度系统具有暖心高湿结构,高空辐散,低空辐合及对应的强上升运动和气旋性涡柱是造成这次暴雨的动力学机制,低空偏南气流对这次暴雨的产生和发展起着重要的作用。模拟的降水中心与观测的较接近,位置略偏南、偏西,雨量略小,但降水时段和雨区模拟较好。降水发生在喇叭口等有利地形;高低分辨率的地形资料对本次降水的模拟结果影响不大。  相似文献   

16.
通过改进的MM4中尺度数值模式,对我国三次典型大暴雨过程的模拟,来探讨暴雨中尺度系统发生与发展的问题。主要结果指出:气旋性涡柱在不稳定暖湿气柱内生成和发展,以及与整个涡柱共存的上升运动的持续加强,对暴雨中尺度系统的发展具有重要的作用;地面热通量,凝结潜热释放对暴雨中尺度系统的发展有决定性的作用;各种不同的物理过程和参数化、青藏高原的构形造成的外强迫影响,以及模式空间分辨率等,对暴雨中尺度系统结构与演变以及降雨量的模拟结果均有重要的作用。  相似文献   

17.
对2004年7月16、17日出现在临沂市的大暴雨过程的进行中尺度分析,应用MM5v3.6非静力中尺度模式,用美国NCEP再分析资料作初始场,采用双向三重嵌套模式,进行高分辨的数值模拟。分析揭示了这次大暴雨的天气尺度背景和中尺度系统的发生和发展的结构及演变,结果表明:高低空急流的有利配合为暴雨过程提供环境条件,大暴雨出现在高空西风急流轴线出口区与低空西南风急流轴向出口区北侧之间;数值模拟看出:在强降水产生时,雨区上空存在较强的中-β尺度系统,该系统有强而窄的垂直上升运动、上下垂直的辐散辐合结构,强烈的对流不稳定,在对流层低层还存在对称性不稳定。低空急流提供充沛的水汽,并通过强而窄的上升运动向高层输送。  相似文献   

18.
“90·8”远安特大暴雨的中尺度分析   总被引:1,自引:0,他引:1  
徐双柱 《气象》1992,18(2):26-31
本文分析了1990年8月14日发生在湖北远安县的特大暴雨过程。发现:中低层切变线近于垂直的强烈辐合产生对流云团,对流云团在生成、发展维持和消亡阶段,在卫星云图上分别表现为云体强核反气旋式转动合并、气旋式转动和反气旋式转动过程;强降水与雷达回波上强单体的稳定维持相关联,强单体不断发生分裂、合并、分裂的过程;中尺度低压和地形辐合带等中尺度系统在暴雨形成过程中起重要的作用。  相似文献   

19.
20.
选取1994年6月12日~13日的过程,在确定云雨、垂直运动的模拟基本正确的基础上,利用模式输出资料对β中尺度对流系统的结构进行分析研究。结果表明:低层的水汽辐合很强,并且出现在对流发展前2~3h,有利于对流的启动;随着对流系统的发展,最大的垂直运动向上扩展,饱和层和中性层也不断向上伸展,对流层中层的中性层结既是对流发展的结果,也可能是其维持机制之一;强对流系统发展较强时,低层(600hPa以下)是辐合,而中高层为高压辐散气流,高层的辐散气流对对流系统的发展、维持有一定的作用;系统发展最强时垂直方向是两个模态,发展和衰减阶段一般为多个模态;强对流系统发展的环境风场为低层有西南、东南和北风三支气流辐合,而高层以偏北风为主;切变线上对流系统的降雨量有3h左右的周期变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号