首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Greywackes (Dharwar greywackes) are the most abundant rock types in the northern part of the Dharwar-Shimoga greenstone belt of the western Dharwar craton. They are distinctly immature rocks with poorly-sorted angular to sub-angular grains, comprising largely quartz, plagioclase feldspar and lithic fragments of volcanics (mafic+felsic), chert and quartzite, with subordinate biotite, K-feldspar and muscovite. They are characterized by almost uniform silica (59.78-67.96 wt%; av. 62.58), alkali (4.62-7.35 wt%; av. 5.41) contents, SiO2/Al2O3 (3.71-5.25) ratios, and compositionally are comparable to the andesite and dacite. As compared to Ranibennur greywackes, located about 100 km south of Dharwad in the Dharwar-Shimoga greenstone belt, the Dharwar greywackes have higher K2O, CaO, Zr, Y, ΣREE, Th/Sc, Zr/Cr, La/Sc and lower Sr, Cr, Ni, Sc, Cr/Th values. The chondrite normalized patterns of Dharwar greywackes are characterized by moderately fractionated REE patterns with moderate to high LREE enrichment, with almost flat HREE patterns and small negative Eu anomalies, suggesting felsic dominated source rocks in the provenance. The frame work grains comprising felsic and mafic volcanics, feldspars and quartz suggest a mixed source in the provenance. The moderate CIA values ranging between 57 and 73, indicate derivation of detritus from fresh basement rocks and from nearby volcanic sources.The mixing calculations suggest that the average REE pattern is closely matching with a provenance having 40% dacite, 30% granite, 20% basalt and 10% tonalite. These greywackes were deposited in a subduction related forearc basin than a continental margin basin. Their La/Sc ratios are high (av. 4.07) compared to the Ranibennur greywackes (1.79), suggesting that the greywackes of the northern part of the basin received detritus from a more evolved continental crust than the greywackes of the central part of the Dharwar-Shimoga basin.  相似文献   

2.
Through detailed studies we have delineated a suite of banded TTG gneisses from the Zanhuang Complex. The protolith of the gneisses, predominantly tonalite, has undergone intensive metamorphism, deformation and anatexis and in a banded structure is intimately associated with melanocratic dioritic gneiss and leucocratic trondhjemitic veins. SHRIMP Zircon U–Pb data show that the tonalite was formed ca. 2692 ± 12 Ma ago. The tonalitic gneiss has the features of high SiO2 (67.76–73.31%), high Al2O3 (14.38–15.83%), rich in Na2O (4.48–5.07%) and poor in K2O (0.77–1.93%). The gneiss is strongly fractioned in REE ((La/Yb)N = 12.02–24.65) and shows a weak positive Eu anomaly (Eu/Eu* = 1.05–1.64). It has high contents of Ba (199–588 ppm) and Sr (200–408 ppm), low contents of Yb (0.32–1.00 ppm) and Y (3.41–10.3 ppm) with high Sr/Y ratios (21.77–96.77) and depletion in HFSE Nb, Ta and Ti. These characteristics are similar to those of the high-Si adakitic rocks. The melanocratic dioritic gneiss has low SiO2 (59.81%), high MgO (6.34%), high Al2O3 (14.02%) contents, rich in Na2O (3.7%) and poor in K2O (1.79%), with high Mg index (Mg# = 67). REE and trace elements are on the whole similar to that of the tonalitic gneiss, but compatible element abundances V (116 ppm), Cr (249 ppm), Co (37 ppm) and Ni (179 ppm) are higher. The leucocratic felsic bands (approximating trondhjemite in composition) have major oxides similar to that of the TTG gneisses but the REE and compatible elements are extremely low, which are indicative of the products of anatexis. The tonalitic gneiss has positive εNd(t) (2.37–3.29) and low initial Sr (0.69719–0.70068) values with depleted mantle Nd model age of ca. 2.8 Ga, suggesting its generation from partial melting of mantle-derived juvenile crust. The dioritic gneiss was also derived from subduction environment, but has undergone significant metasomatism of mantle wedge. The delineation of the ca. 2.7 Ga TTG gneisses in the Zanhuang Complex further proves that the North China Craton experienced large-scale continental crustal accretion in early Neoarchean, and gives new constraints on the subdivision of the early blocks and greenstone belts of the craton.  相似文献   

3.
Mesoarchean to Neoarchean orthogneisses (2.95–2.79 Ga) in the Fiskenæsset region, southern West Greenland, are composed of an older suite of metamorphosed tonalites, trondhjemites, and granodiorites (TTGs), and a younger suite of high-K granites. The TTGs are characterized by high Al2O3 (14.2–18.6 wt.%), Na2O (3.4–5.13 wt.%), and Sr (205–777 ppm), and low Y (0.7–17.4 ppm) contents. On chondrite- and N-MORB-normalized trace element diagrams, the TTGs have the following geochemical characteristics: (1) highly fractionated REE patterns (La/Ybcn = 14–664; La/Smcn = 4.3–11.0; Gd/Ybcn = 1.5–19.7); (2) strong positive anomalies of Sr (Sr/Sr* = 1.0–15.9) and Pb (Pb/Pb* = 1.4–34.9); and (3) large negative anomalies of Nb (Nb/Nb* = 0.01–0.34) and Ti (Ti/Ti* = 0.1–0.6). The geochemical characteristics of the TTGs and trace element modeling suggest that they were generated by partial melting of hydrous basalts (amphibolites) at the base of a thickened magmatic arc, leaving a rutile-bearing eclogite residue. Field observations suggest that spatially and temporarily associated tholeiitic basalts (now amphibolites) in the Fiskenæsset region might have been the sources of TTG melts. The high-K granites have steep REE patterns (La/Ybcn = 3.8–506; La/Smcn = 2.7–18.9; Gd/Ybcn = 0.92–12.1) and display variably negative Eu anomalies (Eu/Eu* = 0.37–0.96) and moderate Sr (84–539 ppm) contents. Four outlier granite samples have variably positive Eu (Eu/Eu* = 1.0–12) anomalies. Given that the granodiorites have higher K2O/Na2O than the tonalites and trondhjemites, it is suggested that the granites were derived from partial melting of the granodiorites. It is speculated that the dense eclogitic residues, left after TTG melt extraction, were foundered into the sub-arc mantle, leading to basaltic underplating beneath the lower rust. Melting of the granodiorites in response to the basaltic underplating resulted in the production of high-K granitic melts. Formation of the Fiskenæsset TTGs, the foundering of the eclogitic residues into the mantle, and the emplacement of the high-K granites led to the growth of Archean continental crust in the Fiskenæsset region.  相似文献   

4.
Small granitoids emplaced into the early Jurassic volcani-clastic succession in the Yusufeli area, northeastern Turkey, can be temporally and geochemically classified into two groups: early Jurassic low-K and late Jurassic high-K. 40Ar–39Ar hornblende analyses yielded 188.0 ± 4.3 Ma for the Dutlup?nar intrusion, dating the subduction related rifting in the region. It comprises metaluminous to weakly peraluminous (ASI = 0.94–1.11) granodiorite and, to a lesser extent, tonalite whose K2O-poor (< 2.04 wt.%) nature and weak negative Eu anomalies (Eu/Eu? = 0.9–0.7) preclude derivation by fractional crystallization from a K-rich melt. Sr, Nd and Pb isotopic data reveal derivation by partial melting from an already cooled tholeiitic basic rocks which had mantle-like isotope signature. The Sumbated intrusion formed in the late Jurassic (153.0 ± 3.4 Ma) and consists chiefly of metaluminous (ASI = 0.84–0.99) quartz monzodiorite. Medium to high-K2O, relatively high MgO and Sr contents, flat HREE patterns without prominent Eu anomalies, slightly positive εNd(t) values (+ 1.5 to + 2.5) and low ISr ratios (0.7046–0.7056) are consistent with an origin by dehydration melting of a juvenile source, above the garnet stability field, dominated by likely K-amphibole bearing calc-alkaline mafic rocks. Geochemical data show that fractional crystallization from a Sumbated-like quartz monzodioritic magma is the fundamental process responsible for the evolved compositional range of the Keçikaya intrusion. The geochemical and geochronological data presented here indicate that the late Jurassic magmatism occurred in a post-collisional setting. Slab-breakoff, which was followed by shortly after collision, seems to be the most plausible mechanism for the generation of medium to high-K calc-alkaline rocks of the Sumbated and the Keçikaya intrusions, indicating a switch in the geodynamic setting, e.g., from pre-collision to post-collision in the middle Jurassic in the eastern Pontides.  相似文献   

5.
Kajan subvolcanic rocks in the Urumieh–Dokhtar magmatic arc (UDMA), Central Iran, form a Late Miocene-Pliocene shallow-level intrusion. These subvolcanics correspond to a variety of intermediate and felsic rocks, comprising quartz diorite, quartz monzodiorite, tonalite and granite. These lithologies are medium-K calc-alkaline, with SiO2 (wt.%) varying from 52% (wt.%) to 75 (wt.%). The major element chemical data also show that MgO, CaO, TiO2, P2O5, MnO, Al2O3 and Fe2O3 define linear trends with negative slopes against SiO2, whilst Na2O and K2O are positively correlated with silica. Contents of incompatible trace elements (e.g. Ba, Rb, Nb, La and Zr) become higher with increasing SiO2, whereas Sr shows an opposite behaviour. Chondrite-normalized multi-element patterns show enrichment in LILE relative to HFSE and troughs in Nb, P and Ti. These observations are typical of subduction related magmas that formed in an active continental margin. The Kajan rocks show a strong affinity with calc-alkaline arc magmas, confirmed by REE fractionation (LaN/YbN = 4.5–6.4) with moderate HREE fractionation (SmN/YbN = 1.08–1.57). The negative Eu anomaly (Eu/Eu* <1), the low to moderate Sr content (< 400 ppm) and the Dy/Yb values reflect plagioclase and hornblende (+- clinopyroxene) fractionation from a calc-alkaline melt Whole–rock Sr and Nd isotope analyses show that the 87Sr/86Sr initial ratios vary from 0.704432 to 0.705989, and the 143Nd/144Nd initial ratios go from 0.512722 to 0.512813. All the studied samples have similar Sr-Nd isotopes, indicating an origin from a similar source, with granite samples that has more radiogenic Sr and low radiogenic Nd isotopes, suggesting a minor interaction with upper crust during magma ascent. The Kajan subvolcanic rocks plot within the depleted mantle quadrant of the conventional Sr-Nd isotope diagram, a compositional region corresponding to mantle-derived igneous rocks.  相似文献   

6.
The Changyi banded iron formation (BIF) in the eastern North China Craton (NCC) occurs within the Paleoproterozoic Fenzishan Group. The BIF shows alternating quartz-rich light and magnetite-rich dark bands with magnetite (15–65 vol.%), quartz (25–65 vol.%) and amphibole (15–30 vol.%) constituting the major minerals. Minor garnet, epidote, chlorite, calcite, biotite and pyrite occur locally. The BIF bands are interlayered with amphibolite, hornblende gneiss, biotite quartz schist, garnet biotite schist, biotite gneiss and leptynite, and are intruded by granites. LA-ICP-MS U–Pb dating on zircons separated from the BIF bands and the wallrocks constrains the depositional age as 2240–2193 Ma and metamorphic age as ~ 1864 Ma. The dominant composition of SiO2 + Fe2O3T (average value of 92.3 wt.%) of the BIF bands suggests their formation mainly through chemical precipitation. However, the widely varying contents of major elements such as Al2O3 (0.58–6.99 wt.%), MgO (1.00–3.86 wt.%), CaO (0.22–4.19 wt.%) and trace elements such as Rb (2.06–40.4 ppm), Sr (9.36–42.5 ppm), Zr (0.91–23.6 ppm), Hf (0.04–0.75 ppm), Cr (89.1–341 ppm), Co (2.94–30.4 ppm), and Ni (1.43–52.0 ppm) clearly indicate the incorporation of clastics, especially continental felsic clastics, as also confirmed by the presence of ancient detrital zircons in the BIF bands. When normalized against Post Archean Average Shale (PAAS), the seawater-like signatures of REE distribution patterns, such as LREE depletion, positive La and Y anomalies, and superchondritic Y/Ho ratios (average value of 36.3), support the deposition in seawater. Strong positive Eu anomalies (Eu/Eu*PAAS = 1.14–2.86) also suggest the participation of hydrothermal fluids. In addition, the sympathetic correlation between Cr, Co and Ni as well as the Co + Ni + Cu vs. ∑ REE and the Al2O3 vs. SiO2 relations further indicates that the iron and silica mainly originated from hydrothermal fluids. Combined with regional geological investigation and protolith restoration of the wallrocks, a continental rift environment is suggested for the Changyi BIF deposition. The appearance of negative CePAAS anomalies might suggest the influence of the Great Oxidation Event at the time of deposition. The Changyi BIF witnessed the major Paleoproterozoic rifting–collision events in the NCC and their unique distribution in the NCC contrasts with other examples elsewhere in the world.  相似文献   

7.
The newly discovered Fuxing porphyry Cu deposit is located in the Dananhu–Tousuquan arc, adjacent to the Tuwu–Yandong Cu deposits of Eastern Tianshan, in the southern Central Asian Orogenic Belt. The Fuxing deposit is hosted by volcanic rocks (basalt and dacite) in the Early Carboniferous Qi'eshan Group and Carboniferous felsic intrusions (plagiogranite porphyry, monzogranite, and quartz diorite). New SIMS zircon U–Pb dating indicates that the plagiogranite porphyry and monzogranite emplaced at 332.1 ± 2.2 Ma and 328.4 ± 3.4 Ma, respectively. The basalts are characterized by low SiO2 contents (47.47–54.90 wt.%), a lack of Eu anomalies, strong depletion of Na, Ta, and Ti elements but positive Sr, U, and Pb anomalies, high Y (20.8–28.2 ppm) and HREE concentrations (Yb = 2.23–3.06 ppm), and relatively low (La/Yb)N (2.20–3.92) values; the dacite samples have high SiO2 contents (66.13–76.93 wt.%), clearly negative Eu anomalies, high Mg# values (36–51), and high Y (41.8–54.9 ppm) and Yb (5.76–8.98 ppm) concentrations. The basalts and dacites exhibit similar signatures as normal arc rocks, and were considered to be derived from partial melting of mantle-wedge peridotite that was previously metasomatized by slab melts. In contrast, the plagiogranite porphyry, monzogranite, and quartz diorite show the same geochemical affinity with modern adakites, which are characterized by high SiO2 contents (67.55–79.00 wt.%), minor negative to positive Eu anomalies, strong depletion of heavy rare earth elements (Yb = 0.17–1.19 ppm) and Y (1.86–10.1 ppm), positive K, Rb, Sr, and Ba but negative Nb, Ta, Th, and Ti anomalies, and high (La/Yb)N ratios and Mg# values. Moreover, these adakitic felsic intrusions display relatively high positive zircon εHf(t) values (+ 11.4 to + 18.3), low 87Sr/86Sr (0.706080–0.711239), high 143Nd/144Nd (0.512692–0.512922) ratios, and consistent zircon δ18O values (4.41‰–5.48‰), suggesting that their parental magma were most likely derived from partial melting of the subducted oceanic crust followed by mantle peridotite interaction. Based on the whole-rock geochemical and Sr–Nd–Hf–O isotopic data, as well as detailed petrographic analyses, we further suggest that the Fuxing igneous rocks and associated porphyry Cu mineralization were generated by the northward subduction of the paleo-Tianshan oceanic plate beneath the Dananhu–Tousuquan island arc during the Early Carboniferous.  相似文献   

8.
Hydrothermally altered Archean igneous suites erupted in the submarine environment record variable excursions of Ce/Ce* and Th/U from primary magmatic values of 1 and ~ 4 respectively. Rhyolites of the 2.96 Ga bimodal basalt–rhyolite sequence of the Murchison Domain, Yilgarn Craton, Western Australia, hosting the Golden Grove VMS deposit, are enriched in MnO up to ten fold over primary values. Th/U ratios span 2.6–4.7, Ce/Ce* = 2.5–16, and Eu/Eu* = 1.3–3. The 2.8 Ga Lady Alma ultramafic–mafic subvolcanic complex of the same domain features highly dispersed MREE and LREE due to intense hydrothermal alteration. Th/U ratios span 0.005–0.16 from preferential addition of U, with Ce/Ce* = 0.6–2.2, and Eu/Eu* = 1–1.4. The eastern Dharwar Craton, India, includes greenstone terranes dominantly 2.7–2.6 Ga. Adakites of the Gadwal terrane preserve near primary magmatic Th/U, Ce/Ce*, and Eu/Eu*. In contrast, igneous lithologies of the Hutti greenstone terrane are characterized by total ranges of Th/U = 2–5.8, Ce/Ce* = 1.01–1.28, and Eu/Eu* = 0.82–1.26, and counterparts of the Sandur terrane have Th/U = 0.4–6.0, Ce/Ce* = 0.9–1.25, and Eu/Eu* = 0.8–1.8. Coexistence of Ce and Eu anomalies may reflect a two-stage process: low-temperature hydrothermal alteration at high water–rock ratios by oxidizing fluids, with evolution of the hydrothermal systems to high temperature, low water–rock ratios, under reducing conditions. Uranium is dominantly added to these lithologies over Th in common with Recent altered ocean crust. Iron-rich shales in the Sandur terrane record U-enrichment where Th/U = 2–4. Three shales record true negative Ce anomalies and Eu/Eu* = 0.8–2.4: true negative Ce anomalies, present in some other Archean iron formations, are interpreted as a signature of precipitates from the ocean water column whereas Eu anomalies are hydrothermal in origin. Volcanic flows of the 2.7 Ga Blake River Group, Abitibi greenstone terrane, Canada, preserve Th/U = 1.5–8.5, the conjunction of low Th/U values with Ce/Ce* = 1.4 in two samples, and Eu/Eu* = 0.15–1.3. Mobility of U and Ce in these hydrothermally altered Archean lithologies is in common with their mobility in Phanerozoic counterparts by oxygenated fluids.  相似文献   

9.
The major and trace element characteristics of black shales from the Lower Cretaceous Paja Formation of Colombia are broadly comparable with those of the average upper continental crust. Among the exceptions are marked enrichments in V, Cr, and Ni. These enrichments are associated with high organic carbon contents. CaO and Na2O are strongly depleted, leading to high values for both the Chemical Index of Alteration (77–96) and the Plagioclase Index of Alteration (86–99), which indicates derivation from a stable, intensely weathered felsic source terrane. The REE abundances and patterns vary considerably but can be divided into three main groups according to their characteristics and stratigraphic position. Four samples from the lower part of the Paja Formation (Group 1) are characterized by LREE-enriched chondrite-normalized patterns (average LaN/YbN = 8.41) and significant negative Eu anomalies (average Eu/Eu1 = 0.63). A second group of five samples (Group 2), also from the lower part, have relatively flat REE patterns (average LaN/YbN = 1.84) and only slightly smaller Eu anomalies (average Eu/Eu1 = 0.69). Six samples from the middle and upper parts (Group 3) have highly fractionated patterns (average LaN/YbN = 15.35), resembling those of Group 1, and an identical average Eu/Eu1 of 0.63. The fractionated REE patterns and significant negative Eu anomalies in Groups 1 and 3 are consistent with derivation from an evolved felsic source. The flatter patterns of Group 2 shale and strongly concave MREE-depleted patterns in two additional shales likely were produced during diagenesis, rather than reflecting more mafic detrital inputs. An analysis of a single sandstone suggests diagenetic modification of the REE, because its REE pattern is identical to that of the upper continental crust except for the presence of a significant positive Eu anomaly (Eu/Eu1 = 1.15). Felsic provenance for all samples is suggested by the clustering on the Th/Sc–Zr/Sc and GdN/YbN–Eu/Eu1 diagrams. Averages of unmodified Groups 1 and 3 REE patterns compare well with cratonic sediments from the Roraima Formation in the Guyana Shield, suggesting derivation from a continental source of similar composition. In comparison with modern sediments, the geochemical parameters (K2O/Na2O, LaN/YbN, LaN/SmN, Eu/Eu1, La/Sc, La/Y, Ce/Sc) suggest the Paja Formation was deposited at a passive margin. The Paja shales thus represent highly mature sediments recycled from deeply weathered, older, sedimentary/metasedimentary rocks, possibly in the Guyana Shield, though Na-rich volcanic/granitic rocks may have contributed to some extent.  相似文献   

10.
Thick horizons of iron formations including Banded Iron Formations (BIFs) and Banded Silicate Formations (BSFs) occur as E–W trending bands in the eastern part of Cauvery Suture Zone (CSZ) in the Sothern Granulite Terrane of India. Some of these occur in close association with the Neoarchean-Neoproterozoic suprasubduction zone complexes, where as some others are associated with metamorphosed accretionary sequences including pyroxene granulites and other high grade rocks. The iron formations are highly deformed and metamorphosed under amphibolite to granulite facies conditions and are composed of quartz–magnetite–hematite–goethite–garnet–pyrite together with grunerite and pyroxene. Here we report the geochemical characteristics of twenty representative samples from the iron formations that reveal a widely varying composition with Fe2O3(t) (22–65 wt.% as total iron) total- Fe2O3/TiO2 (205–6532), MnO/TiO2 (0.25–12.66) and SiO2 (33–85 wt.%), broadly representing the two types of iron formations. These formations also show very low Al/(Al + Fe + Mn) ratio (0.001–0.01), Al2O3 (0.07–0.76 wt.%), Al2O3/TiO2 ratio (2.7–21), MgO (0.01–4.41 wt.%), CaO (0.1–1.24 wt.%), Na2O (0.01–0.05 wt.%) and K2O (0.01 wt.%) together with low total REE (3.38–31.63 ppm). The trace and REE elemental distributions show wide variation with high Ni (274 ppm), and Zn contents (up to 87 ppm) when compared to mafic volcanics of the adjoining areas. Tectonic discrimination plots indicate that the iron formations of the Cauvery Suture Zone are of hydrothermal origin. Their chondrite normalized patterns show slight positive Eu anomaly (Eu/Eu* = up to 1.77) and relatively less fractionation of REE with slight LREE enrichment compared to HREE. However, the PAAS (Post Archean Average of Australian Sediments) normalized REE patterns display significant positive Eu anomaly (Eu/Eu* up to 2.32) with well represented negative Ce anomalies (Ce/Ce* = 0.66–1.28). The above results together with petrological characteristics and available geochronology of the associated lithologies suggest that the iron formations can be correlated to Algoma-type. The Fe and Si were largely supplied by medium to high temperature sub-marine hydrothermal systems in Neoarchean and Neoproterozoic convergent margin settings.  相似文献   

11.
Major, trace and rare earth element (REE) compositions of upper Proterozoic metavolcanic and metasedimentary rocks from the Tsaliet and Tembien Groups in the Werri district of northern Ethiopia were determined to examine their tectonic setting of eruption, provenance and source area weathering conditions. Tsaliet Group metavolcanic rocks in the Werri area have sub-alkaline chemistry characterized by low to intermediate SiO2 contents, high Al2O3, low MgO and very low Cr and Ni. High field strength element (HFSE) abundances are highly variable. ∑REE abundances vary from 66.7 to 161.3 ppm, and chondrite-normalized REE patterns are moderately fractionated, with LaN/YbN values of between 3.1 and 9.0. Europium anomalies are variable (Eu/Eu* 0.80–1.21) but are generally positive (average Eu/Eu* 1.06). On tectonic discrimination diagrams, most samples have either volcanic-arc chemistry or fall in the overlap field with mid-oceanic ridge basalt (MORB). However, primitive mantle-normalized trace element abundances are comparable with sub-alkaline basalts from developed island arcs. 147Sm/144Nd ratios range from 0.1167 to 0.1269 (n = 3), yielding initial εNd(800 Ma) of +3.8 to +4.9 and mean TDM model age of 0.96 Ga, indicative of derivation from juvenile Neoproterozoic mantle. Metasediments from three locations (Werri1, Werri2 and Tsedia) in the Werri and Tsedia Slates have similar Al2O3, TiO2 and HFSE contents but variable and low Na2O, CaO and K2O. Cr and Ni are slightly enriched in the Werri2 and Tsedia suites. SiO2 is very variable, with average values of 70.75, 72.2 and 66.4 wt.% in the Werri1, Werri2 and Tsedia suites, respectively. ∑REE abundances in the metasediments (14.74–108.1) are lower than in the metavolcanics, and are slightly less fractionated, with LaN/YbN ratios of 0.8–5.9. Europium anomalies vary (Eu/Eu* 0.80–1.21) but are insignificant on average (Eu/Eu* 0.96). High values for the Chemical Index of Alteration (generally 70–90), and Plagioclase Index of Alteration (>75) in the Werri metasediments indicate moderate to severe chemical weathering in their source. Average major and trace element compositions of the metasediments and their REE patterns are comparable with the metavolcanics. 147Sm/144Nd ratios of the metasediments range from 0.1056 to 0.1398 (n = 4), with initial εNd(800 Ma) of +3.4 to +5.0 and mean TDM model age of 0.97 Ga, indicating derivation from juvenile Neoproterozoic crust similar to the underlying metavolcanics, with minimal (4–10%) contribution from older crust. The most sensitive tectonic setting discriminators indicate the Werri metasediments represent developed oceanic island arc sediments. The chemical similarity of the Werri metavolcanics to the nearby Adwa metavolcanics, Nakfa terrane in Eritrea, and volcanic units in central Saudi Arabia imply that juvenile Neoproterozoic Arabian Nubian Shield crust extended south at least as far as the Werri area of northern Ethiopia. The comparable geochemistry of the metasediments and their underlying lithologies attests to their derivation from this juvenile crustal material.  相似文献   

12.
Understanding the formation mechanism of the South China Sea has important implications for research on plate rupture and continent-ocean transition globally. Granitoids dredged from the Xiaozhenzhu Rise provide new perspectives on lithosphere evolution processes of this region. Zircon UPb (127–122 Ma) and amphibole/K-feldspar 40Ar/39Ar (123–115 Ma) ages indicate high cooling rates of 55–64 °C/myr and thus rapid magma emplacement and uplift in the Early Cretaceous. These calc-alkaline granitoids with intermediate Mg# (44–53) and slightly negative Eu anomalies (Eu/Eu* = 0.63–1.00) have highly variable and well-correlated Cr (4.89–531 ppm) and Ni (2.27–258 ppm) contents, which indicate melt mixing. The low CrNi sample (19.4 ppm Ni) displays much higher Sr (847 ppm), Sr/Y (93.4), and overall stronger crustal signatures than the high CrNi samples (107–258 ppm Ni) which have more mantle-like characteristics. Despite these differences, all studied samples show relatively similar and moderately enriched SrNd isotopic compositions ((87Sr/86Sr)i = 0.7055–0.7064, εNd(t) = −0.6 to −1.7) and enriched Pb isotopic compositions that are comparable with those of marine sediments. They also show mantle-like depleted zircon O (δ18O = 4.5–6.3‰) and mostly positive zircon Hf (εHf(t) = −0.4–4.1) isotopic compositions that indicate limited upper crustal contribution in the melt source. Their compositional features are best explained by magma mixing between partial melts of a delaminated lower arc crust and partial melts of a metasomatized arc mantle wedge. Combining our new results with literature studies of magmatism, metamorphism, sedimentary records and crustal structures from the region, we propose a new model of the Late Mesozoic–Early Cenozoic lithosphere deformation of the South China continental margin where lower arc crust delamination generated a tectonic weak zone that is essential for the rifting of the South China Sea.  相似文献   

13.
《Gondwana Research》2014,25(1):368-382
The Neoproterozoic Xikou Group is unconformably overlain by the Heshangzhen Group in the eastern Jiangnan orogen, South China. Samples from the Xikou and Heshangzhen Groups have generally intermediate to high SiO2 (53.14–77.48 wt.%, average 65.33 wt.%) and Al2O3 (11.53–27.14 wt.%, average 18.96 wt.%) contents, typical of immature lithic varieties. Compared to the Xikou Group, the Heshangzhen Group has higher Al2O3 (average 21.19 wt.% for the Heshangzhen Group and 18.33 wt.% for the Xikou Group, respectively) and Fe2O3* + MgO (average 9.38 wt.% and 8.86 wt.%) contents, but lower SiO2 (average 59.79 wt.% and 66.91 wt.%) content, suggesting that the Heshangzhen Group has more mafic components. The Chemical Index of Alteration (69–81) and the high Th/U ratios (> 3.8) indicate moderate weathering of the source area. Rare earth element patterns suggest that the source rocks came from an upper continental crust composed chiefly of felsic rocks. Discrimination diagrams reveal a mixed provenance of granitic and felsic volcanic components with minor old sedimentary component.Detrital zircon U–Pb ages and previous geochronological data of granitic plutons indicate that the Xikou and Heshangzhen Groups were deposited at 840–820 Ma and 810–780 Ma, respectively. The Xikou Group was deposited in a back–arc basin and its source rocks came mainly from the Yangtze Block. The Heshangzhen Group formed in a post-orogenic setting with a provenance of the Yangtze Block and the Shuangxiwu arc. The Jiangnan orogen was built at 820–810 Ma after the final suturing between the Yangtze and the Cathaysia Blocks. This orogen collapsed shortly following the collision (within 10–20 million years) and formed the Dexing–Huangshan normal fault zone.  相似文献   

14.
《Gondwana Research》2014,25(3-4):1108-1126
Detailed petrology and zircon U–Pb dating data indicate that the Wulong pluton is a zoned granitic intrusive, formed from successive increments of magmas. An age range of at least 30 Ma is recorded from the 225–235 Ma quartz diorite on the pluton margin, the ca. 218 Ma granodiorite in the intermediate zone, and the ca. 207 Ma monzogranite at the pluton center. All the granitoids display evolved Sr–Nd–Pb isotopic compositions, with 87Sr/86Sr(i) of 0.7044–0.7062, unradiogenic Nd (εNd(t) values of − 6.1 to − 3.0, Nd model ages of 1.1–1.3 Ga, and moderately radiogenic Pb compositions (206Pb/204Pb(i) = 17.500–17.872, 207Pb/204Pb(i) = 15.513–15.549, 208Pb/204Pb(i) = 37.743–38.001), in combination with variations in zircon Hf isotopic compositions (with εHf(t) values in each stage span 12 units) and the Hf isotopic model ages of 800–1600 Ma. These features suggest that the granitoids might have been derived from the reworking of an old lower crust, mixed with Paleozoic and Proterozoic materials. The rocks also display an adakitic affinity with Sr (479–973 ppm), high Sr/Y ratios (mostly > 60) and negligible Eu anomalies (Eu/Eu* = 0.78–0.97) but low Rb/Sr ratios, low Y (4.6–17 ppm), HREE (Yb = 0.95–1.7 ppm), Yb/Lu (6–7) and Dy/Yb (1.9–2.4) ratios, suggesting the absence of plagioclase and presence of garnet + amphibole in their residue. Considering a large gap among their crystallization ages, we propose that the geochemical evolution from pluton margin to center was controlled mainly by melting conditions and source compositions rather than fractional crystallization. Mafic enclaves that were hosted in the quartz diorite and granodiorite are mainly syenogabbroic to syenodioritic in composition, and are metaluminous and enriched in LREE and LILEs, but are depleted in HFSE, and display an evolved Sr–Nd–Pb isotopic composition, suggesting that they may have been derived from the partial melting of an enriched mantle lithosphere, which was metasomatized by adakitic melts and fluids from a subducted continental crust.In combination with the results of the Triassic ultra-high pressure metamorphic rocks in the Dabie orogenic belt, we apply a model involving the exhumation of subducted continental crust to explain the formation of the Wulong pluton. At the first stage, a dense and refractory mafic lower crust that was trapped at mantle depth by continental subduction witnessed melting under high temperature conditions to produce the quartz diorite magma, characterized by low SiO2 (60.65–63.98 wt.%) and high TiO2 (0.39–0.86 wt.%). The magma subsequently interacted with mantle peridotite, leading to high Mg# (57–67) and the metasomatism of the overriding mantle wedge. At the second stage, an asthenosphere upwelling that was probably caused by slab break-off at ca. 220 Ma melted the enriched sub-continental lithospheric mantle (SCLM) to produce mafic magmas, represented by the mafic enclaves that are hosted in the quartz and granodiorite, resulting in the partial melting of the shallower subducted crust, and generating the granodiorite that is distinguished by high SiO2 (69.16–70.82 wt.%), high Al2O3 (15.33–16.22 wt.%) and A/CNK values (mostly > 1.05). At the third stage, the final collapse of the Triassic Qinling–Dabie Orogenic Belt at ca. 215–205 Ma caused extensive partial melting of the thickened orogenic lower crust to produce the monzogranite, which is characterized by high SiO2 (67.68–70.29 wt.%), low TiO2 (mostly < 0.35 wt.%) and high Sr/Y ratios of 86–151.  相似文献   

15.
In situ zircon U–Pb ages and Hf isotope data, major and trace elements and Sr–Nd–Pb isotopic compositions are reported for coeval syenite–granodiorites–dacite association in South China. The shoshonitic syenites are characterized by high K2O contents (5.9–6.1 wt.%) and K2O/Na2O ratios (1.1–1.2), negative Eu anomalies (Eu/Eu* = 0.65 to 0.77), enrichments of Rb, K, Nb, Ta, Zr and Hf, but depletion of Sr, P and Ti. The adakitic granodiorite and granodiorite porphyry intrusions are characterized by high Al2O3 contents (15.0–16.8 wt.%), enrichment in light rare earth elements (LREEs), strongly fractionated LREEs (light rare earth elements) to HREEs (heavy rare earth elements), high Sr (438–629 ppm), Sr/Y (29.2–53.6), and low Y (11.7–16.8 ppm) and HREE contents (e.g., Yb = 1.29–1.64 ppm). The calc-alkaline dacites are characterized by LREE enrichment, absence of negative Eu anomalies, and enrichment of LILEs such as Rb, Ba, Th, U and Pb, and depletion of HFSEs such as Nb, Ta, P and Ti.Geochemical and Sr–Nd–Hf isotopic compositions of the syenites suggest that the shoshonitic magmas were differentiated from parental shoshonitic melts by fractional crystallization of olivine, clinopyroxene and feldspar. The parent magmas may have originated from partial melting of the lithospheric mantle with small amount contribution from crustal materials. The adakitic granodiorite and granodiorite porphyry have Sr–Nd–Pb isotopic compositions that are comparable to that of the mafic lower crust. They have low Mg# and MgO, Ni and Cr contents, abundant inherited zircons, low εNd(t) and εHf(t) values as well as old whole-rock Nd and zircon Hf model ages. These granodiorites were likely generated by partial melting of Triassic underplated mafic lower crust. The Hf isotopic compositions of the dacites are relatively more depleted than the Cathaysia enriched mantle, suggesting those magmas were derived from the partial melting of subduction-modified mantle sources. The coeval shoshonitic, high-K calc-alkaline and calc-alkaline rocks in Middle to Late Jurassic appear to be associated with an Andean-type subduction. This subduction could have resulted in the upwelling of the asthenosphere beneath the Cathaysia Block, which induced partial melting of the mantle as well as the mafic lower crust, and formed an arc regime in the coastal South China during Middle to Late Jurassic.  相似文献   

16.
Yudai is a newly discovered copper deposit associated with a porphyritic quartz diorite, in the Kalatag district of the eastern Tianshan, China. SHRIMP U-Pb dating of zircons from the diorite yielded an age of 432 ± 3 Ma. The diorite is peraluminous (ASI = 0.98–1.10), calc-alkaline to tholeiitic with high Al2O3 of 16.6–17.7 wt% and Mg# of 57.4–67.4. Trace element characteristics of the diorite show it is enriched in Ba, K and Sr, and depleted in Nb, Ta, Ti, with a positive Eu anomaly and high Sr/Y and La/Yb ratios. This diorite has positive εNd(t) values ranging from 6.2 to 8.4 with low initial 87Sr/86Sr ratios of 0.704336 to 0.704450. These geochemical and isotopic characteristics indicate that the adakite-like diorite, associated with the copper mineralization, was emplaced in an island arc setting and resulted from partial melting of subducted oceanic plate in a mantle wedge.  相似文献   

17.
Early Paleozoic peraluminous granites are abundant in the eastern part of the Qilian orogen, northeastern margin of the Tibetan Plateau. A combined study involving geochronology, whole-rock geochemical and Sr–Nd–Hf isotopic compositions for three Early Paleozoic peraluminous granitic plutons (Jishishan, Ledu and Shichuan plutons) from the eastern Qilian orogen was carried out to evaluate the causes of chemical variations and generation mechanisms of peraluminous granitic magmas. These granitic plutons have magma crystallization ages of 455–427 Ma and are moderately to strongly peraluminous (A/CNK = 1.03–1.18). Geochemical and Sr–Nd–Hf isotopic data indicate that they consist substantially of crust-derived melts. The Jishishan and Ledu peraluminous granites were dominantly produced by partial melting of Precambrian orthogneisses. The Shichuan monzogranites, with low HREE contents (e.g., Yb = 0.80–1.83 ppm) and slightly negative εNd(t) (− 5.3 to − 2.3) and positive εHf(t) (+ 1.6 to + 3.4), could be derived from immature crustal materials. Relatively high average zircon saturation temperatures (> 750 °C for each pluton), obvious negative Eu anomalies (Eu/Eu* = 0.28–0.80) and low Pb/Ba ratios (0.03–0.16) for the Jishishan, Ledu and Shichuan granites are consistent with crustal melting involving biotite breakdown under fluid-absent conditions. Our results suggest that compositional variations of moderately to strongly peraluminous granitic magmas are mainly controlled by source compositions and melting conditions, while the processes such as mixing with mantle-derived magma, fractional crystallization, restite unmixing and peritectic assemblage entrainment were insignificant (or only play secondary roles) in their genesis. Late Ordovician to Middle Silurian crustal anatexis in the eastern Central Qilian was probably linked with slab break-off which may be an important mechanism in addition to lithospheric delamination for the generation of moderately to strongly peraluminous granites in a post-collisional setting.  相似文献   

18.
Ore-forming porphyries and barren granitoids from porphyry Cu deposits differ in many ways, particularly with respect to their adakitic affinity and calc-alkaline characteristics. In this study, zircon U–Pb and molybdenite Re–Os dating, whole rock geochemistry, whole rock Sr–Nd–Pb and zircon O–Hf isotopic analyses were carried out on the ore-forming granitoids from the Kounrad, Borly and Sayak deposits, and also on pre-ore and post-ore granitoids in adjacent regions of Central Kazakhstan. Geochronology results indicate that pre-ore magmatism occurred in the Late Devonian to Early Carboniferous (361.3–339.4 Ma), followed by large scale Cu mineralization (325.0–327.3 Ma at Kounrad, 311.4–315.2 Ma at Borly and 309.5–311.4 Ma at Sayak), and finally, emplacement of the Late Carboniferous post-ore barren granitoids (305.0 Ma). The geochemistry of these rocks is consistent with calc-alkaline arc magmatism characterized by strong depletions in Nb, Ta and Ti and enrichments in light rare earth elements and large ion lithophile elements, suggesting a supra-subduction zone setting. However, the ore-forming rocks at Kounrad and Sayak show adakitic characteristics with high Sr (517.5–785.3 ppm), Sr/Y (50.60–79.26), (La/Yb)N (9.37–19.62) but low Y (6.94–11.54 ppm) and Yb (0.57–1.07 ppm), whereas ore-forming rocks at Borly and barren rocks from northwest of Borly and Sayak have normal arc magma geochemical features. The Sr–Nd–Hf–O isotopic compositions show three different signatures: (1) Sayak granitoids have very young juvenile lower crust-derived compositions ((87Sr/86Sr)i = 0.70384 to 0.70451, ɛNd (t) = + 4.9 to + 6.0; TDM2 (Nd) = 580 to 670 Ma, ɛHf (t) = + 11.3 to + 15.5; TDMC (Hf) = 330 to 600 Ma, δ18O = 6.0 to 8.1‰), and were probably generated from depleted mantle-derived magma with 5–15% sediment melt addition in the magma source; (2) the Kt-1 granite from northwest of Sayak shows extremely enriched Sr–Nd isotopic compositions ((87Sr/86Sr)i = 0.71050, ɛNd (t) =  7.8, TDM2 (Nd) = 1700 Ma), likely derived from partial melting of ancient continental crust; (3) other granitoids have transitional Sr–Nd compositions between the Sayak and Kt-1 samples, indicating a juvenile lower crust source with the addition of 10–30% of ancient crustal material. The pre-ore magmatism was probably related to partial melting of juvenile lower crust due to northward subduction of the Junggar–Balkhash Ocean, whereas the ore-forming adakitic rocks at Aktogai, Kounrad and Sayak formed by partial melting of thickened lower crust which subsequently delaminated. The ore-forming rocks at Borly, and the later post-ore barren granites, formed by partial melting of juvenile lower crust with normal thickness. This tectonic setting supports the existence of an Andean-type magmatic arc in the Devonian to the Late Carboniferous, resulting from the subduction of the Junggar–Balkhash oceanic plate. The link between whole rock geochemistry and scale of mineralization suggests a higher metallogenic potential for adakitic rocks than for normal arc magmatism.  相似文献   

19.
Brachinites are ultramafic, dunitic to wherlitic, unbrecciated and essentially unshocked rocks that are low in SiO2 (∼36–39 wt.%), high in MgO (∼27–30 wt.%) and notably high in FeO (∼26–37 wt.%), and low in Al2O3 (∼0.2–2.5 wt.%) and combined alkalis Na2O and K2O (∼0–0.7 wt.%). They consist mostly of olivine (∼71–96 vol.%; ∼Fo64–73), major clinopyroxene (minor to ∼15 vol.%; ∼En40–63Wo36–48), with variable small amounts of plagioclase (0 to ∼10 vol.%; ∼An15–33), and minor to trace amounts of orthopyroxene (none to ∼20 vol.%; En69–73Wo2–4), Fe-sulfides (trace to ∼7 vol.%), chromite (none to ∼5 vol.%), phosphates (none to ∼3 vol.%) and metallic Fe,Ni (trace to ∼2 vol.%). Minerals tend to be homogeneous, and textures are medium to coarse-grained (∼0.1–1.5 mm), with olivine commonly displaying triple junctions. Brachina has near-chondritic lithophile element abundances, whereas other brachinites show variable depletions in Al, Ca, Rb, K, Na, and LREE. Siderophile element abundance patterns vary and range from ∼0.01 to ∼0.9 CI. Oxygen isotope composition (Δ17O) ranges from ∼−0.09 to −0.39‰, with the mean = −0.23 ± 0.14‰. Brachinites are ancient rocks, as was recognized early by the detection, in some brachinites, of excess 129Xe from the decay of short-lived 129I (half-life 17 Ma) and of fission tracks from the decay of 244Pu (half-life 82 Ma) in phosphate, high-Ca clinopyroxene and olivine. The first precise crystallization age was determined for Brachina using 53Mn–53Cr systematics, relative to the Pb–Pb age of the angrite LEW 86010, and yielded an age of 4563.7 ± 0.9 Ma. Thus, Brachina is at most ∼4 Ma younger that the CAIs whose age is 4567.2 ± 0.6 Ma. There is no consensus on the origin of brachinites, but they most likely are primitive achondrites, i.e., ultra-mafic residues from various low degrees of partial melting. Partial melting experiments suggest that they possibly formed from a parent lithology chemically similar but not identical to the Rumuruti (R) chondrites, although the different oxygen isotopic compositions of the R chondrites and the brachinites put a serious constraint on this hypothesis. The apparent lack of abundant rocks representing the partial melts suggests that brachinites may have formed on a parent body <∼100 km in radius, where early partial melts were removed from the parent body by explosive pyroclastic volcanism. Graves Nunataks 06128 and 06129 are felsic, andesitic basalts which have properties that suggest a relationship to brachinites and thus, may be samples of the elusive partial melts.  相似文献   

20.
Eocene is a critical time for the elevation of Tibetan Plateau and global climate change, and previous studies suggested that the Eocene elevation was caused by intra-continental subduction of the Songpan–Garze block beneath the Qiangtang block. This paper reports zircon U–Pb age and geochemistry of the Eocene volcanic rocks from the Zuerkenwula mountain area in the northern part of Qiangtang block, and proposes that both slab break-off of the Neo-Tethys oceanic slab along the Bangong–Nujiang suture and intra-continental subduction of the Songpan–Garze block beneath the Qiangtang block caused the extensive partial melting of lithospheric mantle and subducted Songpan–Garze continental crust, which resulted in the significant elevation of the Tibetan Plateau. The volcanic rocks have LA-ICP MS U–Pb zircon age of 40.25 ± 0.15 Ma (MSWD = 2.1, 2σ), which is contemporaneous with the Eocene eclogites in the Great Himalayan and K-rich lavas in the southeastern Tibet. They display some adakitic characteristics with SiO2 = 57.44 to 68.72%, TiO2 = 0.38 to 0.81%, Na2O = 2.89 to 4.35%, K2O = 2.77 to 4.48%, Al2O3 = 13.92 to 18.22%, A/CNK = 0.69 to 1.03, MgO = 0.27 to 5.86% with Mg# ranging from 13.2 to 72.0, strongly depleted in heavy rare earth elements (HREEs) (Yb = 0.92 to 1.51 ppm and Y = 10.1 to 24.1 ppm), in combination with their positive Sr anomalies, high Sr/Y ratios and no significant Eu anomalies, which suggest a garnet-in and plagioclase-free source residue. These volcanic rocks can be divided into high-Mg# (> 45) and low-Mg# (< 45) groups. Both of the two groups share evolved Sr–Nd–Pb isotopic compositions with 87Sr/86Sr = 0.707412–0.708284; εNd(t) = ? 4.0 to ? 5.7; 206Pb/204Pb = 18.7499–18.8189, 207Pb/204Pb = 15.7189–15.7384; 208Pb/204Pb = 39.166–39.262. The geophysical data and regional geological setting suggest that the low-Mg# adakitic rocks were derived from the decompression melting of a subducted lower continental crust, when low-Mg# adakitic melts in the overlying peridotite mantle wedge captured some olivine crystals, resulting in their elevated Mg# and MgO values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号