共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
地震直达波走时层析成像可归结为求解一个大型的、稀疏的、常常是病态的线性方程组.求解方程组常用的迭代法,需要一个比较合理的初始猜测解,也即是初始速度模型.初始模型关系到反演的效率甚至成像的正确性.本文在前人研究基础上提出一种生成模型网格节点初始速度方法,假定震源到检波点路径为直线,记录每条射线穿过的单元和统计每个网格单元穿过的射线数目、自动拾取网格节点所在单元的数目等.实例中,由原始数学模型的正演旅行时资料生成节点初始速度模型,效果可以.最后,分别采用均匀模型和本文方法生成的初始模型进行迭代反演,通过比较,证实该自动生成节点初始模型的可行性和可靠性,并对存在的问题进行讨论和解释. 相似文献
3.
4.
阐述了地震波在粘弹性介质传播过程中具有的衰减特性,探讨了地震波吸收层析成像的机理,得知地震吸收CT成像方法,对岩体软弱结构面、裂隙和规模较小的断层破碎带的识别能力,要强于波速成像方法.针对这两种层析技术的优缺点,采取多参数(波速、吸收系数)综合地震层析成像的方法,使波速CT与吸收CT两者能相互印证、互为补充.作者综合利用两种成像方法,把它用于在云南省某水电站坝基岩体质量检测中,取得了较好的效果,达到了提高地震层析成像的分辨率与可靠性的目的. 相似文献
5.
6.
7.
由于多种海水运动同时存在以及地形的影响,海水层结构非常复杂,解释海水层地震相,分析海水运动过程是地震海洋学研究的新方向.本文提出结合流体动力学数值模拟与反射地震正演分析海水层地震相的方法.首先,对地形和流体建模,得到特定条件下流体运动状态;然后用反射地震正演将模拟获得的海水层温盐剖面转换为反射地震数据;进一步和实际测量得到的地震海洋学剖面进行对比,分析地形、海水运动对海水层地震相的影响.以内孤立波浅化过程为例,通过流体动力学数值模拟,获得其浅化过程中出现的下沉型、分裂、转换型三个阶段的海水层剖面;对温盐剖面进行反射地震正演,分析浅化不同阶段海水层反射几何形态、反射结构等特征.这种新方法有望解释复杂地震海洋学图像,深化海底地形对海水运动影响的认识.
相似文献8.
An algorithm for solving the inverse kinematic problem of traveltime seismic tomography is developed and tested. The algorithm is intended for imaging the three-dimensional (3D) velocity model composed of a layer underlain by a half-space. This algorithm considers the bottom boundary of the layer as a first-order seismic velocity discontinuity with unknown position that has to be determined in the inversion together with the velocity variations inside the overlying layer and the sub-interface boundary velocities. The inversion can be applied to the travel times of refracted, head and reflected waves. The main idea behind the algorithm is the adaptive parameterization of the medium by the sparse Haar wavelet series expansion. In order to throw off the poorly resolved coefficients of expansion, we suggest using two empirical local resolution measures: the number of seismic rays crossing the support of the corresponding wavelet support area and their angular coverage, i.e., the spread in the azimuths of these rays. The adequacy of these measures is tested by their comparison with the estimation of the diagonal elements of the resolution matrix on the synthetic examples. This comparison proved that the proposed measures can be successfully applied for statistical estimation of the resolution and for constructing the adaptive parameterization. It was shown also that the best results are achieved while using the number of rays normalized to the size of the wavelet support together with their angular coverage. An automated procedure for throwing off poorly resolved unknowns is developed. The parameters of this procedure can be tuned to provide the desired level of detail of the model to be reconstructed. The synthetic checkerboard testing proved the efficiency of the algorithm. The proposed algorithm can be applied to solve different types of problems, including regional seismic studies, as well as exploration and engineering seismology. The use of this algorithm is especially convenient when the medium is essentially three-dimensional and when the conventional seismic methods implying regular network measurements directly above the studied structure (such as the common depth point method) are inapplicable, e.g., in the seismic studies of the foundations of buildings and in rugged terrains. 相似文献
9.
讨论了地震层析成像的LSQR算法(最小二乘QR分解). 在建立偏导数矩阵方程组时,对区内地震在方程中保留震源项,引入正交投影算子进行参数分离,对区外远震采用传统的平滑处理方式,用LSQR法求解联立的方程组. 由于区内地震的正交分解处理和区外远震的平滑处理,使得偏导数矩阵中的非零元素成倍增加,对于大型反演问题,这些非零元素常常达到几十GB到几百GB的数量级,巨量的内存占用成为LSQR算法的瓶颈. 针对这一问题,本文研究了偏导数矩阵中非零元素的分布规律,设计出合理的存储结构,采用分布式存储进行矩阵计算,提出了LSQR算法的并行化方案,并在联想深腾6800超级计算机上实现. 导出了LSQR算法的并行效率估算公式. 对两个地区的实际地震层析成像数据进行了效率测试. 相似文献
10.
Pantelis Soupios Irfan Akca Petros Mpogiatzis Ahmet T. Basokur Constantinos Papazachos 《Journal of Applied Geophysics》2011,75(3):479-489
Almost all earth sciences inverse problems are nonlinear and involve a large number of unknown parameters, making the application of analytical inversion methods quite restrictive. In practice, most analytical methods are local in nature and rely on a linearized form of the problem equations, adopting an iterative procedure which typically employs partial derivatives in order to optimize the starting (initial) model by minimizing a misfit (penalty) function. Unfortunately, especially for highly non-linear cases, the final model strongly depends on the initial model, hence it is prone to solution-entrapment in local minima of the misfit function, while the derivative calculation is often computationally inefficient and creates instabilities when numerical approximations are used. An alternative is to employ global techniques which do not rely on partial derivatives, are independent of the misfit form and are computationally robust. Such methods employ pseudo-randomly generated models (sampling an appropriately selected section of the model space) which are assessed in terms of their data-fit. A typical example is the class of methods known as genetic algorithms (GA), which achieves the aforementioned approximation through model representation and manipulations, and has attracted the attention of the earth sciences community during the last decade, with several applications already presented for several geophysical problems.In this paper, we examine the efficiency of the combination of the typical regularized least-squares and genetic methods for a typical seismic tomography problem. The proposed approach combines a local (LOM) and a global (GOM) optimization method, in an attempt to overcome the limitations of each individual approach, such as local minima and slow convergence, respectively. The potential of both optimization methods is tested and compared, both independently and jointly, using the several test models and synthetic refraction travel-time date sets that employ the same experimental geometry, wavelength and geometrical characteristics of the model anomalies. Moreover, real data from a crosswell tomographic project for the subsurface mapping of an ancient wall foundation are used for testing the efficiency of the proposed algorithm. The results show that the combined use of both methods can exploit the benefits of each approach, leading to improved final models and producing realistic velocity models, without significantly increasing the required computation time. 相似文献
11.
基于国际地震中心的P波走时数据和层析成像反演方法,获得了具有较高分辨率的马尼拉俯冲带的深部速度模型.结果表明,(1)高速的南海俯冲板片沿马尼拉俯冲带的俯冲形态随纬度发生变化,在14°N和16°N之间,板片俯冲角度较大,俯冲深度可达400~500 km,在17°N附近,俯冲板片角度和深度较南部变小,而在18°N附近,俯冲板片以近垂直角度俯冲到地幔转换带;(2)17°N和18°N之间俯冲角度的变化意味着南海板片发生了撕裂;(3)在14°N附近,南海板片由300 km以上的近垂直俯冲转为200~300 km深度的近水平展布,与震源分布存在较大的差异,表明南海板片发生了撕裂,并且导致410 km间断面抬升.根据成像结果计算的不同位置南海板片的俯冲长度和时间表明,南海板片俯冲之前的面积为现今面积的两倍,14°N最先开始发生俯冲,并由南向北扩展. 相似文献
12.
Improved surface-based geophysical technologies that are commercially available provide a new level of detail that can be used to guide ground water remediation. Surface-based multielectrode resistivity methods and tomographic seismic refraction techniques were used to image to a depth of approximately 30 m below the surface at the Natural and Accelerated Bioremediation Research Field Research Center. The U.S. Department of Energy (DOE) established the research center on the DOE Oak Ridge Reservation in Oak Ridge, Tennessee, to conduct in situ field-scale studies on bioremediation of metals and radionuclides. Bioremediation studies are being conducted on the saprolite, shale bedrock, and ground water at the site that have been contaminated with nitrate, uranium, technetium, tetrachloroethylene, and other contaminants (U.S. DOE 1997). Geophysical methods were effective in imaging the high-ionic strength plume and in defining the transition zone between saprolite and bedrock zones that appears to have a significant influence on contaminant transport. The geophysical data were used to help select the location and depth of investigation for field research plots. Drilling, borehole geophysics, and ground water sampling were used to verify the surface geophysical studies. 相似文献
13.
14.
反射地震走时层析本质上是一个病态问题,而正则化是改善问题病态程度的有效手段.反射地震走时层析最终可归结为线性方程组的求解,本文讨论了在线性方程组求解过程中正则化的作用和方式.正则化的作用有:(1)用超定分量约束欠定分量和零空间分量;(2)用先验信息约束欠定分量和零空间分量;(3)对射线的不均匀覆盖进行阻尼;(4)对数据的不准确性进行阻尼.正则化的加入方式有:(1)加法型(将正则化矩阵补在层析矩阵后面,包括导数型正则化和零阶正则化,一阶导数型正则化对应最平坦解,二阶导数型正则化对应最光滑解,零阶正则化对应紧约束解);(2)乘法型(将正则化矩阵与层析矩阵相乘,主要包括阻尼型正则化).并利用简单的模型对正则化的效果进行了试验,发现经各种正则化约束后,与未加任何正则化约束得到的速度模型比较,尽管恢复的异常体的幅度不如后者大,但得到的速度剖面要平滑得多,更利于后续的射线追踪正演和层析反演. 相似文献
15.
16.
Ettore Cardarelli Michele Cercato Antonio Cerreto Gerardina Di Filippo 《Geophysical Prospecting》2010,58(4):685-695
Near‐surface cavities can pose serious hazards to human safety, especially in highly urbanized town centres. The location of subsurface voids, the estimation of their size and the evaluation of the overburden thickness are necessary to assess the risk of collapse. In this study, electrical resistivity tomography (ERT) and seismic refraction tomography data are integrated in a joint interpretation process for cavity location in the city of Rome. ERT is a well established and widely employed method for cavity detection. However, additional information provided by seismic refraction tomography is capable of eliminating some potential pitfalls in resistivity data interpretation. We propose that the structure of the cavities defined by ERT can be used as a base to optimize seismic refraction tomography investigations within the framework of a joint interpretation process. Data integration and the insertion of a priori information are key issues for reducing the uncertainties associated with the inversion process and for optimizing both acquisition procedures and computation time. Herein, the two geophysical methods are tested on both synthetic and real data and the integration of the results is found to be successful in detecting isolated cavities and in assessing their geometrical characteristics. The cavity location inferred by geophysical non‐invasive methods has been subsequently confirmed by direct inspection. 相似文献
17.
18.
Zhao Yonggui Jiang Hui Zhao Xiaopeng 《应用地球物理》2006,3(2):69-74
Typical existing methods of tunnel geological prediction include negative apparent velocity, horizontal seismic profile, and the Tunnel Seismic Prediction (TSP) method as this technology is under development at home and abroad. Considering simpler observational methods and data processing, it is hard to accurately determine the seismic velocity of the wall rock in the front of the tunnel face. Therefore, applying these defective methods may result in inaccurate geological inferences which will not provide sufficient evidence for classifying the wall rock characteristics. This paper proposes the Tunnel Seismic Tomography (TST) method using a spatial observation arrangement and migration and travel time inversion image processing to solve the problem of analyzing the velocity structure of wall rock in the front of the tunnel face and realize accurate imaging of the geological framework of the tunnel wall rock. This method is very appropriate for geological prediction under complex geological conditions. 相似文献
19.
20.