首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoelectric UBV observations of the central star of the planetary nebula NGC 2346 obtained during 60 nights between October 1991 and February 1992 are presented (Tables 1 and 2). Four minima have been stated and can be interpreted in terms of occulting dust clouds, probably representing dense condensations of the planetary nebula. We derived R = AV/EB—V = 4.0.  相似文献   

2.
The recent evolution of the central star of the planetary nebula LMC-N66 is presented. Before 1987, it showed a weak continuum with aT eff120 000 K andL bol25 000L and in a few years it developed strong WR features (P Cygni line profiles in N v at 124.0 nm and C IV at 155.0 nm, wide Heii emission, etc.) typical of a WN 4.5. Additionally the stellar continuum increased by a large factor and the absolute visual magnitude of the star changed from + 1.24 in 1987 to–2.57 in January, 1995. The WR features and enhanced continuum, evidencing a powerful mass-loss event remained with small variations for more than 5 years. Recent ultraviolet and optical data shows that the mass-loss seems to have diminished abruptly in the last three months.  相似文献   

3.
4.
With the Hamilton echelle spectrograph at the Lick Observatory, emission-rich spectral lines of the planetary nebula NGC 6543 were secured in the wavelength range from 3550 to 10 100 Å. We chose two bright regions, ∼8 arcsec east and ∼13 arcsec north of the central star, the physical conditions and chemical abundances of which may differ as a result of the different physical characteristics involving the mass ejection of different epochs. By combining Hamilton echelle observations with archive UV data secured with the International Ultraviolet Explorer ( IUE ), we obtain improved diagnostics and chemical compositions for the two observed regions. The diagnostic diagram gives the average value of T e=8000∼8300 K, and the electron number density near N e∼5000 cm−3 for most ions, while some low-excitation lines indicate much higher temperatures, i.e. T e∼10 000 K. With the construction of a photoionization model, we try to fit the observed spectra in a self-consistent way: thus, for most elements, we employ the same chemical abundances in the nebular shell; and we adopt an improved Sobolev approximation model atmosphere for the hydrogen-deficient Wolf–Rayet type central star. Within the observational errors, the chemical abundances do not seem to show any positional variation except for helium. The chemical abundances of NGC 6543 appear to be the same as in average planetary nebulae. The progenitor star may have been an object of one solar mass, most of the heavier elements of which were less plentiful than in the Sun.  相似文献   

5.
[WC] central stars of planetary nebulae are members of the larger class of hydrogen-deficient central stars. The whole class constitutes about20% of all spectroscopically-known central stars. Observational connections between [WC] central stars and the born-again phenomenon show that at least a fraction of the [WC] stars can be createdthrough this scenario. However, it is unlikely that the class as a wholeevolved through this channel.In this paper the arguments against a born-again origin for the whole class of [WC] central stars of planetary nebula are outlined. It is suggested that the roleof the H-deficient weak emission lines stars might be crucial in explaining the origin of [WC]stars. It is also demonstrated how difficult it isto pin down the exact stellar parameters of these objects (which help toposition them on the HR diagram). This is due to the largely unknown distancesand to the fact that small changesin the model assumptions can have large repercussions on the derived parameters.This difficultyhampers our efforts to determine the true evolutionary position of individual [WC] central stars, as well as their relationship to one another, andtherefore pin down their origin.  相似文献   

6.
7.
8.
Monochromatic photographs in H, [Nii] 6584 and [Oiii] 5007 Å show many different details in the morphological structure of the Eskimo Nebula (NGC 2392). H and [Nii] images show, in a first approximation, similar structure (elliptical inner ring and broken outer ring) whereas both rings in [Oiii] are quite circular and regular in brightness. A photometric study using the method described by Louise (1974) gives various geometrical parameters of both rings which are practically the same for the observed lines. In other words, the classical stratification structure in planetary nebulae is not clearly observed in NGC 2392, in good agreement with previous observations (Wilson, 1950). This fact is probably a consequence of the peculiar structure in the geometry of the nebula. A model consisting of an inner toroid surrounded by a spherical shell is proposed to account for both photometric and spectroscopic observations.  相似文献   

9.
Leningrad State University; Institute of Astrophysics and Physics of the Atmosphere, Estonian Academy of Sciences. Translated from Astrofizika, Vol. 30, No. 1, pp. 151–157, January–February, 1989.  相似文献   

10.
11.
12.
We report the discovery of the first probable Galactic [WN] central star of a planetary nebula (CSPN). The planetary nebula candidate was found during our systematic scans of the AAO/UKST Hα Survey of the Milky Way. Subsequent confirmatory spectroscopy of the nebula and central star reveals the remarkable nature of this object. The nebular spectrum shows emission lines with large expansion velocities exceeding 150 km s−1, suggesting that perhaps the object is not a conventional planetary nebula. The central star itself is very red and is identified as being of the [WN] class, which makes it unique in the Galaxy. A large body of supplementary observational data supports the hypothesis that this object is indeed a planetary nebula and not a Population I Wolf–Rayet star with a ring nebula.  相似文献   

13.
14.
By using the Boller and Chivens spectrograph with a moderate dispersion (59 å mm-1) in the red spectral region, we obtained 65 spectra covering the whole surface of the planetary nebula NGC 2440. Intensities of Hα, [N II] λλ 6548–6584 and [S II] λλ 6717–6731 lines are derived using the IDS system available at the ESO in La Silva (Chile). The nebula is known to be a nitrogen-rich nebula (Peimbert 1978) surrounded by secondary structures (Minkowski 1964). The unusual high value of the [N II]/Hα in the central core (~ 30) is certainly due to the nitrogen overabundance occurring in that part of the nebula. Its variations from scale ionization structure (Capriotti, Cromwell and Williams 1971). The observations show clearly an outward increase of both [NII]/Hα andI(6717)/I(6713) ratios.  相似文献   

15.
We present a detailed analysis of the planetary nebula M4–18 (G146.7+07.6) and its WC10-type Wolf–Rayet (WR) central star, based on high‐quality optical spectroscopy (WHT/UES, INT/IDS, WIYN/DensPak) and imaging ( HST /WFPC2). From a non-LTE model atmosphere analysis of the stellar spectrum, we derive T eff=31 kK,     v =160 km s−1 and abundance number ratios of H/He<0.5, C/He=0.60 and O/He=0.10. These parameters are remarkably similar to those of He 2–113 ([WC10]). Assuming an identical stellar mass to that determined by De Marco et al. for He 2–113, we obtain a distance of 6.8 kpc to M4–18 [ E ( B−V )=0.55 mag from nebular and stellar techniques]. This implies that the planetary nebula of M4–18 has a dynamical age of ∼3100 yr, in contrast to ≥270 yr for He 2–113. This is supported by the much higher electron density of the latter. These observations may be reconciled with evolutionary predictions only if [WC]-type stars exhibit a range in stellar masses.
Photoionization modelling of M4–18 is carried out using our stellar WR flux distribution, together with blackbody and Kurucz energy distributions obtained from Zanstra analyses. We conclude that the ionizing energy distribution from the WR model provides the best consistency with the observed nebular properties, although discrepancies remain.  相似文献   

16.
Electron densities have been measured from [Sii] 6716/6731 Å line ratios for a grid of points over the surface of the planetary nebula NGC 7009 using a photon counting detector. The radial dependence of the electron density has been modelled, and the relationship provides possible evidence that the planetary nebula shell is driven by a strong stellar wind.  相似文献   

17.
18.
19.
Our current understanding of the evolution of solar-type stars suggests that after a period as a red giant star, during which mass loss occurs continuously in the form of a stellar wind, a period of intense mass loss known as a superwind occurs, during which a significant fraction of the envelope of the star is ejected into space, forming the material from which a planetary nebula (PN) will be constructed. It has been suggested that this superwind ejects material from the star in a toroidal or disc-like fashion, rather than isotropically. Here we present Hubble Space Telescope optical images of a toroidal superwind caught in the act: our images of the carbon star IRC+10216, which is believed to be in the final stages of red giant evolution, show that most of its optical emission is a bipolar reflection nebula. We show that the full spectral energy distribution and these images can be modelled as an equatorially enhanced dusty superwind, providing the first direct observational support for the toroidal superwind model, and supporting the 'interacting winds' model of PN formation.  相似文献   

20.
We found 36 emission lines in the spectrum of the planetary nebula NGC 2438, and we determined its exc. class to be about 6–7. The nebular RVhel = 60.3 ± 3.6 km/s (5 spectra) is in agreement with RVhel = 60.8 ± 4.0 km/s of 4 cluster stars (10 spectra). We conclude that contrary to earlier statements the nebula is probably associated with the cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号