首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A rating curve provides a reasonable estimate of the suspended sediment concentration at a given discharge. However, analysis of a detailed 9‐year time‐series of suspended sediment concentration (SSC) and discharge Q of the Meuse River in The Netherlands indicates that SSC is (besides discharge) controlled by exhaustion and replenishment of different sediment sources. Clockwise hysteresis and other effects of sediment exhaustion can be observed during and after flood events, and the effects of stockpiling of sediment in the river bed during low‐discharge periods are obvious in the SSC of the next flood. In a single regression equation we have implemented a parameter that represents the presence or absence of stock for sediment uptake. In comparison with a rating curve of SSC and Q, adding this parameter is shown to be a more reliable and comprehensive method to predict SSCs at all discharge regimes with all preceding discharge conditions, for single‐peaked and multi‐peaked runoff events as well as for low flow conditions. The method is probably applicable to other small‐ to medium‐scaled river basins. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
The dynamics of suspended sediment transport were monitored continuously in a large agricultural catchment in southwest France from January 2007 to March 2009. The objective of this paper is to analyse the temporal variability in suspended sediment transport and yield in that catchment. Analyses were also undertaken to assess the relationships between precipitation, discharge and suspended sediment transport, and to interpret sediment delivery processes using suspended sediment‐discharge hysteresis patterns. During the study period, we analysed 17 flood events, with high resolution suspended sediment data derived from continuous turbidity and automatic sampling. The results revealed strong seasonal, annual and inter‐annual variability in suspended sediment transport. Sediment was strongly transported during spring, when frequent flood events of high magnitude and intensity occurred. Annual sediment transport in 2007 yielded 16 614 tonnes, representing 15 t km?2 (85% of annual load transport during floods for 16% of annual duration), while the 2008 sediment yield was 77 960 tonnes, representing 70 t km?2 (95% of annual load transport during floods for 20% of annual duration). Analysis of the relationships between precipitation, discharge and suspended sediment transport showed that there were significant correlations between total precipitation, peak discharge, total water yield, flood intensity and sediment variables during the flood events, but no relationship with antecedent conditions. Flood events were classified in relation to suspended sediment concentration (SSC)–discharge hysteretic loops, complemented with temporal dynamics of SSC–discharge ranges during rising and falling flow. The hysteretic shapes obtained for all flood events reflected the distribution of probable sediment sources throughout the catchment. Regarding the sediment transport during all flood events, clockwise hysteretic loops represented 68% from river deposited sediments and nearby source areas, anticlockwise 29% from distant source areas, and simultaneity of SSC and discharge 3%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
《国际泥沙研究》2023,38(5):653-661
Studying the characteristics of runoff and sediment processes and revealing the sources of sediment provide key guidance for the scientific formulation of relevant soil erosion protection measures and water conservancy development plans. In the current study, the flow and sediment data of five hydrological stations on the main stream of the Fu River Basin (FRB) from 2007 to 2018 were selected to identify flood events, explore the variation of sediment transport along the FRB, and clarify the sediment sources. The results found that the Jiangyou–Fujiangqiao section is the main source of sediment in the FRB during the flood season. The runoff volume and sediment load during flood events in the Jiangyou–Fujiangqiao section accounted for 35% and 145% respectively of that of Xiaoheba station. These results combined with the change of the sediment load before and after the 2008 Wenchuan Earthquake (May 12) show that the sediment in this section mainly comes from the Fu River tributary–the Tongkou River watershed. The calculation results for the sediment carrying capacity of the Fu River show that the main stream was in a state of erosion in theory. However, according to the calculation results for the interval sediment yield during flood events, the sediment load at the Xiaoheba station was smaller than that at the Shehong station upstream. The analysis indicates that this was not because of sediment deposition in the river channel, but because of sand mining in the river channel and sediment interception by water conservancy projects. If heavy rainfall occurs in the FRB, the sediment accumulated upstream will move downstream with the resulting flood, and the sediment yield in the FRB may further increase. These research conclusions can provide reference information for improving the prediction and management ability of soil and water loss in the FRB and scientific regulation of the Three Gorges Reservoir.  相似文献   

4.
H. Leenaers 《水文研究》1989,3(4):325-338
For a specific flood on the polluted River Geul in March 1988, the relationships between river discharge, sediment concentration, and associated metal levels have been investigated. It was found that river discharge has only a limited influence on the transport of sediment and Pb, Zn, and Cd. During flood peaks its role is prominent, but at the intermediate stages between peaks, the quantity and quality of transported sediment depend on the variable activity of various sediment sources upstream. Nevertheless, when data from more floods are assembled, sediment and metal rating curves are obtained, which provide correlation coefficients of 0-63-0-92. Using these curves, mass transport calculations were carried out which demonstrate that the bulk of the annual transport of sediments and heavy metals occurs during a limited number of major floods.  相似文献   

5.
Hydrological process in arid zones differs substantially from that in better documented humid environments. The ponding point for infiltration is reached within 10 mins of first rain and overland flow forms the major component of basin runoff. Drainage densities are high, approaching 100 km.km?2, maximising the opportunity for both water and eroded soil to reach the channel network. The typical flood bore is not as abrupt as the mythology of desert streams would suggest. Nevertheless, the time of rise of the flood hydrograph is usually between 4 and 16 mins, giving credance to the notion of ‘flash flood’. Measured flows remain subcritical in the main, though Froude number exceeds unity for short periods around peak discharge. Flow is exceedingly turbulent, with Reynolds number > 105 even for much of the recession limb. As a result, suspended sediment concentrations by size grade are shown to be hydraulically controlled. However, the high degree of turbulence and wide availability of sediment from hillslope and channel sources also means that the mean size of the suspended load varies systematically with flow parameters. In this respect, ephemeral streams differ from perennial counterparts in humid environments where no clear-cut relationships exist. There is greater prospect of deriving a physically deterministic model of suspended sediment transport in desert streams. Implications for soil erosion and reservoir siltation are discussed, and sediment is traced from its source to its various sinks within the drainage basin.  相似文献   

6.
Based on long-term measurements at three gauging stations, Toudaoguai, Fugu and Hequ, and one meteorological station, this article discusses the features of discharge (Q) and sediment concentration (Cs) of a river reach of the Yellow River with a reservoir located in the Loess Plateau. The impacts of the local sub-watershed between Toudaoguai and Fugu gauging stations on sediment budget to the Yellow River have been analyzed. In addition, the deposition processes in the Tianqiao Reservoir have been investigated. Results show over 80% of the precipitation that falls in the local subwatershed is unable to contribute to the Yellow River runoff process. It is found that the annualmaximum sediment concentration is usually less than 30 kg/m^3 during flood seasons at Toudaoguai Gauging Station, but the sediment concentration varies dramatically at Fugu Gauging Station. About 35% of the sediment eroded in the sub-watersheds between Toudaoguai and Fugu gauging stationswas produced from the Huangfuchuan sub-watershed which has a drainage area accounting only for 10% of the drainage area between Toudaoguai and Fugu gauging stations. The Tianqiao Reservoir generally has deposition during the summer flood season, and scouring during the non-flood season.On average, over 85% of deposited sediment in the reservoir occurs in the 12 km long lower reservoir reach. The volume of annual deposition in the reservoir mainly depends on the volume of water from the local region between Hequ and Fugu gauging stations.  相似文献   

7.
Based on field data of river discharge, tide, tidal bore, and riverbed topography, the characteristics of river discharge, the effect of river discharge on riverbed erosion and sedimentation, and the feedback effect of riverbed erosion and sedimentation on the tide and tidal bore in the Qiantang River are analyzed. The results show that the inter-annual and seasonal variation of river discharge in the Qiantang River is noticeable, while the seasonal distribution of river discharge tends to be un...  相似文献   

8.
A hydrology–sediment modelling framework based on the model Topkapi-ETH combined with basin geomorphic mapping is used to investigate the role of localized sediment sources in a mountain river basin (Kleine Emme, Switzerland). The periodic sediment mobilization from incised areas and landslides by hillslope runoff and river discharge is simulated in addition to overland flow erosion to quantify their contributions to suspended sediment fluxes. The framework simulates the suspended sediment load provenance at the outlet and its temporal dynamics, by routing fine sediment along topographically driven pathways from the distinct sediment sources to the outlet. We show that accounting for localized sediment sources substantially improves the modelling of observed sediment concentrations and loads at the outlet compared to overland flow erosion alone. We demonstrate that the modelled river basin can shift between channel-process and hillslope-process dominant behaviour depending on the model parameter describing gully competence on landslide surfaces. The simulations in which channel processes dominate were found to be more consistent with observations, and with two independent validations in the Kleine Emme, by topographic analysis of surface roughness and by sediment tracing with 10 Be concentrations. This research shows that spatially explicit modelling can be used to infer the dominant sediment production process in a river basin, to inform and optimize sediment sampling strategies for denudation rate estimates, and in general to support sediment provenance studies. © 2020 John Wiley & Sons, Ltd.  相似文献   

9.
ABSTRACT

Sediment accumulation in a river reservoir is studied by stochastic time series models and analytical approach. The first-order moving average process is found the best for the suspended sediment discharge time series of the Juniata River at Newport, Pennsylvania, USA. Synthetic suspended sediment discharges are first generated with the chosen model after which analytical expressions are derived for the expected value and variance of sediment accumulation in the reservoir. The expected value and variance of the volume of sediment accumulation in the reservoir are calculated from a thousand synthetic time series each 38 years long and compared to the analytical approach. Stochastic and analytical approaches perfectly trace the observation in terms of the expected value and variability. Therefore, it is concluded that the expected value and variance of sediment accumulation in a reservoir could be estimated by analytical expressions without the cost of synthetic data generation mechanisms.  相似文献   

10.
This paper presents a field investigation on river channel storage of fine sediments in an unglaciated braided river, the Bès River, located in a mountainous region in the southern French Prealps. Braided rivers transport a very large quantity of bedload and suspended sediment load because they are generally located in the vicinity of highly erosive hillslopes. Consequently, these rivers play an important role because they supply and control the sediment load of the entire downstream fluvial network. Field measurements and aerial photograph analyses were considered together to evaluate the variability of fine sediment quantity stored in a 2·5‐km‐long river reach. This study found very large quantities of fine sediment stored in this reach: 1100 t per unit depth (1 dm). Given that this reach accounts for 17% of the braided channel surface area of the river basin, the quantities of fine sediment stored in the river network were found to be approximately 80% of the mean annual suspended sediment yields (SSYs) (66 200 t year?1), comparable to the SSYs at the flood event scale: from 1000 t to 12 000 t depending on the flood event magnitude. These results could explain the clockwise hysteretic relationships between suspended sediment concentrations and discharges for 80% of floods. This pattern is associated with the rapid availability of the fine sediments stored in the river channel. This study shows the need to focus on not only the mechanisms of fine sediment production from hillslope erosion but also the spatiotemporal dynamics of fine sediment transfer in braided rivers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The HIRHAM regional climate model suggests an increase in temperature in Denmark of about 3 °C and an increase in mean annual precipitation of 6–7%, with a larger increase during winter and a decrease during summer between a control period 1961–1990 and scenario period 2071–2100. This change of climate will affect the suspended sediment transport in rivers, directly through erosion processes and increased river discharges and indirectly through changes in land use and land cover. Climate‐change‐induced changes in suspended sediment transport are modelled for five scenarios on the basis of modelled changes in land use/land cover for two Danish river catchments: the alluvial River Ansager and the non‐alluvial River Odense. Mean annual suspended sediment transport is modelled to increase by 17% in the alluvial river and by 27% in the non‐alluvial for steady‐state scenarios. Increases by about 9% in the alluvial river and 24% in the non‐alluvial river were determined for scenarios incorporating a prolonged growing season for catchment vegetation. Shortening of the growing season is found to have little influence on mean annual sediment transport. Mean monthly changes in suspended sediment transport between ? 26% and + 68% are found for comparable suspended sediment transport scenarios between the control and the scenario periods. The suspended sediment transport increases during winter months as a result of the increase in river discharge caused by the increase in precipitation, and decreases during summer and early autumn months. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
ABSTRACT

The suspended sediment rating curves for six stations on four rivers in western and northern Greece are investigated. For each station the suspended sediment load is a power function of the water discharge, which may be distinguished according to wet and dry seasons; the latter yields higher sediment loads for a given discharge than the former. This is due to the higher erosivity of dry season rainfall compared to wet season rainfall producing the same runoff. All rating curve exponents b lie in the range 2.5–3.5 for the wet and 2.0–3.0 for the dry season and are related to the constants a of the curves by empirical equations. The variation in a and b is explained in terms of the annual precipitation and area of the basin, the hypsometric fall, the main channel length, and the average bedslope of the river from the basin divide to the station, through empirical relationships, which also permit the prediction of rating curves for ungauged basins.  相似文献   

13.
The suspended sediment yield and the transfer of polluted sediment are investigated for the Puyango river basin in southern Ecuador. This river system receives metal (Cd, Cu, Hg, Pb and Zn) and cyanide pollution generated by mining, and is associated with large‐scale hydrological variability, which is partly governed by El Niño events. Field sampling and statistical modelling methods are used to quantify the amount of mine tailings that is discharged into the basin. Annual suspended sediment yields are estimated using a novel combination of the suspended sediment rating method and Monte Carlo simulations, which allow for propagation of the uncertainties of the calculations that lead to final load estimates. Geochemical analysis of suspended and river bed sediment is used to assess the dispersion and long‐term fate of contaminated sediment within the river catchment. Knowledge of the inter‐ and intra‐annual variation in suspended sediment yield is shown to be crucial for judging the importance of mining discharges, and the extent to which the resultant pollution is diluted by river flows. In wet years, polluted sediments represent only a very small proportion of the yield estimates, but in dry years the proportion can be significant. Evidence shows that metal contaminated sediments are stored in the Puyango river bed during low flows. Large flood events flush this sediment periodically, both on an annual cycle associated with the rainy season, and also related to El Niño events. Therefore, environmental impacts of mining‐related discharges are more likely to be severe during dry years compared with wet years, and in the dry season rather than the wet season. The hydrological consequences of El Niño events are shown to depend upon the extent to which these events penetrate inland. It is, thus, shown that the general conclusion that El Niño events can significantly affect suspended sediment yields needs evaluation with respect to the particular way in which those events affect a given catchment. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
The presence of metals, including manganese (Mn) and iron (Fe), adversely impacts water quality. In seasonally stratified reservoirs, Mn and Fe can accumulate in the water column due to reducing conditions in sediments and be released to downstream rivers through dam discharge. In addition to reservoir stratification influences, the release of metals downstream is influenced by hydrologic conditions in the river. We examined the seasonal and spatial variability of Mn and Fe concentrations in a eutrophic, hydropower reservoir and the downstream river over a two‐year period. Overall, we found that reservoir stratification was a strong predictor of tailrace Mn and Fe concentrations but that tailrace Fe concentrations were also influenced by dam discharge. Downgradient of the tailrace, river discharge and suspended sediment were the dominant predictors of both Mn and Fe concentrations. Using our data, we develop a conceptual model of seasonal and hydrologic drivers of metal concentrations. The model can be modified for other systems aiding drinking water utilities and other water users in forecasting under what seasonal and hydrologic conditions that Mn and Fe concentrations in river systems are likely to be elevated.  相似文献   

15.
1 INTRODUCTION The particle size of sediment eroded from basins can provide basic information about erosion processes (Meyer et al., 1980), which can be divided into sheet wash sediment processes on hill slopes and fluvial sediment processes in rivers. In…  相似文献   

16.
Increasing rates of bank erosion and sediment deposition have been reported from the Norfolk Broads since the early 19th century. The major sources of both suspended and deposited sediment in the rivers and Broads is quantified using sediment mineralogy, identified by X-ray diffraction. This indicates that higher proportions of bank derived sediment are present in suspension in the waterway during the summer months, due primarily to bank erosion by motor craft. Dated sediment cores show how the sources of inorganic sediment have changed over time. Whilst in the past upland catchment sources dominated, at present material is mainly derived from river bank material.  相似文献   

17.
Retrogressive erosion, a widespread phenomenon of sediment transport in reservoirs, often impacts on both the reservoir capacity and the sedimentation in the downstream river channel. Based on field data from the Sanmenxia Reservoir and the Lower Yellow River over the past decades, three courses of ret-rogressive erosion with distinctive features were analyzed. The results indicate that retrogressive erosion, especially caused by rapid reduction in the water level till the reservoir is empty, often results in the serious siltation of the lower Yellow River and threatens the safety of the flood control in the Lower Yellow River. Unreasonable operation of the reservoir and incoming hyperconcentrated floods accom-panied by retrogressive erosion also aggravate the siltation of the main channel of the river. However, a reasonable operation mode of the reservoir so named"storing the clear (low sediment concentration) water in the non–flood season, and sluicing the muddy(high sediment concentration) water in the flood season" was found, which might mitigate the deposition in both the reservoir and the Lower Yellow River. This operation mode provides important experience for the design and operation of large reser-voirs in other large rivers carrying huge amounts of sediment.  相似文献   

18.
Riverine sediments have played an important role in the morphological evolution of river channels and river deltas. However, the sediment regime in the many world's rivers has been altered in the context of global changes. In this study, temporal changes in the sediment regime of the Pearl River were examined at different time scales, that is, annual, seasonal, and monthly time scales, using the Mann–Kendall test. The results revealed that precipitation variability was responsible for monthly and seasonal distribution patterns of the sediment regime and the long‐term changes in the water discharge; however, dam operation has smoothed the seasonal distribution of water discharge and resulted in decreasing trends in the annual, wet‐season, and dry‐season sediment load series since the 1950s. Due to the different regulation magnitudes of dam operation, differences were observed in sediment regime changes among the three tributaries. In addition, human activities have altered the hysteresis of seasonal rating curves and affected hysteresis differences between increasing and decreasing water discharge stages. Sediment supply is an important factor controlling river channel dynamics, affecting channel morphology. From the 1950s to the 1980s, siltation was dominant in river channels across the West River and North River deltas in response to the sediment increases; however, scouring occurred in the East River deltas due to sediment reduction. Significant erosion occurred in river channels in the 1990s, which was mostly due to downcutting of the river bed caused by sand excavations and partly because of the reduced sediment load from upstream. Although sand excavations have been banned and controlled by authority agencies since 2000, the erosion of cross sections was still observed in the 2000s because of reduced sediment caused by dam construction. Our study examines the different effects of human activities on the sediment regime and downstream channel morphology, which is of substantial scientific importance for river management.  相似文献   

19.
Variability of suspended sediment concentration (SSC) versus discharge relationships in streams is often high and illustrates variable particle origins or availability. Particle availability depends on both new sediment supply and deposited sediment stock. The aim of this study is to improve SSC–discharge relationship interpretation, in order to determine the origins of particles and to understand the temporal dynamics of particles for two small streams in agricultural catchments from northwestern France. SSC and discharge were continuously recorded at the outlets and data were examined at different time‐scales: yearly, monthly, with distinction between flood periods and non‐flooding periods, and individual flood events. Floods are classified in relation to SSC–discharge hysteresis, and this typology is completed by the analysis of SSC–discharge ranges during rising and falling flow. We show that particles are mainly coming from channel, banks, either by hydraulic erosion or by cattle trampling. Particle availability presents a seasonal dynamics with a maximum at the beginning of autumn when discharge is low, decreasing progressively during autumn to become a minimum in winter when discharge is the highest, and increasing again in spring. Bank degradation by cattle is the determining factor in the suspended sediment dynamics. Cattle bank‐trampling produces sediment, mostly from spring to autumn, that supplies the deposited sediment stock even outside floods. This hydrologically independent process hides SSC–discharge correlation classically linked to hydraulic erosion and transport. Differences in SSC–discharge relationships and suspended sediment budgets between streams are related to differences in transport capacity and bank degradation by cattle trampling and channelization. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
The Yarlung Tsangpo River, which flows from west to east across the southern part of the Tibetan Plateau, is the longest river on the plateau and an important center for human habitation in Tibet. Suspended sediment in the river can be used as an important proxy for evaluating regional soil erosion and ecological and environmental conditions. However, sediment transport in the river is rarely reported due to data scarcity. Results from this study based on a daily dataset of 3 years from four main stream gauging stations confirmed the existence of great spatiotemporal variability in suspended sediment transport in the Yarlung Tsangpo River, under interactions of monsoon climate and topographical variability. Temporally, sediment transport or deposition mainly occurred during the summer months from July to September, accounting for 79% to 93% of annual gross sediment load. This coincided with the rainy season from June to August that accounted for 51% to 80% of annual gross precipitation and the flood period from July to September that accounted for approximately 60% of annual gross discharge. The highest specific sediment yield of 177.6 t/km2/yr occurred in the upper midstream with the highest erosion intensity. The lower midstream was dominated by deposition, trapping approximately 40% of total sediment input from its upstream area. Sediment load transported to the midstream terminus was 10.43 Mt/yr with a basin average specific sediment yield of 54 t/km2/yr. Comparison with other plateau‐originated rivers like the upper Yellow River, the upper Yangtze River, the upper Indus River, and the Mekong River indicated that sediment contribution from the studied area was very low. The results provided fundamental information for future studies on soil and water conservation and for the river basin management. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号