首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2-D velocity structure up to the basement is derived by travel-time inversion of the first arrival seismic refraction and wide-angle reflection data along the SW–NE trending Jhagadia–Rajpipla profile, located on the western part of Deccan syneclise in the Narmada–Tapti region. The study region is mostly covered by alluvium. Inversion of refraction and wide-angle reflection data reveals four layered velocity structure above the basement. The first two layers with P-wave velocities of 1.95–2.3 km s?1 and 2.7–3.05 km s?1 represent the Recent and Quaternary sediments respectively. The thickness of these sediments varies from 0.15 km to 3.4 km. The third layer with a P-wave velocity of 4.8–5.1 km s?1 corresponds to the Deccan volcanics, whose thickness varies from 0.5 km to 1.0 km. Presence of a low velocity zone (LVZ) below the high velocity volcanic rocks in the study area is inferred from the travel-time ‘skip’ and amplitude decay of the first arrival refraction data and the wide-angle reflection from top of the LVZ present immediately after the first arrival refraction from Deccan Trap layer. The thickness of the low velocity Mesozoic sediments varies from 0.3 km to 1.7 km. The basement with a P-wave velocity of 5.9–6.15 km s?1 lies at a depth of 4.9 km near Jhagadia and shallows to 1.2 km towards northeast near Rajpipla. The results indicate presence of low velocity Mesozoic sediments hidden below the Deccan Trap layer in the western part of the Deccan syneclise.  相似文献   

2.
This work deals with 2D thermal modeling in order to delineate the crustal thermal structure of central India along two Deep Seismic Sounding (DSS) profiles, namely Khajuriakalan–Pulgaon and Ujjan–Mahan, traversing the Narmada-Son-Lineament (NSL) in an almost north–south direction. Knowledge of the crustal structure and P-wave velocity distribution up to the Moho, obtained from DSS studies, has been used for the development of the thermal model. Numerical results reveal that the Moho temperature in this region of central India varies between 500 and 580 °C. The estimated heat flow density value is found to vary between 46 and 49 mW/m2. The Curie depth varies between 40 and 42 km and is in close agreement with the Curie depth (40±4 km) estimated from the analysis of MAGSAT data. Based on the present work and previous work, it is suggested that the major part of peninsular India consisting of the Wardha–Pranhita Godavari graben/basin, Bastar craton and the adjoining region of the Narmada Son Lineament between profiles I and III towards the north and northwest of the Bastar craton are characterized with a similar mantle heat flow density value equal to ∼23 mW/m2. Variation in surface heat flow density values in these regions are caused by variation in the radioactive heat production and fluid circulation in the upper crustal layer.  相似文献   

3.
Mafic xenoliths of garnet pyroxenite and eclogite from the Wajrakarur, Narayanpet and Raichur kimberlite fields in the Archaean Eastern Dharwar Craton (EDC) of southern India have been studied. The composition of clinopyroxene shows transition from omphacite (3–6 wt% Na2O) in eclogites to Ca pyroxene (<3 wt% Na2O) in garnet pyroxenites. Some of the xenoliths have additional phases such as kyanite, enstatite, chromian spinel or rutile as discrete grains. Clinopyroxene in a rutile eclogite has an XMg value of 0.70, which is unusually low compared to the XMg range of 0.91–0.97 for all other samples. Garnet in the rutile eclogite is also highly iron-rich with an end member composition of Prp26.5Alm52.5Grs14.7Adr5.1TiAdr0.3Sps1.0Uv0.1. Garnets in several xenoliths are Cr-rich with up to 8 mol% knorringite component. Geothermobarometric calculations in Cr-rich xenoliths yield different PT ranges for eclogites and garnet pyroxenites with average PT conditions of 36 kbar and 1080 °C, and 27 kbar and 830 °C, respectively. The calculated PT ranges approximate to a 45 mW m?2 model geotherm, which is on the higher side of the typical range of xenolith/xenocryst geotherms (35–45 mW m?2) for several Archaean cratons in the world. This indicates that the EDC was hotter than many other shield regions of the world in the mid-Proterozoic period when kimberlites intruded the craton. Textural and mineral chemical characteristics of the mafic xenoliths favour a magmatic cumulate process for their origin as opposed to subducted and metamorphosed oceanic crust.  相似文献   

4.
The lithospheric structure of ancient cratons provides important constraints on models relating to tectonic evolution and mantle dynamics. Here we present the 3D lithospheric structure of the North China Craton (NCC) from a joint inversion of gravity, geoid and topography data. The NCC records a prolonged history of Archean and Paleoproterozoic accretion of crustal blocks through subduction and collision building the cratonic architecture, which was subsequently differentially destroyed during Mesozoic through extensive magmatism. The thermal structure obtained in our study is considered to define the lithosphere-asthenosphere boundary (LAB) of the NCC, and reflects the density variations within the mantle lithosphere. Employing the Moho depths from deep seismic sounding profiles for the inversion, and based on repeated computations using different parameters, we estimate the Moho depth, LAB depth and average crustal density of the craton. The Moho depth varies from 28 to 50 km and the LAB depth varies from 105 to 205 km. The LAB and Moho show concordant thinning from West to East of the NCC. The average crustal density is 2870 kg m 3 in the western part of the NCC, higher than that in the eastern part (2750 kg m 3). The results of joint inversion in our study yielded LAB depth and lithospheric thinning features similar to those estimated from thermal and seismic studies, although our results show different depth and variations in the thickness. The lithosphere gently thins from 145 to 105 km in the eastern NCC, where as the thinning is much less pronounced in the western NCC with average depth of about 175 km. The joint inversion results in this study provide another perspective on the lithospheric structure from the density properties and corresponding geophysical responses in an ancient craton.  相似文献   

5.
《Precambrian Research》2006,144(3-4):239-260
We present here new palaeomagnetic, isotopic age and geochemical data from Archean and Early Palaeoproterozoic rocks in the eastern Fennoscandian Shield. We have studied NE–SW trending gabbronorite dyke sets and their host Archean basement rocks in the Vodlozero block near the 2449 Ma Burakovka layered intrusion in southern Russian Karelia. Both dyke sets are genetically related to the Burakovka intrusion. The other, ca. 25 km long Avdeev dyke, locating a few kilometers south from the Burakovka intrusion, yields a stable single component remanence direction that is in agreement with the direction previously obtained from the Burakovka intrusion. Another NE–SW trending dyke, 0.8 m wide Shalskiy diabase dyke, about 30 km south of the Burakovka intrusion yields a similar remanence direction as the Avdeev dyke. The overall mean remanence direction has a palaeopole at Plat = −12.3°N, Plong = 243.5°E (A95 = 15.4°, 4 sites, 28 samples). The thin Shalskiy diabase dyke transects a similarly NE–SW trending 500 m wide coarse grained gabbronorite dyke which has now been dated by Sm–Nd method as 2608 ± 56 Ma. Geochemically all the dykes are quite similar showing slight calc-alkaline affinity and low TiO2 and high SiO2 with moderate MgO and low Cr and Ni. Furthermore, the dykes are geochemically identical to the 2.45 Ga dyke swarm in the northern Karelian Province.The remanence direction of the thin Shalskiy diabase dyke differs significantly from the high temperature and high coercivity remanence component of the unbaked Archean gabbronorite dyke which yields a palaeopole at Plat = 22.7°N, Plong = 222.1°E (dp = 8.2°, dm = 16.2°, five samples). On the basis of different remanence directions of the diabase dyke and the unbaked Archean gabbronorite dyke, the baked contact test for the diabase dyke is positive. In addition to the high temperature and high coercivity component of the baked and unbaked Archean gabbronorite dyke, in low temperatures and coercivities we isolated a similar component as in the diabase dyke. A comparable remanence component was also obtained from the Archean basement at ca. 8 km from the dykes. We propose that in the studied area, the Archean basement and the Archaean dyke were partly remagnetized due to emplacement and subsequent uplift and cooling of the large Burakovka layered intrusion and related dykes at about 2.40 Ga ago.This interpretation lends support from a new 40Ar/39Ar dating of hornblende from another area, Lake Paajarvi area, in northern Karelia. There, a negative baked contact test was previously obtained for the remanence of the dated ca. 2.45 Ga dyke rocks related to the ca. 2.45 Ga Oulanka layered intrusion. The 40Ar/39Ar dating of the unbaked Archean basement which yields the same remanence component as the dykes, shows a plateau age of ca. 2.6 Ga, but in addition, it also shows resetting of the basement at ca. 2.4 Ga ago. The dating thus supports reactivation and partial remagnetization of the Archean basement at ca. 2.4 Ga ago.Our new palaeomagnetic results from the Burakovka dykes and the new 40Ar/39Ar dating from the Lake Paajarvi area give support to our previous interpretation that at Lake Paajarvi area the remanence component suggested to be 2.4 Ga, despite to negative baked contact test, is indeed of this age. Therefore, it is implied that the results can be used for continental reconstructions.  相似文献   

6.
The northern part of Central India Tectonic Zone (CITZ) is delineated by an arc-shaped supracrustal belt commonly referred to as Mahakoshal Belt, which is considered as a product of intense rifting of sialic crust that occurred at ca 2400–2600 Ma. Several granitoid plutons intrude the Parsoi Formation of Mahakoshal Belt. Among these, an elliptical small stock-like granitoid body trending E–W is exposed in and around Jhirgadandi region of Mahakoshal Belt, referred herein as Jhirgadandi Pluton. It is composed of minor amount of mafic rocks (diorite) and predominant granitoids. Country-rock pelitic xenoliths and microgranular enclaves (ME) are commonly hosted in granitoids but are absent in diorite. The ME exhibit typical magmatic texture with a Bt(±Cpx ± Hbl)-Pl-Kf-Qtz-Mag-Ap assemblage, similar to that in host granitoids but with contrasting mineral proportions. Whole-rock molar Al2O3/(CaO + Na2O + K2O) (A/CNK) ratios of diorite (0.63–0.72), ME (0.69–1.21) and granitoids (0.83–1.05) suggest their nature largely metaluminous (I-type) to rarely peraluminous (S-type) granitoids. On most binary plots involving silica, two distinct compositional paths can be recognized; one formed by an array of differentiating diorite and ME, and another by fractionating granitoids gradually depleting in compatible elements. It is most likely that ME were generated by progressive and concurrent mixing of coeval pristine mafic (diorite) and granitoid magmas and fractionation processes. However, coherent and identical trace elements (except for Sr, Th, Y and Ni) and REE patterns for ME-granitoid pairs most likely suggest partial to near-complete chemical equilibration through varying degrees of diffusion process across the ME – partly crystalline host granitoid boundary. High-precision U–Pb SHRIMP zircon 206Pb/238U ages for ME (1758 ± 19 Ma) and host granitoid (1753 ± 9.1 Ma) from Jhirgadandi Pluton further support the notion that they were coeval. The obtained age (∼1750 Ma) of Jhirgadandi Pluton also points to the existence and role of Super-Columbian continental component in the evolution of Mahakoshal Belt of the CITZ.  相似文献   

7.
In this study, receiver function analysis is carried out at 32 broadband stations spread all over the Gujarat region, located in the western part of India to image the sedimentary structure and investigate the crustal composition for the entire region. The powerful Genetic Algorithm technique is applied to the receiver functions to derive S-velocity structure beneath each site. A detail image in terms of basement depths and Moho thickness for the entire Gujarat region is obtained for the first time. Gujarat comprises of three distinct regions: Kachchh, Saurashtra and Mainland. In Kachchh region, depth of the basement varies from around 1.5 km in the eastern part to 6 km in the western part and around 2–3 km in the northern part to 4–5 km in the southern part. In the Saurashtra region, there is not much variation in the depth of the basement and is between 3 km and 4 km. In Gujarat mainland part, the basement depth is 5–8 km in the Cambay basin and western edge of Narmada basin. In other parts of the mainland, it is 3–4 km. The depth of Moho beneath each site is obtained using stacking algorithm approach. The Moho is at shallower depth (26–30 km) in the western part of Kachchh region. In the eastern part and epicentral zone of the 2001 Bhuj earthquake, large variation in the Moho depths is noticed (36–46 km). In the Saurashtra region, the crust is more thick in the northern part. It varies from 36–38 km in the southern part to 42–44 km in the northern part. In the mainland region, the crust is more thick (40–44 km) in the northern and southern part and is shallow in Cambay and Narmada basins (32–36 km). The large variations of Poisson’s ratio across Gujarat region may be interpreted as heterogeneity in crustal composition. High values of σ (∼0.30) at many sites in Kachchh and few sites in Saurashtra and Mainland regions may be related to the existence of high-velocity lower crust with a mafic/ultramafic composition and, locally, to the presence of partial melt. The existing tectono-sedimentary models proposed by various researchers were also examined.  相似文献   

8.
The Carris orebody consists of two partially exploited W–Mo–Sn quartz veins formed during successive shear stages and multipulse fluid fillings. They cut the Variscan post-D3 Gerês I-type granite. The most important ore minerals are wolframite, scheelite, molybdenite and cassiterite. There are two generations of wolframite. The earlier generation of wolframite is rare and has the highest WO4Mn content (91 mol%) and the most common wolframite contains 26–57 mol% WO4Mn. Re–Os dating of molybdenite from the ore quartz veins and surrounding granite yields ages of 279 ± 1.2 Ma and 280.3 ± 1.2 Ma, respectively which are in very good agreement with the previous ID-TIMS U–Pb zircon age for the Carris granite (280 ± 5 Ma).3He/4He ratio of pyrite ranging between 0.73 and 2.71 Ra (1 Ra = 1.39 × 10 6) and high 3He/36Ar (0.8–5 × 10 3) indicate a mixture of a crustal radiogenic helium fluid with a mantle derived-fluid.The fluid inclusion studies on quartz intergrown with wolframite and scheelite, beryl and fluorite reveal that two distinct fluid types were involved in the genesis of this deposit. The first was a low to medium salinity aqueous carbonic fluid (CO2 between 4 and 14 mol%) with less than 1.95 mol% N2, which was only found in quartz associated with wolframite. The other was a low salinity aqueous fluid found in all the four minerals. The homogenization temperatures indicate minimum entrapment temperatures of 226–310 °C (average 280 °C) for the H2O–CO2–N2–NaCl fluid and average temperatures of 266 °C for scheelite and 242 °C, 190 °C and 160 °C for the last generations of beryl, fluorite and quartz, respectively. It was estimated that wolframite was deposited ~ 7 km depth, assuming a lithostatic pressure, probably due to strong pressure fluctuation caused by seismic events triggered by brittle tectonics during the exhumation event. Precipitation of scheelite and sulphides took place later, at the same depth, but under a hydrostatic or suprahydrostatic pressure regime, and probably caused by mixing between the magmatic–hydrothermal fluid and meteoric waters that deeply penetrated the basement during post-Variscan decompression.  相似文献   

9.
A high-resolution passive seismic experiment in the Kachchh rift zone of the western India has produced an excellent dataset of several thousands teleseismic events. From this network, 500 good teleseismic events recorded at 14 mobile broadband sites are used to estimate receiver functions (for the 30–310° back-azimuth ranges), which show a positive phase at 4.5–6.1 s delay time and a strong negative phase at 8.0–11.0 s. These phases have been modeled by a velocity increase at Moho (i.e. 34–43 km) and a velocity decrease at 62–92 km depth. The estimation of crustal and lithospheric thicknesses using the inversion of stacked radial receiver functions led to the delineation of a marked thinning of 3–7 km in crustal thickness and 6–14 km in lithospheric thickness beneath the central rift zone relative to the surrounding un-rifted parts of the Kachchh rift zone. On an average, the Kachchh region is characterized by a thin lithosphere of 75.9 ± 5.9 km. The marked velocity decrease associated with the lithosphere–asthenoshere boundary (LAB), observed over an area of 120 km × 80 km, and the isotropic study of xenoliths from Kachchh provides evidence for local asthenospheric updoming with pockets of partial melts of CO2 rich lherzolite beneath the Kachchh seismic zone that might have caused by rifting episode (at 88 Ma) and the associated Deccan thermal-plume interaction (at 65 Ma) episodes. Thus, the coincidence of the area of the major aftershock activity and the Moho as well as asthenospheric upwarping beneath the central Kachchh rift zone suggests that these pockets of CO2-rich lherzolite partial melts could perhaps provide a high input of volatiles containing CO2 into the lower crust, which might contribute significantly in the seismo-genesis of continued aftershock activity in the region. It is also inferred that large stresses in the denser and stronger lower crust (at 14–34 km depths) induced by ongoing Banni upliftment, crustal intrusive, marked lateral variation in crustal thickness and related sub-crustal thermal anomaly play a key role in nucleating the lower crustal earthquakes beneath the Kachchh seismic zone.  相似文献   

10.
To understand Holocene climate evolutions in low-latitude region of the western Pacific, paired δ18O and Mg/Ca records of planktonic foraminifer Globigerinoides ruber (250–300 μm, sensu stricto, s.s.) from a marine core ORI715-21 (121.5°E, 22.7°N, water depth 760 m) underneath the Kuroshio Current (KC) off eastern Taiwan were analyzed. Over the past 7500 years, the geochemical proxy-inferred sea surface temperature (SST) hovered around 27–28 °C and seawater δ18O (δ18OW) slowly decreased 0.2–0.4‰ for two KC sites at 22.7° and 25.3°N. Comparison with a published high-SST and high-salinity equatorial tropical Pacific record, MD98-2181 located at the Mindanao Current (MC) at 6.3°N, reveals an anomalous time interval at 3.5–1.5 kyr ago (before 1950 AD). SST gradient between the MC site and two KC site decrease from 1.5–2.0 °C to only 0–1 °C, and δ18OW from 0.1–0.3‰ to 0‰ for this 2-kyr time window. The high SST and low gradient could result from a northward shift of the North Equatorial Current, which implies a weakened KC. The long-term descending δ18OW and increasing precipitation in the entire low-latitude western Pacific and the gradually decreasing East Asian summer monsoonal rainfall during middle-to-late Holocene is likely caused by different land and ocean responses to solar insolation and/or enhanced moisture transportation from the Atlantic to Pacific associated with the southward movement of ITCZ.  相似文献   

11.
We investigated the seismic shear-wave velocity structure of the crust beneath nine broadband seismological stations of the Shillong–Mikir plateau and its adjoining region using teleseismic P-wave receiver function analysis. The inverted shear wave velocity models show ∼34–38 km thick crust beneath the Shillong Plateau which increases to ∼37–38 km beneath the Brahmaputra valley and ∼46–48 km beneath the Himalayan foredeep region. The gradual increase of crustal thickness from the Shillong Plateau to Himalayan foredeep region is consistent with the underthrusting of Indian Plate beyond the surface collision boundary. A strong azimuthal variation is observed beneath SHL station. The modeling of receiver functions of teleseismic earthquakes arriving the SHL station from NE backazimuth (BAZ) shows a high velocity zone within depth range 2–8 km along with a low velocity zone within ∼8–13 km. In contrast, inversion of receiver functions from SE BAZ shows high velocity zone in the upper crust within depth range ∼10–18 km and low velocity zone within ∼18–36 km. The critical examination of ray piercing points at the depth of Moho shows that the rays from SE BAZ pierce mostly the southeast part of the plateau near Dauki fault zone. This observation suggests the effect of underthrusting Bengal sediments and the underlying oceanic crust in the south of the plateau facilitated by the EW-NE striking Dauki fault dipping 300 toward northwest.  相似文献   

12.
NE Iran, including the Kopeh Dagh and Allah Dagh-Binalud deformation domains, comprises the northeastern boundary of the Arabia–Eurasia collision zone. This study focuses on the evolution of the Plio-Quaternary tectonic regimes of northeast Iran. We present evidence for drastic temporal changes in the stress state by inversion of both geologically and seismically determined fault slip vectors. The inversions of fault kinematics data reveal distinct temporal changes in states of stress during the Plio-Quaternary (since ~ 5 Ma). The paleostress state is characterized by a regional transpressional tectonic regime with a mean N140 ± 10°E trending horizontal maximum stress axis (σ1). The youngest (modern) state of stress shows two distinct strike-slip and compressional tectonic regimes with a regional mean of N030 ± 15°E trending horizontal σ1. The change from the paleostress to modern stress states has occurred through an intermediate stress field characterized by a mean regional N trending σ1. The inversion analysis of earthquake focal mechanisms reveals a homogeneous, transpressional tectonic regime with a regional N023 ± 5°E trending σ1. The modern stress state, deduced from the youngest fault kinematics data, is in close agreement with the present-day stress state given by the inversions of earthquake focal mechanisms. According to our data and the deduced results, in northeast Iran, the Arabia–Eurasia convergence is taken up by strike-slip faulting along NE trending left-lateral and NNW trending right-lateral faults, as well as reverse to oblique-slip reverse faulting along NW trending faults. Such a structural assemblage is involved in a mechanically compatible and homogeneous modern stress field. This implies that no strain and/or stress partitioning or systematic block rotations have occurred in the Kopeh Dagh and Allah Dagh-Binalud deformation domains. The Plio-Quaternary stress changes documented in this paper call into question the extrapolation of the present-day seismic and GPS-derived deformation rates over geological time intervals encompassing tens of millions of years.  相似文献   

13.
We present a new regional model for the depth-averaged density structure of the cratonic lithospheric mantle in southern Africa constrained on a 30′ × 30′ grid and discuss it in relation to regional seismic models for the crust and upper mantle, geochemical data on kimberlite-hosted mantle xenoliths, and data on kimberlite ages and distribution. Our calculations of mantle density are based on free-board constraints, account for mantle contribution to surface topography of ca. 0.5–1.0 km, and have uncertainty ranging from ca. 0.01 g/cm3 for the Archean terrains to ca. 0.03 g/cm3 for the adjacent fold belts. We demonstrate that in southern Africa, the lithospheric mantle has a general trend in mantle density increase from Archean to younger lithospheric terranes. Density of the Kaapvaal mantle is typically cratonic, with a subtle difference between the eastern, more depleted, (3.31–3.33 g/cm3) and the western (3.32–3.34 g/cm3) blocks. The Witwatersrand basin and the Bushveld Intrusion Complex appear as distinct blocks with an increased mantle density (3.34–3.35 g/cm3) with values typical of Proterozoic rather than Archean mantle. We attribute a significantly increased mantle density in these tectonic units and beneath the Archean Limpopo belt (3.34–3.37 g/cm3) to melt-metasomatism with an addition of a basaltic component. The Proterozoic Kheis, Okwa, and Namaqua–Natal belts and the Western Cape Fold Belt with the late Proterozoic basement have an overall fertile mantle (ca. 3.37 g/cm3) with local (100–300 km across) low-density (down to 3.34 g/cm3) and high-density (up to 3.41 g/cm3) anomalies. High (3.40–3.42 g/cm3) mantle densities beneath the Eastern Cape Fold belt require the presence of a significant amount of eclogite in the mantle, such as associated with subducted oceanic slabs.We find a strong correlation between the calculated density of the lithospheric mantle, the crustal structure, the spatial pattern of kimberlites, and their emplacement ages. (1) Blocks with the lowest values of mantle density (ca. 3.30 g/cm3) are not sampled by kimberlites and may represent the “pristine” Archean mantle. (2) Young (< 90 Ma) Group I kimberlites sample mantle with higher density (3.35 ± 0.03 g/cm3) than the older Group II kimberlites (3.33 ± 0.01 g/cm3), but the results may be biased by incomplete information on kimberlite ages. (3) Diamondiferous kimberlites are characteristic of regions with a low-density cratonic mantle (3.32–3.35 g/cm3), while non-diamondiferous kimberlites sample mantle with a broad range of density values. (4) Kimberlite-rich regions have a strong seismic velocity contrast at the Moho, thin crust (35–40 km) and low-density (3.32–3.33 g/cm3) mantle, while kimberlite-poor regions have a transitional Moho, thick crust (40–50 km), and denser mantle (3.34–3.36 g/cm3). We explain this pattern by a lithosphere-scale (presumably, pre-kimberlite) magmatic event in kimberlite-poor regions, which affected the Moho sharpness and the crustal thickness through magmatic underplating and modified the composition and rheology of the lithospheric mantle to make it unfavorable for consequent kimberlite eruptions. (5) Density anomalies in the lithospheric mantle show inverse correlation with seismic Vp, Vs velocities at 100–150 km depth. However, this correlation is weaker than reported in experimental studies and indicates that density-velocity relationship in the cratonic mantle is strongly non-unique.  相似文献   

14.
With the aim of constraining the Early Mesozoic tectonic evolution of the eastern section of the Central Asian Orogenic Belt (CAOB), we undertook zircon U–Pb dating and geochemical analyses (major and trace elements, Sr–Nd isotopes) of volcanic rocks of the Luoquanzhan Formation and Daxinggou Group in eastern Heilongjiang and Jilin provinces, China. The analyzed rocks consist mainly of dacite and rhyolite, with SiO2 contents of 68.52–76.65 wt%. Three samples from the Luoquanzhan Formation and one from the Daxinggou Group were analyzed using laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) U–Pb zircon techniques. Three zircons with well-defined oscillatory zoning yielded weighted mean 206Pb/238U ages of 217 ± 1, 214 ± 2, and 208 ± 1 Ma, and one zircon with oscillatory zoning yielded a weighted mean 206Pb/238U age of 201 ± 1 Ma. These ages are interpreted to represent the timing of eruption of the volcanic rocks. The Triassic volcanic rocks are characterized by high SiO2 and low MgO concentrations, enrichment in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), depletion in high field strength elements (HFSEs) and heavy rare earth elements (HREEs), (87Sr/86Sr)i = 0.7040–0.7050 (Luoquanzhan Formation) and 0.7163–0.7381 (Daxinggou Group), and εNd (t) = 1.89–3.94 (Luoquanzhan Formation) and 3.42–3.68 (Daxinggou Group). These geochemical features indicate an origin involving the partial melting of juvenile lower crust (Nd model ages (TDM2) of 651–821 Ma) and that compositional variation among the volcanic rocks arose from mineral fractionation and minor assimilation. These volcanic rocks formed within an extensional environment following collision of the NCC and Jiamusi-Khanka Massif during the Late Paleozoic–Early Triassic.  相似文献   

15.
《Applied Geochemistry》2005,20(1):23-39
Hydrothermal alteration at Los Azufres geothermal field is mostly propylitic with a progressive dehydration with depth and temperature increase. Argillic and advanced argillic zones overlie the propylitic zone owing to the activity of gases in the system. The deepest fluid inclusions (proto-fluid) are liquid-rich with low salinity, with NaCl dominant fluid type and ice melting temperatures (Tmi) near zero (0 °C), and salinities of 0.8 wt% NaCl equivalent. The homogenization temperature (Th)  = 325 ± 5 °C. The boiling zone shows Th = ±300 °C and apparent salinities between 1 and 4.9 wt% NaCl equivalent, implying a vaporization process and a very important participation of non-condensable gases (NCGs), mostly CO2. Positive clathrate melting temperatures (fusion) with Th = 150 °C are observed in the upper part of the geothermal reservoir (from 0 to 700 m depth). These could well be the evidence of a high gas concentration. The current water produced at the geothermal wells is NaCl rich (geothermal brine) and is fully equilibrated with the host rock at temperatures between T = 300 and 340 °C. The hot spring waters are acid-sulfate, indicating that they are derived from meteoric water heated by geothermal steam. The NCGs related to the steam dominant zone are composed mostly of CO2 (80–98% of all the gases). The gases represent between 2 and 9 wt% of the total mass of the fluid of the reservoir.The authors interpret the evolution of this system as deep liquid water boiling when ascending through fractures connected to the surface. Boiling is caused by a drop of pressure, which favors an increase in the steam phase within the brine ascending towards the surface. During this ascent, the fluid becomes steam-dominant in the shallowest zone, and mixes with meteoric water in perched aquifers. Stable isotope compositions (δ18O–δD) of the geothermal brine indicate mixing between meteoric water and a minor magmatic component. The enrichment in δ18O is due to the rock–water interaction at relatively high temperatures. δ13C stable isotope data show a magmatic source with a minor meteoric contribution for CO2. The initial isotopic value δ34SRES = −2.3‰, which implies a magmatic source. More negative values are observed for shallow pyrite and range from δ34S (FeS2) = −4‰ to −4.9‰, indicating boiling. The same fractionation tendencies are observed for fluids in the reservoir from results for δ18O.  相似文献   

16.
The Yanshan Orogenic Belt is located in the northern part of the North China Craton (NCC), which lost ∼120 km of lithospheric mantle during Phanerozoic tectonic reactivation. Mesozoic magmatism in the Yanshan fold-and-thrust belt began at 195–185 Ma (Early Jurassic), with most of the granitic plutons being Cretaceous in age (138–113 Ma). Along with this magmatism, multi-phase deformational structures, including multiple generations of folds, thrust and reverse faults, extensional faults, and strike-slip faults are present in this belt. Previous investigations have mostly focused on geochemical and isotopic studies of these magmatic rocks, but not on the thermal history of the Mesozoic plutons. We have applied 40Ar/39Ar thermochronology to biotites and K-feldspars from several Lower Cretaceous granitic plutons to decipher the cooling and uplift history of the Yanshan region. The biotite 40Ar/39Ar ages of these plutons range from 107 to 123 Ma, indicating that they cooled through about 350 °C at that time. All the K-feldspar step-heating results modeled using multiple diffusion domain theory yield similarly rapid cooling trends, although beginning at different times. Two rapid cooling phases have been identified at ca. 120–105 and 100–90 Ma. The first phase of rapid cooling occurred synchronously with widespread extensional deformation characterized by the formation of metamorphic core complexes, A-type magmatism, large-scale normal faults, and the development of half-graben basins. This suggests rapid exhumation took place in an extensional regime and was a shallow-crustal-level response to lithospheric thinning of the NCC. The second phase of rapid cooling was probably related to the regional uplift and unroofing of the Yanshan Belt, which is consistent with the lack of Upper Cretaceous sediments in most of the Yanshan region.  相似文献   

17.
Crnac is an intermediate sulfidation Pb–Zn–Ag epithermal deposit located within the Vardar suture zone of the Central Balkan Peninsula. The epithermal Pb–Zn–Ag mineralization consists of (i) a series of steeply-dipping veins hosted within the Jurassic amphibolites, and (ii) overlying hydrothermal-explosive breccia with angular (level IV) or rounded fragments of listwanite (surface) cemented by epithermal mineralization. The mineralization is related to the Oligocene quartz latite dykes that crosscut the Crnac antiform. Quartz latite rocks predominantly display a shoshonitic character. The obtained 40Ar/39Ar age of fresh quartz latite is 28.9 ± 0.3 Ma. Fine-grained sericite from altered quartz latite is dated at 28.6 ± 0.5 Ma. Early, alteration related fluid inclusions within quartz latite show coexistence of high-density brine and a low-density vapor-saturated phase that homogenized at 280–405 °C. Phase separation occurs at a paleodepth of 0.6 to 0.9 km.Epithermal mineralization developed in three stages: (i) early pyrite–arsenopyrite–pyrrhotite–quartz–kaolinite; (ii) main sphalerite–galena–tetrahedrite–chalcopyrite and (iii) late carbonate–pyrite–arsenopyrite assemblage. The onset of mineral deposition within epithermal veins was initiated by boiling of Na–Cl ± K ± Ca ± Mg fluid at a paleodepth of 0.6 to 0.9 km. Coexisting vapor and liquid-rich inclusions display salinities and trapping temperatures of 4 wt.% NaCl equiv., 280–370 °C and 2–27 wt.% NaCl equiv., 230–375 °C, respectively. Boiling continued throughout the deposition of the sphalerite-galena-tetrahedrite-chalcopyrite assemblage. Late stage carbonate was deposited from diluted, non-boiling, low-temperature Na–Ca–Mg–Cl ± CO2 fluid (0.2 to 4.8 wt.% NaCl equiv., 115–280 °C).About 100–150 m higher in the system, precipitation of listwanite breccia cement began as a result of boiling Na–Cl ± Ca ± Mg ± K fluid of medium salinities (2.6 to 12.1 wt.% NaCl equiv.) at temperatures of 245–370 °C. Boiling and dilution of fluids continue throughout the precipitation of the main sphalerite-galena-tetrahedrite and late, mainly carbonate assemblage. Surface listwanite breccia contain quartz phenocrysts deposited from a homogeneous fluid with a medium salinity (8–10 wt.% NaCl equiv.) and high temperatures (Th = 295–315 °C), whereas the early and main stage of a surface listwanite breccia cement precipitated from a boiling fluid of decreasing salinity and temperature. Aqueous ± CO2, high salinity (16 to 18 wt.% NaCl equiv.), low temperature (120 °C), homogeneously trapped fluid that precipitated late stage carbonates, is most likely a remnant of boiled off fluid. The epithermal assemblage of the surface listwanites precipitated at a paleodepth of 0.4 to 0.6 km.The δ13C values of the late stage ankerite range from − 4.2 to 4.1‰, whereas δ18O range from 9.6 to 17.5‰. The calculated δ18O of fluid that precipitated carbonates within epithermal veins, and listwanite breccia cement range from 6.3 to 11.3‰, indicating a contribution of magmatic water.Deposition of all mineralization types was initiated by neutralization of primary acidic magmatic fluid by water-rock reactions that caused widespread propylitization and sericitization. Extensive and long-lasting boiling combined with dilution by meteoric water increased the pH towards the final stage of hydrothermal activity.  相似文献   

18.
The solubility of synthetic ZnS(cr) was measured at 25–250 °C and P = 150 bars as a function of pH in aqueous sulfide solutions (~ 0.015–0.15 m of total reduced sulfur). The solubility determinations were performed using a Ti flow-through hydrothermal reactor. The solubility of ZnS(cr) was found to increase slowly with temperature over the whole pH range from 2 to ~ 10. The values of the Zn–S–HS complex stability constant, β, were determined for Zn(HS)20(aq), Zn(HS)3?, Zn(HS)42?, and ZnS(HS)?. Based on the experimental values the Ryzhenko–Bryzgalin electrostatic model parameters for these stability constants were calculated, and the ZnS(cr) solubility and the speciation of Zn in sulfide-containing hydrothermal solutions were evaluated. The most pronounced solubility increase, about 3 log units at m(Stotal) = 0.1 for the temperatures from 25 to 250 °C, was found in acidic solutions (pH ~ 3 to 4) in the Zn(HS)20(aq) predominance field. In weakly alkaline solutions, where Zn(HS)3? and Zn(HS)42? are the dominant Zn–S–HS complexes, the ZnS(cr) solubility increases by 1 log unit at the same conditions. It was found that ZnS(HS)? and especially Zn(HS)42? become less important in high temperature solutions. At 25 °C and m(Stotal) = 0.1, these species dominate Zn speciation at pH > 7. At 100 °C and m(Stotal) = 0.1, the maximum fraction of Zn(HS)42? is only 20% of the total Zn concentration (i.e. at pHt ~ 7.5), whereas at 350 °C and 3 <pHt <10, the fraction of Zn(HS)42? and ZnS(HS)? is less than 0.05% and 2.5% respectively, of the total Zn concentration and Zn(HS)20 and Zn(HS)3? predominate. The measured equilibrium formation constants were combined with the literature data on the stability of Zn–Cl complexes in order to evaluate the concentration and speciation of Zn in chloride solutions. It was found that at acidic pH, and in more saline fluids having total chloride > 0.05 m, Zn–Cl complexes are responsible for hydrothermal Zn transport with no significant contribution of Zn–S–HS complexes. The hydrosulfide/sulfide complexes will play a more important role in lower salinity (< 0.05 m chloride) hydrothermal solutions which are characteristic of many epithermal ore depositing environments. The value of ΔfG° (β-ZnS(cr)) = ? 198.6 ± 0.2 kJ/mol at 25 °C was determined via solubility measurements of natural low-iron Santander (Spain) sphalerite.  相似文献   

19.
Rock magnetic and palaeomagnetic studies were performed on Mesozoic redbeds collected from the central and southern Laos, the northeastern and the eastern parts of the Khorat Plateau on the Indochina Block. Totally 606 samples from 56 sites were sampled and standard palaeomagnetic experiments were made on them. Positive fold tests are demonstrated for redbeds of Lower and Upper Cretaceous, while insignificant fold test is resulted for Lower Jurassic redbeds. The remanence carrying minerals defined from thermomagnetic measurement, AF and Thermal demagnetizations and back-field IRM measurements are both magnetite and hematite. The positive fold test argues that the remanent magnetization of magnetite or titanomagnetite and hematite in the redbeds is the primary and occurred before folding. The mean palaeomagnetic poles for Lower Jurassic, Lower Cretaceous, and Upper Cretaceous are defined at Plat./Plon. = 56.0°N/178.5°E (A95 = 2.6°), 63. 3°N/170.2°E (A95 = 6.9°), and 67.0°N/180.8°E (A95 = 4.9°), respectively. Our palaeomagnetic results indicate a latitudinal translations (clockwise rotations) of the Indochina Block with respect to the South China Block of −10.8 ± 8.8° (16.4 ± 9.0°); −11.1 ± 6.2° (17.8 ± 6.8°); and −5.3 ± 4.7° (13.3 ± 5.0°), for Lower Jurassic, Lower Cretaceous, and Upper Cretaceous, respectively. These results indicate a latitudinal movement of the Indochina Block of about 5–11° (translation of about 750–1700 km in the southeastward direction along the Red River Fault) and clockwise rotation of 13–18° with respect to the South China Block. The estimated palaeoposition of the Khorat Plateau at ca. 21–26°N during Jurassic to Cretaceous argues for a close relation to the Sichuan Basin in the southwest of South China Block. These results confirm that the central part of the Indochina Block has acted like a rigid plate since Jurassic time and the results also support an earlier extrusion model for Indochina.  相似文献   

20.
The Wangfeng gold deposit is located in Western Tian Shan and the central section of the Central Asian Orogenic Belt (CAOB). The deposit is mainly hosted in Precambrian metamorphic rocks and Caledonian granites and is structurally controlled by the Shenglidaban ductile shear zone. The gold orebodies consist of gold-bearing quartz veins and altered mylonite. The mineralization can be divided into three stages: quartz–pyrite veins in the early stage, sulfide–quartz veins in the middle stage, and quartz–carbonate veins or veinlets in the late stage. Ore minerals and native gold mainly formed in the middle stage. Four types of fluid inclusions were identified based on petrography and laser Raman spectroscopy: CO2–H2O inclusions (C-type), pure CO2 inclusions (PC-type), NaCl–H2O inclusions (W-type), and daughter mineral-bearing inclusions (S-type). The early-stage quartz contains only primary CO2–H2O fluid inclusions with salinities of 1.62 to 8.03 wt.% NaCl equivalent, bulk densities of 0.73 to 0.89 g/cm3, and homogenization temperatures of 256 °C–390 °C. Vapor bubbles are composed of CO2. The middle-stage quartz contains all four types of fluid inclusions, of which the CO2–H2O and NaCl–H2O types yield homogenization temperatures of 210 °C–340 °C and 230 °C–300 °C, respectively. The CO2–H2O fluid inclusions have salinities of 0.83 to 9.59 wt.% NaCl equivalent and bulk densities of 0.77 to 0.95 g/cm3, with vapor bubbles composed of CO2, CH4, and N2. Fluid inclusions in the late-stage quartz are NaCl–H2O solution with low salinities (0.35–3.87 wt.% NaCl equivalent) and low homogenization temperatures (122 °C–214 °C). The coexistence of inclusions of these four types in middle-stage quartz suggests that fluid boiling occurred in the middle-stage mineralization. Trapping pressures estimated from CO2–H2O inclusions are 110–300 MPa and 90–250 MPa for the early and middle stages, respectively, suggesting that gold mineralization mainly occurred at depths of about 10 km. In general, the Wangfeng gold deposit originated from a metamorphic fluid system characterized by low salinity, low density, and enrichment of CO2. Depressurized fluid boiling caused gold precipitation. Given the regional geology, ore geology, fluid-inclusion features, and ore-forming age, the Wangfeng gold deposit can be classified as a hypozonal orogenic gold deposit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号